
UNIVERSITY OF BELGRADE
FACULTY OF PHYSICS

Dušan Žigić

DEVELOPMENT OF THE DREENA MODEL
FOR QUARK-GLUON PLASMA TOMOGRAPHY

Doctoral Dissertation

Belgrade, 2024

ii

ÓÍÈÂÅÐÇÈÒÅÒ Ó ÁÅÎÃÐÀÄÓ

ÔÈÇÈ×ÊÈ ÔÀÊÓËÒÅÒ

Äóøàí Æèãè£

ÐÀÇÂÎJ ÄÐÅÅÍÀ ÌÎÄÅËÀ

ÇÀ ÒÎÌÎÃÐÀÔÈJÓ ÊÂÀÐÊ-ÃËÓÎÍÑÊÅ ÏËÀÇÌÅ

äîêòîðñêà äèñåðòàöèjà

Áåîãðàä, 2024. ãîäèíà

Thesis Defense Committee

Thesis advisor:

Dr. Magdalena Ðord̄ević
Research Professor
Institute of Physics Belgrade
University of Belgrade

Committee member:

Dr. Bojana Ilić
Assistant Research Professor
Institute of Physics Belgrade
University of Belgrade

Thesis advisor:

Dr. Igor Salom
Research Professor
Institute of Physics Belgrade
University of Belgrade

Committee member:

Prof. Dr. Maja Burić
Professor
Faculty of Physics
University of Belgrade

Committee member:

Prof. Dr. Voja Radovanović
Professor
Faculty of Physics
University of Belgrade

v

Acknowledgements

This thesis was completed under the guidance of Dr. Magdalena Djordjević, Research Professor at
the Laboratory for High Energy Physics and Dr. Igor Salom, Research Professor at the Group for
Gravitation, Particles and Fields at the Institute of Physics Belgrade, University of Belgrade. The pre-
sented research was funded by the Ministry of Science, Technological Development and Innovations
of the Republic of Serbia and by the European Research Council under the grant ERC-2016-COG:
725741.

I extend my sincerest thanks to my advisors, Dr. Magdalena Djordjević and Dr. Igor Salom, for
their exceptional mentorship and guidance. Their collaborative spirit and willingness to share their
knowledge and experience have been invaluable to my development as a researcher.

I am sincerely grateful to my colleagues Stefan, Veljko, Ana, Bithika, Bojana, Pasi and Jussi for
their friendship, insightful discussions, and contributions to a stimulating work environment. Their
support and collaboration have been invaluable throughout my academic journey.

I am deeply grateful to my parents, Zoran and Zorica, and to my sister, Milana, for their encour-
agement, and unwavering support throughout my academic journey. Their belief in me has been a
constant source of strength and inspiration.

vii

Abstract

The study of the quark-gluon plasma (QGP) in heavy-ion collisions provides a window into the fun-
damental properties of Quantum Chromodynamics (QCD), the theory governing strong interactions.
This thesis focuses on understanding partonic energy loss mechanisms, medium properties, and the
evolution of QGP. Combining theoretical advancements, computational frameworks, and experimen-
tal comparisons, the research highlights the dynamical energy loss formalism as a critical tool for
probing the QGP and advancing our understanding of strongly interacting matter.

Chapters 1 and 2 introduce the theoretical foundations of QCD, exploring the QCD phase di-
agram, heavy-ion collisions, and the dynamical energy loss formalism. These chapters provide a
comprehensive overview of confinement, asymptotic freedom, and deconfinement transitions, offer-
ing the context necessary for understanding energy loss in the QGP. The importance of experimental
observables such as nuclear modification factors (RAA) and flow coefficients (v2) is discussed in rela-
tion to the formalism’s role in modeling parton-medium interactions.

Chapter 3 focuses on testing the path-length dependence of energy loss mechanisms using the
dynamical energy loss formalism. The chapter introduces appropriate observables and systems for
such studies, emphasizing suppression ratios in smaller collision systems. Using the DREENA-C
framework, the analysis investigates the robustness and reliability of these observables in capturing
path-length effects, thereby validating their suitability for QGP tomography.

Chapter 4 details the development and application of the DREENA-B framework, which models
the QGP as a longitudinally expanding medium. Results from DREENA-B are compared with exper-
imental data, demonstrating its predictive power for high-p⊥ observables. This chapter highlights the
advantages of including medium evolution and temperature gradients in modeling energy loss phe-
nomena.

Chapter 5 explores the initial stages of heavy-ion collisions, focusing on the theoretical and com-
putational modeling of early-stage dynamics. The results provide insights into the early-time behavior
of the QGP and its impact on partonic energy loss. This chapter bridges the gap between initial state
modeling and the QGP’s subsequent hydrodynamic evolution, emphasizing the role of initial condi-
tions in determining final-state observables.

Chapter 6 introduces the DREENA-A framework, which incorporates full (2+1)D hydrodynam-
ical temperature profiles to model QGP evolution. As a powerful tomography tool, DREENA-A
enables precise extraction of QGP transport coefficients and energy loss analysis in varying collision
geometries. The framework’s accuracy in reproducing experimental results across different systems
underscores its utility in QGP studies.

Chapter 7 examines the significance of higher-order flow harmonics in QGP tomography. Using
the DREENA-A framework, event-by-event fluctuations, bulk evolution, and initial-state effects on

ix

Abstract

flow coefficients are investigated. The analysis demonstrates the importance of higher harmonics in
revealing medium properties and constraining theoretical models.

This thesis combines advanced theoretical models, computational innovations, and experimental
validation to enhance our understanding of QGP properties and energy loss mechanisms. The findings
contribute to the broader field of heavy-ion physics, offering new tools and perspectives for exploring
strongly interacting matter under extreme conditions.

Keywords: quark-gluon plasma, high-p⊥ data, numerical simmulation
Research field: Physics
Research subfield: High-energy and nuclear physics
UDC number:

x

Сажетак

Ïðîó÷àâà»å êâàðê-ãëóîíñêå ïëàçìå (ÊÃÏ) ó ñóäàðèìà òåøêèõ jîíà ïðóæà óâèä ó îñíîâ-
íà ñâîjñòâà êâàíòíå õðîìîäèíàìèêå, òåîðèjå êîjà îïèñójå jàêå èíòåðàêöèjå. Îâà äèñåðòàöè-
jà ñå ôîêóñèðà íà ðàçóìåâà»å ìåõàíèçàìà ãóáèòêà åíåðãèjå ïàðòîíà, ñâîjñòàâà ìåäèjóìà
è åâîëóöèjå ÊÃÏ-à. Êîìáèíîâà»åì òåîðèjñêèõ óíàïðå¢å»à, ðà÷óíñêèõ ìîäåëà è óïîðå-
¢èâà»åì ñà åêñïåðèìåíòàëíèì ïîäàöèìà, èñòðàæèâà»å èñòè÷å ôîðìàëèçàì äèíàìè÷êîã
ãóáèòêà åíåðãèjå êàî ê§ó÷íè àëàò çà ïðîó÷àâà»å ÊÃÏ-à è íàïðåäîâà»å ó ðàçóìåâà»ó jàêî
èíòåðàãójó£å ìàòåðèjå.

Ïîãëàâ§à 1 è 2 ïðåäñòàâ§àju òåîðèjñêå îñíîâå êâàíòíå õðîìîäèíàìèêå, èñòðàæójó ôà-
çíè äèjàãðàì, ñóäàðå òåøêèõ jîíà è ôîðìàëèçàì äèíàìè÷êîã ãóáèòêà åíåðãèjå. Îâà ïî-
ãëàâ§à ïðóæàjó ñâåîáóõâàòàí ïðåãëåä êîíôèíèðà»à, àñèìïòîòñêå ñëîáîäå è ïðåëàçà ó
ñëîáîäíî ñòà»å êâàðêîâà, ïðóæàjó£è êîíòåêñò íåîïõîäàí çà ðàçóìåâà»å ãóáèòêà åíåðãè-
jå ó ÊÃÏ-ó. Äèñêóòójå ñå î âàæíîñòè åêñïåðèìåíòàëíèõ îïñåðâàáëè, êàî øòî ñó ôàêòîð
íóêëåàðíå ìîäèôèêàöèjå (RAA) è åëèïòè÷êè òîê (v2), ó êîíòåêñòó óëîãå ôîðìàëèçìà ó
ìîäåëèðà»ó èíòåðàêöèjà ïàðòîíà è ìåäèjóìà.

Ïîãëàâ§å 3 ñå ôîêóñèðà íà òåñòèðà»å çàâèñíîñòè ìåõàíèçàìà ãóáèòêà åíåðãèjå îä äó-
æèíå ïðå¢åíîã ïóòà ïàðòîíà, êîðèñòå£è ôîðìàëèçàì äèíàìè÷êîã ãóáèòêà åíåðãèjå. Ïî-
ãëàâ§å óâîäè îäãîâàðàjó£å îïñåðâàáëå è ñèñòåìå çà òàêâà èñòðàæèâà»à, ñà íàãëàñêîì íà
îäíîñå ñóïðåñèjå ó ìà»èì ñóäàðíèì ñèñòåìèìà. Àíàëèçà êîðèñòè DREENA-C ìîäåë çà èñ-
ïèòèâà»å ïîóçäàíîñòè îâèõ îïñåðâàáëè ó îïèñó åôåêàòà äóæèíå ïóòà, ÷èìå ñå ïîòâð¢ójå
»èõîâà ïîãîäíîñò çà òîìîãðàôèjó ÊÃÏ-à.

Ïîãëàâ§å 4 îïèñójå ðàçâîj è ïðèìåíó DREENA-B ìîäåëà, êîjè ìîäåëèðà ÊÃÏ êàî
ñðåäèíó êîjà ñå ëîíãèòóäèíàëíî øèðè. Ðåçóëòàòè DREENA-B ìîäåëà óïîðå¢åíè ñó ñà
åêñïåðèìåíòàëíèì ïîäàöèìà, ïîêàçójó£è ïðåäèêòèâíó ìî£ ìîäåëà çà âèñîêî-åíåðãèjñêå
îïñåðâàáëå. Îâî ïîãëàâ§å èñòè÷å ïðåäíîñòè óê§ó÷èâà»à åâîëóöèjå ìåäèjóìà è òåìïåðà-
òóðíèõ ãðàäèjåíàòà ó ìîäåëîâà»å ãóáèòêà åíåðãèjå.

Ïîãëàâ§å 5 èñòðàæójå ïî÷åòíå ôàçå ñóäàðà òåøêèõ jîíà, ôîêóñèðàjó£è ñå íà òåîðèjñêî
è ðà÷óíàðñêî ìîäåëèðà»å äèíàìèêå ó ðàíèì ôàçàìà. Ðåçóëòàòè ïðóæàjó óâèä ó ïîíàøà»å
ÊÃÏ-à ó ðàíèì òðåíóöèìà åâîëóöèjå è »èõîâ óòèöàj íà ãóáèòàê åíåðãèjå ïàðòîíà. Îâî ïî-
ãëàâ§å ïðåìîø£àâà jàç èçìå¢ó ìîäåëèðà»à ïî÷åòíèõ ñòà»à è õèäðîäèíàìè÷êå åâîëóöèjå
ÊÃÏ-à, íàãëàøàâàjó£è óëîãó ïî÷åòíèõ óñëîâà ó îäðå¢èâà»ó ôèíàëíèõ îïñåðâàáëè.

Ïîãëàâ§å 6 óâîäè DREENA-A ìîäåë, êîjè óê§ó÷ójå (2+1)-äèìåíçèîíå õèäðîäèíàìè÷êå
òåìïåðàòóðíå ïðîôèëå çà ìîäåëèðà»å åâîëóöèjå ÊÃÏ-à. Êàî ìî£àí àëàò çà òîìîãðàôèjó,
DREENA-A îìîãó£àâà ïðåöèçíó åêñòðàêöèjó òðàíñïîðòíèõ êîåôèöèjåíàòà ÊÃÏ-à è àíà-
ëèçó ãóáèòêà åíåðãèjå ó ðàçëè÷èòèì ñóäàðíèì ãåîìåòðèjàìà. Òà÷íîñò ìîäåëà ó ðåïðîäóê-

xi

Abstract

öèjè åêñïåðèìåíòàëíèõ ðåçóëòàòà ó ðàçëè÷èòèì ñèñòåìèìà íàãëàøàâà »åãîâó êîðèñíîñò
ó ïðîó÷àâà»ó ÊÃÏ-à.

Ïîãëàâ§å 7 àíàëèçèðà çíà÷àj âèøèõ õàðìîíèêà òîêà ó òîìîãðàôèjè ÊÃÏ-à. Êîðèø£å-
»åì DREENA-A ìîäåëà èñòðàæójó ñå ôëóêòóàöèjå, åâîëóöèjà è åôåêòè ïî÷åòíîã ñòà»à íà
êîåôèöèjåíòå òîêà. Àíàëèçà ïîêàçójå âàæíîñò âèøèõ õàðìîíèêà çà îòêðèâà»å ñâîjñòàâà
ñðåäèíå è îãðàíè÷àâà»å ïàðàìåòàðà òåîðèjñêèõ ìîäåëà.

Îâà äèñåðòàöèjà êîìáèíójå íàïðåäíå òåîðèjñêå ìîäåëå, ðà÷óíàðñêå èíîâàöèjå è åêñïå-
ðèìåíòàëíó âàëèäàöèjó êàêî áè óíàïðåäèëà ðàçóìåâà»å ñâîjñòàâà ÊÃÏ-à è ìåõàíèçàìà
ãóáèòêà åíåðãèjå. Íàëàçè äîïðèíîñå øèðîj îáëàñòè ôèçèêå ñóäàðà òåøêèõ jîíà, íóäå£è
íîâå àëàòå è ïåðñïåêòèâå çà ïðîó÷àâà»å jàêî èíòåðàãójó£å ìàòåðèjå ó åêñòðåìíèì óñëî-
âèìà.

Ê§ó÷íå ðå÷è: êâàðê-ãëóîíñêà ïëàçìà, âèñîêîåíåðãèjñêè ïîäàöè, íóìåðè÷êå ñèìóëàöèjå
Íàó÷íà îáëàñò: Ôèçèêà
Óæà íàó÷íà îáëàñò: Ôèçèêà âèñîêèõ åíåðãèjà è íóêëåàðíà ôèçèêà
ÓÄÊ áðîj:

xii

Contents

Acknowledgements vii

Abstract ix

Contents xiii

List of figures xv

List of Tables xx

1 Introduction 1
1.1 Structure of this thesis . 1
1.2 Theory of strong interaction and Quantum Chromodynamics 2

1.2.1 The QCD Lagrangian . 2
1.2.2 Confinement and asymptotic freedom . 2
1.2.3 Non-perturbative techniques . 3

1.3 QCD phase diagram . 4
1.3.1 Phases of QCD matter . 4
1.3.2 First-Order phase transition and critical point 5
1.3.3 Exotic phases at high density . 6
1.3.4 Challenges and future directions . 6

1.4 Heavy-ion collisions . 6
1.4.1 Space-time evolution of heavy-ion collisions 6
1.4.2 Participants, spectators, and reaction plane 7
1.4.3 Rapidity and pseudorapidity . 8
1.4.4 Particle multiplicity and centrality . 9
1.4.5 Nuclear modification factor . 10
1.4.6 Collective flow . 11

2 Methodology 13
2.1 The dynamical energy loss formalism . 13
2.2 Software implementation . 15

2.2.1 DREENA-C . 15
2.2.2 DREENA-B . 16
2.2.3 DREENA-A . 17

3 Testing path-length dependence in energy loss mechanisms 19

xiii

Contents

3.1 Appropriate observable . 20
3.2 Appropriate systems . 20
3.3 Computational framework . 20
3.4 Smaller systems . 21
3.5 Suppression ratio . 21
3.6 Suitable observable . 23
3.7 Testing robustness and reliability . 23

4 DREENA-B framework 27
4.1 Computational frameworks . 28
4.2 Results and discussion . 31
4.3 Summary . 32

5 Exploring the initial stages in heavy-ion collisions 35
5.1 Theoretical and computational frameworks . 36
5.2 Results and discussion . 38
5.3 Conclusion . 45

6 DREENA-A framework as a QGP tomography tool 47
6.1 Methods . 49

6.1.1 Theoretical outline . 49
6.1.2 Framework outline . 52
6.1.3 Numerical optimisations of DREENA-A . 53
6.1.4 Convergence test of different DREENA methods 56

6.2 Results and discussion . 56
6.3 Summary . 59

7 Importance of higher harmonics in quark-gluon plasma tomography 61
7.1 Methods . 62

7.1.1 Outline of DREENA-A framework . 62
7.1.2 Modeling the bulk evolution . 63
7.1.3 Flow analysis . 64

7.2 Results and discussion . 66
7.2.1 Compatibility of analysis methods . 66
7.2.2 Event-by-event fluctuations . 67
7.2.3 Effects of initial state . 68

7.3 Summary . 70

8 Conclusions 73

Appendix: DREENA-A code 77

Bibliography 143

Biography of the author 157

xiv

List of figures

1.1 The linear potential between quarks as a function of separation distance, illustrating con-
finement. Figure adapted from [11]. 3

1.2 QCD running coupling, αs as a function of momentum scale, Q. Figure adapted from [14]. 4
1.3 The QCD phase diagram with the crossover transition at low µB, as predicted by lattice

QCD. Figure adapted from [20]. 5
1.4 A space-time diagram depicting the various stages of QCD matter evolution in heavy-ion

collisions. The beam axis is labeled as z, with time represented by t. The hyperbolic
curves separate the different stages and correspond to constant Lorentz-invariant proper
time. Figure adapted from [33]. 7

1.5 Left:Colliding ions just before the interaction, illustrating the impact parameter (b) Right:
The participant zone, where new matter is created, and the spectator region, consisting of
unaffected nucleons. Figure adapted from [35]. 8

1.6 Reaction, ΨRP , and participant, ΨPP , planes coordinate systems. Figure adapted from [35]. 8
1.7 An example of categorizing events into various centrality groups is depicted. The figures

present outcomes generated using the Monte Carlo Glauber model [41] for Pb+Pb col-
lisions at

√
sNN = 2.76TeV. The graph on the left illustrates the distribution of impact

parameters, where larger values of b correspond to higher centrality percentages. The
graph on the right displays the distribution of participant nucleons, showing that a greater
number of participants corresponds to lower centrality percentages. The different central-
ity groups are labeled on the graphs. Figure adapted from [41]. 10

3.1 Ratio of RXeXe and RPbPb is shown as a function of p⊥ for charged hadrons, D and B
mesons (full, dashed and dot-dashed curves, respectively). Centrality regions are denoted
in the upper right corners of each panel. Figure adapted from [1]. 22

3.2 Predictions for RXePb
L as a function of p⊥ are shown for charged hadrons (full curves),

D mesons (dashed curves) and B mesons (dot-dashed curves). Upper (lower) dashed
gray line corresponds to the case in which energy loss path-length dependence is linear
(quadratic). Centrality regions are denoted in the upper right corners of each panel. Figure
adapted from [1]. 24

3.3 Predictions for RAB
L as a function of p⊥ are shown for charged hadrons, where darker

set of curves are obtained by using full dynamical energy loss, while upper and lower
lighter set or curves, correspond, respectively to the cases where only collisional, or only
radiative, energy loss is considered. 1st to 4th panel correspond to, respectively, RXePb

L ,
RKrPb

L , RArPb
L and ROPb

L . In each panel, three centrality regions 30− 40%, 40− 50% and
50− 60% are, respectively, marked by blue, orange and green. Figure adapted from [1]. . 24

xv

List of figures

4.1 First column: RAA vs. p⊥ predictions are compared with 5.02 TeV Pb+PbALICE [104],
ATLAS [119] and CMS [105] h± experimental data. Second column: v2 vs. p⊥ predic-
tions are compared with 5.02 TeV Pb+ Pb ALICE [125], ATLAS [126] and CMS [127]
data. Third column: RAA vs. p⊥ predictions are compared with 5.44 TeV Xe +Xe AL-
ICE [151], ATLAS [152] and CMS [153] preliminary data. Fourth column: v2 vs. p⊥
predictions are shown for 5.44 TeV Xe+Xe collisions. Rows 1-7 correspond to 0− 5%,
5 − 10%, 10 − 20%,..., 50 − 60% centrality regions. ALICE, ATLAS and CMS data
are respectively represented by red circles, green triangles and blue squares. Full and
dashed curves correspond, respectively, to the predictions obtained with DREENA-B and
DREENA-C frameworks. In each panel, the upper (lower) boundary of each gray band
corresponds to µM/µE = 0.6 (µM/µE = 0.4). Figure adapted from [2]. 33

4.2 First column: Theoretical predictions for D and B meson RAA vs. p⊥ are compared with
the available 5.02 TeV Pb + Pb ALICE [120] (red circles) D meson experimental data.
Second column: v2 vs. p⊥ predictions are compared with 5.02 TeV Pb+Pb ALICE [130]
(red circles) and CMS [129] (blue squares) D meson experimental data. Third and fourth
column: Heavy flavor RAA and v2 vs. p⊥ predictions are, respectively, provided for
5.44 TeV Xe + Xe collisions at the LHC. First to third row, respectively, correspond to
0 − 10%, 10 − 30% and 30 − 50% centrality regions. On each panel, the upper (lower)
boundary of each gray band corresponds to µM/µE = 0.6 (µM/µE = 0.4). Figure
adapted from [2]. 34

5.1 Four temperature evolution profiles, which differ at the initial stages. At τ ≥ τ0, all
profiles assume the same temperature dependence on the proper time (1D Bjorken [138]).
At the initial stage, i.e., for 0 < τ < τ0, the temperature is considered to be: (a) equal to
zero; (b) increasing linearly from TC to T0 between τC and τ0, otherwise zero; (c) constant
and equal to T0; and (d) a continuous function of τ matching the dependence for τ ≥ τ0.
Note that, in each panel, T0 has the same value at τ0. Figure adapted from [3]. 39

5.2 RAA dependence on p⊥ for four different initial stages depicted in Fig. 5.1 is shown for
charged hadrons (left panel), D mesons (central panel) and B mesons (right panel). For
charged hadrons, the predictions are compared with 5.02 TeV Pb + Pb ALICE [104]
(red circles), ATLAS [119] (green triangles) and CMS [105] (blue squares) h± RAA ex-
perimental data. In each panel, temperature profile from Fig. 5.1 are presented by full
red curve (case (a)), by dashed blue curve (case (b)), by dot-dashed orange curve (case
(c)) and by dotted green curve (case (d)). The results correspond to the centrality bin
30− 40%, and µM/µE = 0.5. Figure adapted from [3]. 39

5.3 v2 dependence on p⊥ for four different initial stages depicted in Fig. 5.1. Left, central and
right panels correspond to charged hadrons, D mesons and B mesons, respectively. For
charged hadrons, the predictions are compared with 30-40% centrality 5.02 TeV Pb+Pb
ALICE [125] (red circles), ATLAS [126] (green triangles) and CMS [127] (blue squares)
h± v2 experimental data. The labeling and remaining parameters are the same as in
Fig. 5.2. Figure adapted from [3]. 40

5.4 Transverse momentum dependence of in-plane (dashed), out-of plane (dot-dashed)
and angular averaged (full curves) RAA relative to the free-streaming case for charged
hadrons. Blue (upper), orange (middle) and green (lower) set of curves correspond,
respectively, to (b), (c) and (d) cases. The remaining parameters are the same as in
Fig. 5.2. Figure adapted from [3]. 40

xvi

List of figures

5.5 Temperature dependence on the proper time in the setup with the same average tempera-
tures. The labeling is the same as in Fig. 5.1, apart from the fact that initial temperatures
(T0’s) now differ in these four cases. As in Fig. 5.1, TC = 160 MeV, τ0 = 0.6 fm and
τ ′C = 0.27 fm. Vertical gray dashed lines correspond to average in-medium path length
(L), and to the path lengths along in-plane (Lin) and out-of-plane (Lout) directions, as
labeled in the figure. Figure adapted from [3]. 41

5.6 RAA dependence on p⊥ for four different medium evolutions depicted in Fig. 5.5. Left,
central and right panels correspond to charged hadrons, D mesons and B mesons, respec-
tively. In each panel, T profile corresponding to the case: (a’) from Fig. 5.5 is presented
by full red curve, (b’) dashed blue curve, (c’) dot-dashed orange curve and (d’) dotted
green curve. The results correspond to the centrality bin 30 − 40%, and µM/µE = 0.5.
Figure adapted from [3]. 42

5.7 v2 dependence on p⊥ for four different medium evolutions depicted in Fig. 5.5. Left,
central and right panels correspond to charged hadrons, D mesons and B mesons, respec-
tively. The labeling and remaining parameters are the same as in Fig 5.6. Figure adapted
from [3]. 42

5.8 Rin
AA − Rout

AA dependence on p⊥ for charged hadrons. The labeling and remaining param-
eters are the same as in Fig. 5.6. Figure adapted from [3]. 43

5.9 RAA (left panel) and v2 (right panel) dependence on p⊥ for charged hadrons, when ad-
ditional energy loss multiplicative factor is introduced to reproduce the free-streaming
RAA, in four different initial-stage cases depicted in Fig. 5.1. The labeling and remaining
parameters are the same as in Figs. 5.2 and 5.3. Figure adapted from [3]. 43

5.10 Comparison of four fitting factors defined by Eq. 5.16 with Cfit
i value, obtained from

full-fledged numerical procedure, in linear (b) (left), constant (c) (central) and divergent
(d) (right panel) cases. C factors presented by full, long dashed, dot-dashed and dot-
dot-dashed curves correspond to h± angular averaged, in-plane, out-of-plane RAA and v2
cases, respectively. The horizontal gray dashed line presents energy loss fitted value Cfit

i .
The results correspond to the centrality bin 30− 40%, and µM/µE = 0.5. Figure adapted
from [3]. 46

6.1 D meson RAA (left) and v2 (middle) at 30-40% centrality computed using different num-
bers of randomly generated trajectories (Monte Carlo approach), together with their de-
viations (right, scaled 1-norm was used as a metric) from the results averaged over the
same ensemble of trajectories. The dashed horizontal line in rightmost panels indicates
the threshold of 1% deviation. The top row depicts results obtained from sampling 25 tra-
jectories at different angles originating from each of 100 randomly selected jet-production
points; the middle row—50 angles from 1000 points; the bottom row—100 angles from
10000 points. Each panel shows the results of eight repeated computations (each with an
independent ensemble of randomly generated trajectories), the dashed line representing
the mean. M = 1.2 GeV. We use a single value µM/µE = 0.5 [73, 74] to make the figure
clearer. Figure adapted from [4]. 54

6.2 D meson RAA (left) and v2 (middle) at 30-40% centrality computed using different num-
bers of trajectories originating from equidistant points. Results are labeled by numbers
nϕ × (nx × ny): jet directions are along nϕ uniformly distributed angles (from 0 to 2π)
originating from each point of the nx-by-ny equidistant grid in the transversal plane. De-
viation of each line from the baseline result (chosen as the outcome for 100× (150×150)
trajectories, dashed line) is shown in right panels. M = 1.2 GeV, µM/µE = 0.5. Figure
adapted from [4]. 55

xvii

List of figures

6.3 Temperature distribution (Pb + Pb collision, 30-40% centrality, mid-rapidity) for constant
temperature [75] (first row) and 1D Bjorken evolution [2] (second row), at time (from left
to right) τ = τ0, 3, and 5 fm/c, represented by colour mapping. For constant temperature
approximation, τ0 = 0 fm. For 1D Bjorken approximation, τ0 = 0.6 fm. Figure adapted
from [4]. 56

6.4 Comparison of different DREENA frameworks, for Bjorken medium evolution (upper
panels) and for constant medium temperature approximation (lower panels), demonstrat-
ing inter-framework consistency. Upper panels show D meson RAA (left) and v2 (right) at
30-40% centrality computed using DREENA-A (supplied with temperature profiles rep-
resenting Bjorken evolution) and DREENA-B. Lower panels show the same observables,
computed using all three DREENA frameworks, when applied to the same constant tem-
perature medium. M = 1.2 GeV, µM/µE = 0.5. Figure adapted from [4]. 57

6.5 Temperature distribution (Pb + Pb
√
sNN = 5.02 TeV collision for 30-40% centrality

at mid-rapidity) for different medium evolution models, at time (from left to right) τ =
τ0, 2, 3, 4 and 5 fm/c, represented by colour mapping. First row: ’Glauber’, τ0 = 1 fm;
second row: ’EKRT’, τ0 = 0.2 fm; third row: ’TRENTo’, τ0 = 1.16 fm. Note that
distributions in the first column correspond to different times. Figure adapted from [4]. . 58

6.6 DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Pb+Pb collisions at√
sNN = 5.02 TeV are generated for different models of QGP medium evolution (indi-

cated in the legend). Charged hadron (left) predictions are generated for 30-40% central-
ity, while D (middle) and B (right) meson predictions are generated for 30-50% centrality
region. For charged hadrons, the predictions are compared with the experimental data
from CMS [105, 127], ALICE [104, 125] and ATLAS [119, 126] experiments. For D
mesons, the predictions are compared with ALICE [203, 130] and CMS [129] data. For
B mesons predictions are compared with preliminary ALICE [204] and CMS [205] data.
The boundary of each gray band corresponds to 0.4 < µM/µE < 0.6 [73, 74]. Figure
adapted from [4]. 59

6.7 DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Au+Au collisions
at

√
sNN = 200 GeV are generated for different models of QGP medium evolution (in-

dicated in the legend). Charged hadron (left), D meson (middle) and B meson (right)
predictions are generated for 20-30% centrality region. The h± predictions are compared
with π0 data from PHENIX [123, 206] and h± data from STAR [207, 208] - note that for
v2 10-40% centrality data is shown for STAR. For D mesons, the predictions are com-
pared with STAR [209, 210] data at 10-40% centrality and with PHENIX [211] data at
20-40%. B mesons predictions are compared with PHENIX [211] data at 20-40%. The
boundary of each gray band corresponds to 0.4 < µM/µE < 0.6 [73, 74]. Figure adapted
from [4]. 60

7.1 Charged hadron v2 (left), v3 (middle) and v4 (right) in Pb+Pb collisions at
√
sNN =

5.02 TeV for 20-30% centrality class, computed using different analysis methods:
2-particle cumulant, 4-particle cumulant, event plane, midrapidity scalar product,
ATLAS-defined scalar product, and CMS defined scalar product, each described in
the section 7.1.3. Energy loss calculation was performed on MC-Glauber+3d-hydro
temperature profiles, with µM/µE = 0.5. 67

xviii

List of figures

7.2 Upper panels: charged hadron RAA calculated using event-by-event (ebe) fluctuating
temperature profiles compared to RAA calculated using a smooth temperature profile
(avg). Lower panels: charged hadron vn{2} and vn{4} calculated using event-by-event
(ebe) fluctuating temperature profiles compared to vn{2} and vn{4} calculated using a
smooth temperature profile (avg). Calculation was done for Pb+Pb collisions at

√
sNN =

5.02 TeV, µM/µE = 0.5, using MC-Glauber+3d-hydro bulk evolution. Each column rep-
resents different centrality class (from left to right: 10-20%, 20-30%, 30-40% and 40-50%). 68

7.3 Charged hadron RAA (first row) v2 (second row), v3 (third row) and v4 (fourth row) in
Pb+Pb collisions at

√
sNN = 5.02 TeV for different initializations of the QGP evolu-

tion (indicated in the legend). Theoretical predictions, obtained using SP method, are
compared to CMS [105, 127] (blue squares), ALICE [104, 125] (red circles) and AT-
LAS [119, 126] (green triangles) data. Columns 1-4 correspond to, respectively, 10-20%,
20-30%, 30-40% and 40-50% centrality classes. µM/µE = 0.5. 69

7.4 D meson (left 4 × 2 panel) and B meson (right 4 × 2 panel) predictions in Pb+Pb colli-
sions at

√
sNN = 5.02 TeV for different initializations of QGP evolution (indicated in the

legend). In each 4× 2 panel, first row corresponds to RAA, the second, third, fourth to v2,
v3, v4, respectively, while the left (right) column corresponds to 10-30% (30-50%) cen-
trality class. D meson theoretical predictions are compared to CMS [231] (blue squares)
and ALICE [232, 233] (red circles) data, while B meson predictions are compared to pre-
liminary CMS [205] (blue squares) and preliminary ALICE [204] (red circles) data for
non-prompt D meson from b decay. µM/µE = 0.5. 70

xix

List of Tables

5.1 Fitting factors values. Table adapted from [3]. 44

xx

Chapter 1

Introduction

1.1 Structure of this thesis

Focus of this PhD thesis is the investigation of quark-gluon plasma. Modern cosmology suggests
that quark-gluon plasma existed shortly after the Big Bang and is now produced in "Little Bangs,"
which are collisions of heavy ions at relativistic energies. The behavior of this unique form of matter
is governed by quantum chromodynamics - theory of strong interaction. To provide the reader with
a foundation for the topics explored in the subsequent chapters this section offers an overview of
quantum chromodynamics, quark-gluon plasma, the theoretical models used to describe it and the
collider experiments where it is generated.

The findings outlined in this thesis stem from the publications listed below [1, 2, 3, 4, 5]

• M. Djordjevic, D. Zigic, M. Djordjevic and J. Auvinen, How to test path-length dependence in
energy loss mechanisms: analysis leading to a new observable, Phys. Rev. C 99, no.6, 061902
(2019)

• D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, DREENA-B framework: first
predictions of RAA and v2 within dynamical energy loss formalism in evolving QCD medium,
Phys. Lett. B 791 (2019), 236-241

• D. Zigic, B. Ilic, M. Djordjevic and M. Djordjevic, Exploring the initial stages in heavy-ion
collisions with high-p⊥ RAA and v2 theory and data, Phys. Rev. C 101, no.6, 064909 (2020)

• D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, DREENA-A framework as a
QGP tomography tool, Front. in Phys. 10, 957019 (2022)

• D. Zigic, J. Auvinen, I. Salom, M. Djordjevic and P. Huovinen, Importance of higher harmonics
and v4 puzzle in quark-gluon plasma tomography, Phys. Rev. C 106, no.4, 044909 (2022)

1

1. Introduction

1.2 Theory of strong interaction and Quantum
Chromodynamics

The strong interaction, governed by Quantum Chromodynamics (QCD), is the force responsible for
binding quarks and gluons into protons, neutrons, and other hadrons. QCD is a gauge theory based on
the symmetry group SU (3)C , where the mediators of the interaction—gluons—carry color charge.
This unique property leads to phenomena such as confinement and asymptotic freedom [6, 7].

1.2.1 The QCD Lagrangian

The mathematical foundation of QCD is encoded in its Lagrangian, which describes the dynamics of
quarks and gluons. The QCD Lagrangian is given by:

L =

nq∑
k=1

ψ̄k (iγ
µDµ −mk)ψk −

1

4
F a
µνF

µνa, (1.1)

where ψk represents the quark fields, mk is the quark mass, and Fµν is the gluon field strength tensor.
The covariant derivative, Dµ, ensures gauge invariance and is defined as:

Dµ = ∂µ − igT aAa
µ, (1.2)

where Aa
µ are the gluon fields and T a are generators of SU (3)C and g is the coupling constant. The

gluon field strength tensor, which encapsulates gluon self-interactions, is expressed as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (1.3)

with fabc being the structure constants of the SU (3)C group. This term introduces non-linearities
unique to QCD, giving rise to phenomena such as the running coupling and gluon self-interactions [8].

1.2.2 Confinement and asymptotic freedom

The following equation can describe the potential between quarks in QCD [9]:

V (r) = −4

3

αs

r
+ σr (1.4)

where αs represents the strong coupling constant, r is the distance between quarks, and
σ ∼ 0.18GeV [10]. This potential accurately explains the energy levels of heavy quarkonium
systems, such as charmonium and bottomonium. Figure 1.1 illustrates the dependence of the QCD
potential on the distance between quarks. At short distances, the first term of V (r) dominates,
resembling a Coulomb-like interaction. As the distance increases, the second term grows linearly
with r and becomes significant. This linear dependence is directly related to the confinement of
quarks within hadrons. The confinement mechanism can be visualized as color force lines forming
a tube or string due to gluon-gluon interactions. As the string stretches, the energy increases
proportionally to kr. When the energy reaches a critical threshold, producing a new quark-antiquark
(qq̄) pair becomes energetically favorable. This results in the fragmentation of the original string into
two shorter strings, a process known as string fragmentation [12].

Conversely, at high energies or short distances, the coupling constant, αs, decreases logarithmi-
cally, enabling quarks to behave as nearly free particles. This phenomenon, known as asymptotic

2

1.3. QCD phase diagram

Figure 1.1: The linear potential between quarks as a function of separation distance, illustrating
confinement. Figure adapted from [11].

freedom [13]. From renormalization group equation, running coupling can be expressed in terms of
β function as [13]:

αs

(
Q2
)
∝ 1

β0ln
(
Q2/Λ2

QCD

) , (1.5)

where β0 is is one-loop approximation, and ΛQCD is the QCD scale parameter [6]. Figure 1.2 shows
the running coupling constant αs , which decreases with increasing Q2, the energy of the process
involved.

1.2.3 Non-perturbative techniques

At low energies, where the coupling constant becomes large, perturbative methods are insufficient.
Lattice QCD provides a powerful non-perturbative approach by discretizing spacetime, enabling nu-
merical simulations of QCD phenomena, such as the equation of state (EoS) and the nature of phase
transitions [15]. Additionally, effective models like the Polyakov-loop extended Nambu-Jona-Lasinio
(PNJL) model approximate QCD dynamics by incorporating thermal and density effects [16].

These approaches have been critical for understanding QCD under extreme conditions, such as
the formation of the quark-gluon plasma (QGP) shortly after the Big Bang and the behavior of matter
in neutron stars [17, 18].

3

1. Introduction

Figure 1.2: QCD running coupling, αs as a function of momentum scale,Q. Figure adapted from [14].

1.3 QCD phase diagram

The QCD phase diagram encapsulates the possible states of strongly interacting matter under varying
temperature (T) and baryon chemical potential (µB). This framework is essential for exploring the
transitions between confined hadronic matter and deconfined quark-gluon plasma (QGP), as well as
other exotic phases predicted by Quantum Chromodynamics (QCD).

1.3.1 Phases of QCD matter

At low T and µB, quarks and gluons are confined within hadrons due to the strong interaction, forming
what is referred to as the hadronic phase. This phase is stable under ordinary conditions and dominates
in the current universe. However, as the temperature increases, the system undergoes a transition to the
QGP, where quarks and gluons exist in a deconfined state. Lattice QCD simulations have shown that
this transition at low µB is a smooth crossover characterized by a gradual change in thermodynamic
quantities, such as the energy and entropy density. The critical temperature for this crossover is Tc ≈
155-160MeV [15, 19].

The chiral condensate ⟨ψ̄|ψ⟩ serves as an order parameter for this transition. In the hadronic
phase, ⟨ψ̄|ψ⟩ is non-zero due to spontaneous chiral symmetry breaking. As the temperature rises,
⟨ψ̄|ψ⟩ diminishes, signaling the restoration of chiral symmetry in the QGP phase. This crossover
behavior is illustrated in Figure 1.3, which shows the QCD phase diagram with the crossover region

4

1.3. QCD phase diagram

delineated.

Figure 1.3: The QCD phase diagram with the crossover transition at low µB, as predicted by lattice
QCD. Figure adapted from [20].

It is widely considered that the QGP created in heavy-ion collisions at RHIC (Relativistic Heavy
Ion Collider) and LHC (Large Hadron Collider) exhibits properties of a nearly perfect fluid, with an
exceptionally low shear viscosity-to-entropy density ratio (η/s) close to the conjectured lower bound
of 1/4π [21]. Observables such as elliptic flow coefficients and jet quenching provide experimental
evidence for the existence of QGP, linking it to the high-temperature region of the phase diagram.

1.3.2 First-Order phase transition and critical point

The QCD phase diagram predicts a first-order phase transition at higher µB, relevant to systems
with extreme baryon densities (e.g., neutron star interiors) [22]. This transition is characterized by
a discontinuity in the energy density and other thermodynamic variables as the system crosses the
phase boundary. The first-order transition line terminates at the critical point, a singularity where
the nature of the transition changes, and thermodynamic fluctuations in conserved quantities, such as
baryon number and charge, diverge [22].

Experimental programs, mainly the RHIC Beam Energy Scan (BES), have focused on identifying
signatures of the critical point. Observables such as net-proton fluctuations, kurtosis, and skew-
ness [23] provide critical insights into the location of the endpoint. Data measurement fluctuations
from BES suggests possible critical behavior in the intermediate collision energy range [24]. En-
hanced fluctuations in these measurements indicate proximity to the critical point, though further
experimental precision is required to confirm its exact location.

5

1. Introduction

1.3.3 Exotic phases at high density

At extremely high µB and low T , QCD predicts the emergence of exotic phases, such as color super-
conducting phases. In these phases, quarks form Cooper pairs through attractive interactions medi-
ated by gluons, resulting in phenomena analogous to electron pairing in conventional superconduc-
tors. Some of these states are the 2-flavor color superconductor (2SC) and color-flavor locked (CFL)
phases [18].

These phases are particularly relevant to the interiors of neutron stars, where densities are several
times higher than nuclear saturation density [25]. The presence of these phases can influence the mass,
radius, and cooling properties of neutron stars, connecting the QCD phase diagram to astrophysical
observations.

1.3.4 Challenges and future directions

Despite significant advancements, many aspects of the QCD phase diagram remain uncertain, partic-
ularly at high µB. Lattice QCD calculations are hindered in this region due to the sign problem [26],
which complicates the evaluation of the fermion determinant. To address these limitations, effective
models like the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model and Dyson-Schwinger
equations have been employed to approximate the behavior of QCD matter at high density [16].

Future experiments, including upgrades to RHIC and the development of new facilities like the Fa-
cility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion Collider Facility (NICA),
aim to explore the high-µB region in greater detail. These efforts will provide new data on phase
transitions, critical phenomena, and the properties of QCD matter under extreme conditions.

1.4 Heavy-ion collisions

Heavy-ion collisions serve as a powerful tool for investigating strongly interacting matter under ex-
treme temperature and density conditions, enabling the recreation of the quark-gluon plasma (QGP).
Cutting-edge experiments conducted at facilities like the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory and CERNS’s Large Hadron Collider (LHC) have significantly ad-
vanced our understanding of QCD matter. These collisions offer a window into the QCD phase
diagram and facilitate the exploration of key phenomena, including deconfinement, chiral symmetry
restoration, and the emergence of collective behavior.

1.4.1 Space-time evolution of heavy-ion collisions

The dynamics of heavy-ion collisions are typically described in terms of their space-time evolution.
The process can be divided into several key stages, as illustrated in Figure 1.4:

1. Initial Stages: The colliding nuclei generate a dense system dominated by gluon fields. This
stage is characterized by the formation of a far-from-equilibrium system, described by the dif-
ferent models such as IP-Glasma [27, 28] and EKRT [29, 30, 31].

2. Thermalization and QGP Phase: The system quickly equilibrates and transitions into the
QGP phase, a strongly coupled state exhibiting fluid-like behavior with a low viscosity-to-
entropy density ratio (η/s) near critical temperature (Tc) [32].

6

1.4. Heavy-ion collisions

3. Hadronization: As the QGP expands and cools, quarks and gluons recombine into hadrons,
marking the transition to the hadronic phase.

4. Freeze-Out: The system undergoes chemical freeze-out (where inelastic collisions cease) and
kinetic freeze-out (where elastic collisions stop). The final hadrons propagate to detectors.

Tkin	 Tchem	

Figure 1.4: A space-time diagram depicting the various stages of QCD matter evolution in heavy-
ion collisions. The beam axis is labeled as z, with time represented by t. The hyperbolic curves
separate the different stages and correspond to constant Lorentz-invariant proper time. Figure adapted
from [33].

This sequence, represented schematically in Figure 1.4, encapsulates the complex evolution of
QCD matter from its initial gluon-dominated state to the final observable particles.

1.4.2 Participants, spectators, and reaction plane

In a heavy-ion collision, the colliding nuclei partially overlap, dividing nucleons into two categories:
participants and spectators. Participants are the nucleons that undergo interactions, while spectators
do not interact and continue moving along the beam path. This distinction is important as it influ-
ences the geometry of the collision and plays a critical role in the initial energy distribution of the
system [34]. The degree of overlap between the nuclei is measured by the impact parameter (b),
which is the transverse distance between the centers of the two colliding nuclei (Figure 1.5).

In heavy-ion collisions, the reaction plane (Figure 1.6) is defined by the impact parameter vector
(b) and the beam axis, representing the geometric plane of the initial collision. It is determined
by the global spatial anisotropy in the area where the two colliding nuclei overlap. It serves as a
reference for analyzing anisotropic flow and collective behavior in the produced matter. In contrast,
the participant plane (Figure 1.6) is determined by the spatial distribution of the participant nucleons,
i.e. those involved in the interaction in the transverse plane. Unlike the reaction plane, the participant
plane accounts for fluctuations in the positions of these nucleons, leading to deviations from the ideal

7

1. Introduction

Spectators

Participants

b

before collision after collision

Figure 1.5: Left:Colliding ions just before the interaction, illustrating the impact parameter (b) Right:
The participant zone, where new matter is created, and the spectator region, consisting of unaffected
nucleons. Figure adapted from [35].

geometric plane. These fluctuations play a significant role in understanding event-by-event variations
in the initial energy density distribution. They are crucial for studying higher-order flow harmonics,
such as triangular and quadrangular flow.

ΨPP

ΨRP

Figure 1.6: Reaction, ΨRP , and participant, ΨPP , planes coordinate systems. Figure adapted
from [35].

1.4.3 Rapidity and pseudorapidity

Rapidity [36] is a measure of a particle’s velocity along the beam axis and is widely used in heavy-ion
collision analyses due to its Lorentz invariance. It is defined as:

y =
1

2
ln

(
E + pz
E − pz

)
, (1.6)

where E is the particle’s total energy, and pz is the longitudinal momentum. Rapidity simplifies the
comparison of particle production in different reference frames, making it an essential variable in
describing the longitudinal dynamics of a collision.

8

1.4. Heavy-ion collisions

In experimental analyses, pseudorapidity (η) is often used as an approximation to rapidity, partic-
ularly for highly relativistic particles where E ≫ m. Pseudorapidity [36] is defined as:

η = −ln
(
tan

θ

2

)
(1.7)

where θ is the angle between the particle’s momentum and the beam axis. Unlike rapidity, pseudo-
rapidity depends only on the particle’s angular distribution, making it straightforward to calculate in
detectors.

The distribution of produced particles in rapidity or pseudorapidity provides critical insights into
the collision’s energy deposition and thermalization. At mid-rapidity (y ≈ 0), the system reaches the
highest energy density, reflecting the thermalized QGP. Forward rapidity regions (|y| ≫ 0) probe the
fragmentation of the initial nuclei and the contributions from spectator nucleons.

1.4.4 Particle multiplicity and centrality

In heavy-ion collisions, particle multiplicity represents the total number of particles produced during
the collision. It strongly correlates with the collision’s energy density, centrality, and thermaliza-
tion. Typically measured as the number of charged particles (Nch) within a specific pseudorapidity
or rapidity range, multiplicity offers insights into the collision dynamics and properties of the created
medium.

At mid-rapidity (y ≈ 0), the charged-particle multiplicity reflects the thermodynamic properties
of the created system, including the initial energy density. Experimental measurements at RHIC
and LHC confirm that higher multiplicities correspond to larger initial energy densities, especially in
central collisions [37, 38].

Multiplicity strongly depends on the collision centrality, which quantifies the overlap of the col-
liding nuclei. Central collisions exhibit the highest particle multiplicities due to the maximum number
of participant nucleons (Npart) involved in the interaction. Peripheral collisions, where the overlap is
minimal, produce significantly fewer particles. This correlation is well-documented in experiments at
RHIC and LHC, where multiplicity measurements have revealed a nearly linear relationship between
Nch/dη and Npart for central collisions [39, 40].

Multiplicity fluctuations provide additional information about the collision dynamics. In central
collisions, narrower distributions are observed, reflecting more stable collective behavior, while pe-
ripheral collisions exhibit broader distributions due to larger relative fluctuations in the number of
participants and energy deposition.

At RHIC (
√
sNN = 200GeV) and LHC (

√
sNN = 2.76TeV), charged-particle multiplicity has

been extensively studied to characterize the QGP. For example, in central Pb-Pb collisions at the
LHC, dNch approaches values significantly higher than those at RHIC, reflecting the increased energy
density at higher collision energies [38]. These studies provide vital benchmarks for hydrodynamic
models and the study of QGP properties.

Centrality quantifies how head-on or central a collision is between two colliding nuclei in heavy-
ion collisions [36]. It is a crucial concept for classifying collisions based on the extent of overlap
and interaction between the nuclei. During a heavy-ion collision, the degree of overlap depends on
the impact parameter (b), the transverse distance between the bases of the colliding nuclei. A small
impact parameter corresponds to a more central collision with significant overlap, while a large impact
parameter indicates a peripheral collision with minimal interaction.

Centrality is typically expressed as a percentage of the total nuclear cross-section, with collisions
grouped into centrality classes or bins [39]. These classes represent specific ranges of impact pa-

9

1. Introduction

Figure 1.7: An example of categorizing events into various centrality groups is depicted. The fig-
ures present outcomes generated using the Monte Carlo Glauber model [41] for Pb+Pb collisions at√
sNN = 2.76TeV. The graph on the left illustrates the distribution of impact parameters, where

larger values of b correspond to higher centrality percentages. The graph on the right displays the dis-
tribution of participant nucleons, showing that a greater number of participants corresponds to lower
centrality percentages. The different centrality groups are labeled on the graphs. Figure adapted
from [41].

rameters. The most central collisions, characterized by maximal overlap, are assigned to the lowest
centrality bins (e.g., 0-5% centrality), whereas the most peripheral collisions, with minimal overlap,
fall into the highest centrality bins (e.g., 90-100% centrality).

The centrality percentile, c, for a heavy ion collision can be mathematically defined as [41]:

c =

∫ b

0
dσ
db′
db′∫∞

0
dσ
db′
db′

=
1

σAA

∫ b

0

dσ

db′
db′, (1.8)

where b is the impact parameter, dσ/db′ is the distribution of the impact parameter and σAA is the
total inelastic nucleus-nucleus cross section.

Figure 1.7 presents an example of how theoretically generated collision events are sorted into
centrality bins.

1.4.5 Nuclear modification factor

The nuclear modification factor (RAA) is a key observable used to study the behavior of high-p⊥
particles in heavy-ion collisions. It provides a quantitative measure of how particle production in
heavy-ion collisions differs from that in proton-proton collisions, scaled by the number of binary
nucleon-nucleon collisions. It is defined as [42]:

RAA =
Yield in A+A collisions

⟨Ncoll⟩ × Yield in p+p collisions
, (1.9)

where ⟨Ncoll⟩ is the average number of binary collisions in the nucleus-nucleus interaction, and the
denominator represents the expectation for particle production if no nuclear medium effects were
present.

RAA value less than 1 indicates suppression, often attributed to jet quenching, a phenomenon
where high-energy partons lose energy as they traverse the dense QGP medium. This energy loss
occurs via interactions with the QGP, such as gluon bremsstrahlung or collisional energy dissipation.
Suppression of high-p⊥ particles has been observed at RHIC and LHC, confirming the presence of a
dense, strongly interacting medium [43].

10

1.4. Heavy-ion collisions

Interestingly, at intermediate p⊥, enhancement inRAA can occur due to phenomena like Cronin ef-
fects [44], where initial-state scattering broadens parton transverse momentum, and coalescence [45],
where quarks recombine to form hadrons. These effects are sensitive to the underlying dynamics of
particle production and medium modification. However, these effects diminish at large enough trans-
verse momentum (p⊥ ≥ 8GeV).

RAA also varies with collision centrality, providing insights into the geometry and density of
the medium. Central collisions, which produce the densest QGP, show the strongest suppression at
high p⊥, while peripheral collisions exhibit weaker suppression. This centrality dependence supports
the interpretation of jet quenching as a medium-induced phenomenon. Experimental studies, such
as those conducted at RHIC and LHC, have demonstrated this relationship across various collision
systems, including Au+Au and Pb+Pb collisions [40].

1.4.6 Collective flow

Collective flow is one of the most important observables in heavy-ion collisions, providing direct
evidence of the hydrodynamic behavior of the QGP. It refers to the anisotropic expansion of the
medium created in the collision, driven by pressure gradients established in the initial stages. Flow is
quantified using Fourier decomposition of the azimuthal particle distribution [34, 46]:

dN

dyd2p⊥
=

dN

2πdyp⊥dp⊥

[
1 +

∑
n

2vncos (n (ϕ− ψn))

]
, (1.10)

where ϕ is the azimuthal angle, ψn is the event-plane angle, and vn are the Fourier coefficients that
characterize different flow components.

Even though there are infinite Fourier coefficients, most importnat ones are: i) elliptic flow, v2,
arises from the initial spatial anisotropy in non-central collisions. Due to the almond-shaped overlap
region of the colliding nuclei, the pressure gradients are stronger along the short axis, leading to
preferential expansion in this direction. Elliptic flow is a key observable for studying the QGP’s
viscosity, as it is sensitive to the medium’s shear viscosity-to-entropy density ratio, η/s [32]. ii)
triangular, v3 and higher order flow coefficients arise from initial-state fluctuations in the positions of
participant nucleons. These fluctuations create localized hot spots in the energy density distribution,
resulting in azimuthal anisotropies that are independent of the reaction plane. Triangular flow has
been instrumental in understanding the initial state and the response of the QGP to fluctuations [47].
iii) radial flow refers to the isotropic expansion of the system due to thermal pressure gradients.
It results in a characteristic "blue shift" of the particle momentum spectra, with heavier particles
exhibiting higher transverse momenta due to their stronger coupling to the collective motion of the
medium [48].

Flow measurements strongly depend on particle species. Light particles, such as pions, exhibit
stronger flow signals than heavier particles like protons and kaons. This mass ordering arises because
heavier particles acquire more momentum from the collective expansion, but their larger masses result
in smaller transverse velocities. This behavior reflects the integrated dynamics of the QGP and the
hadronic phase.

Collective flow also shows a strong dependence on collision centrality. In central collisions, where
the overlap region is more symmetric, v2 is reduced, while higher-order flow components (v3, v4) are
enhanced due to fluctuations. In peripheral collisions, elliptic flow dominates due to the pronounced
almond-shaped geometry of the initial overlap region.

Elliptic flow and higher-order harmonics are sensitive to the QGP’s shear viscosity-to-entropy
density ratio (η/s), a critical parameter for characterizing the QGP as a near-perfect fluid. Hydrody-

11

1. Introduction

namic simulations indicate that near critical temperature, Tc, lower η/s values lead to stronger flow
signals, providing key insights into the properties of the QGP.

Experiments at RHIC and LHC have provided extensive data on flow coefficients, spanning a
wide range of collision energies, system sizes, and particle species. These measurements confirm the
collective behavior of the QGP and support the hydrodynamic description of its evolution.

At high p⊥, v2 reflects the anisotropy in the suppression of high-p⊥ particles traversing the almond-
shaped medium created in non-central heavy-ion collisions. This suppression arises from the path-
length dependence of parton energy loss in the anisotropic medium, where particles moving along
the shorter axis lose less energy compared to those traversing the longer axis. Consequently, high-p⊥
v2 originates from jet-medium interactions and energy loss mechanisms, distinct from the hydrody-
namic flow responsible for low-p⊥ v2. This distinction highlights the importance of studying high-p⊥
v2, which provides unique insights into the QGP’s temperature profile and anisotropy at higher tem-
peratures.

In addition toRAA (the nuclear modification factor) discussed earlier, high-p⊥ v2 and higher-order
flow harmonics, such as v3 and v4, serve as complementary probes for the QGP’s bulk properties.
These observables combine the sensitivity of RAA to the medium’s density and temperature with the
directional information provided by flow harmonics, enabling a more comprehensive characterization
of the QGP.

A major challenge lies in accurately modeling the interplay between parton energy loss and
medium properties to simultaneously describe RAA and v2 across various collision systems and ener-
gies. This challenge motivated the development of the DREENA (Dynamical Radiative and Elastic
ENergy loss Approach) framework. DREENA integrates radiative and collisional energy loss mech-
anisms within a dynamically evolving medium, offering a robust tool for capturing the complexity
of jet-medium interactions. It provides a systematic approach to exploring the QGP’s bulk properties
using high-p⊥ observables and addressing discrepancies in experimental v2 data, thereby refining the-
oretical descriptions of QGP dynamics.

Experiments at RHIC and LHC have provided extensive data on low-p⊥ and high-p⊥ RAA, v2,
and higher harmonics across various collision energies, system sizes, and particle species. Before the
development of the DREENA framework, these data were often treated as separate fields of study.
DREENA enabled the integration of these domains, allowing for a unified approach to constraining
the properties of this fascinating state of matter.

12

Chapter 2

Methodology

2.1 The dynamical energy loss formalism

The dynamical energy loss formalism [49] provides a comprehensive framework for understanding
how high-energy partons lose energy as they traverse the quark-gluon plasma (QGP). This formalism
addresses the limitations of static models by considering the QGP as a dynamic medium, characterized
by moving partonic constituents, temperature gradients, and finite-size effects. It combines collisional
(elastic) and radiative (inelastic) energy loss mechanisms, enabling precise predictions of high-p⊥
observables such as the nuclear modification factor (RAA) and azimuthal anisotropy (v2).

Early models like the GLV (Gyulassy-Levai-Vitev) [50, 51, 52, 53, 54] formalism focused on ra-
diative energy loss in a static medium. The GLV model described the energy dissipation of massless
partons through multiple scatterings in a QGP. Building on this, Djordjevic and Gyulassy introduced
the DGLV [55] model, which incorporated the effects of quark mass into radiative energy loss calcu-
lations. What they discovered was that the general result is accured by shifting the frequencies in the
GLV series by

(
m2

g + x2M2
)
/ (2xE), where mg is the effective gluon mass while x is the fractional

energy of the radiated gluon, M is the quark mass and E is the initial jet energy. Furthermore, DGLV
recovers GLV results in the massless limit.

Despite its successes, the DGLV formalism assumed a static medium and neglected collisional en-
ergy loss. Experimental results from RHIC [56, 57] revealed that radiative mechanisms alone could
not account for the observed suppression patterns, particularly for heavy-flavor mesons. These limi-
tations motivated the development of the dynamical energy loss formalism, which integrates dynamic
medium properties and combines radiative and collisional contributions. Dynamical energy loss for-
malism has the following features:

• Radiative energy loss [58] suitable to both light and heavy flavour.

• Collisional energy loss [59], formulated within the same theoretical framework, which is also
applicable to both light and heavy flavor particles

• The formalism models finite size and temperature QCD medium, comprised of dynamic (i.e.
moving) partons, distinguishing it from approaches that rely on static approximations and
vacuum-based propagators [43, 60, 50, 61].

13

2. Methodology

• The calculations utilize a generalized Hard-Thermal-Loop approach [62, 63], with naturally
regulated infrared divergences [58, 64, 65].

• The formalism takes into account finite magnetic mass [66] and running coupling [49].

• The soft-gluon approximation was recently relaxed, broadening the formalism’s range of appli-
cability [67].

Previous studies [68] demonstrated that all the aforementioned model components influence the high-
p⊥ data and are therefore essential for accurate explanations.

Collisional energy loss arises from elastic scatterings between high-energy partons (quarks and
gluons) and the constituents of the quark-gluon plasma (QGP). Unlike radiative energy loss, which in-
volves the emission of gluons, collisional energy loss is characterized by momentum transfer through
direct interactions with the QGP’s dynamic medium particles.

In the dynamical energy loss formalism, collisional energy loss is calculated using a temperature-
dependent framework that incorporates the dynamic properties of the QGP. The effective gluon prop-
agator [59] plays a central role in these calculations:

Dµν (ω, q⃗) = −P µν∆T (ω, q⃗)−Qµν∆L (ω, q⃗) , (2.1)

where q = (ω, q⃗) is the 4-momentum of the exchanged gluon, ∆T (ω, q⃗) and ∆L (ω, q⃗) are the
effective transverse and longitudinal propagators [59, 2]:

∆−1
T = ω2 − q⃗2 − µE (T)2

2
−
(
ω2 − q⃗2

)
µE (T)2

2⃗q2

(
1 +

ω

2|⃗q|
ln
∣∣∣∣ω − |⃗q|
ω + |⃗q|

∣∣∣∣) , (2.2)

∆−1
L = q⃗2 + µE (T)2

(
1 +

ω

2 |⃗q|
ln
∣∣∣∣ω − |⃗q|
ω + |⃗q|

∣∣∣∣) , (2.3)

where µE (T) is the Debye chromo-electric screening mass [2].

P µν and Qµν from 2.1 are transverse and longitudinal projection tensors whose only non-zero
terms are:

P ij = δij − qiqj

|⃗q|2
(2.4)

Q00 = 1 (2.5)

Collisional energy loss per unit length is given by [59]:

dEcoll

dτ
=

2CR

πv2
αs(ET)αs(µ

2
E(T))

∫ ∞

0

neq(|k⃗|, T)d|k⃗|

×
[∫ |k⃗|/(1+v)

0

d|q⃗|
∫ v|q⃗|

−v|q⃗|
ωdω +

∫ |q⃗|max

|k⃗|/(1+v)

d|q⃗|
∫ v|q⃗|

|q⃗|−2|k⃗|
ωdω

]
×
[
|∆L(q, T)|2

(2|k⃗|+ ω)2 − |q⃗|2

2
+ ∆T (q, T)|2

(|q⃗|2 − ω2)((2|k⃗|+ ω)2 + |q⃗|2)
4|q⃗|4

(v2|q⃗|2 − ω2)
]
.

(2.6)

In Eq 2.6, neq(|⃗k|, T) = Nc

e|⃗k|/T−1
+

Nf

e|⃗k|/T+1
is the equilibrium momentum distribution [69] at temper-

ature T with Nc and Nf being the number of colors and flavours respectively. Running coupling is

14

2.2. Software implementation

given by α2
s, while CR = 4

3
for quark jet and 3 for gluon jet. v is velocity of the initial jet, k is the

4-momentum of the incoming medium parton and |⃗qmax| is defined in [59].

Radiative energy loss is critical in understanding jet quenching in a quark-gluon plasma (QGP).
It occurs when a propagating parton radiates gluons due to interactions with the QGP constituents,
leading to a significant energy loss. This phenomenon is significant for high-energy partons, whose
suppression in transverse momentum spectra is a diagnostic for the QGP properties.

In a dynamical QCD medium, where the constituents are in motion rather than static, the inclu-
sion of medium dynamics introduces significant refinements to energy-loss models. The formalism
involves summing over Feynman diagrams representing gluon radiation induced by interactions with
the QGP. Each diagram can exhibit infrared divergences, but these are naturally regulated when all
contributions are summed [58, 64, 65].

The medium-induced radiative energy loss is sensitive to the finite size of the QGP. In contrast to
infinite-medium approximations, finite-size effects lead to nonlinear path-length dependencies, recon-
ciling both incoherent (Gunion-Bertsch) [70] and destructive (Landau-Pomeranchuk-Migdal) [71, 72]
limits.

The radiation spectrum [2] is:

dNrad

dxdτ
=
C2(G)CR

π

1

x

∫
d2q

π

d2k

π

µ2
E(T)− µ2

M(T)

[q2 + µ2
E(T)][q

2 + µ2
M(T)]

Tαs(ET)αs

(k2 + χ(T)

x

)
×
[
1− cos

((k+ q)2 + χ(T)

xE+
τ
)] 2(k+ q)

(k+ q)2 + χ(T)

[k+ q

(k+ q)2 + χ(T)
− k

k2 + χ(T)

]
.

(2.7)

Here C2(G) = 3; χ(T) ≡ M2x2 + mg(T)
2, where x is the longitudinal momentum fraction of

the jet carried away by the emitted gluon, and mg(T) = µE(T)/
√
2 is the effective gluon mass in

finite temperature QCD medium [65]; M = 1.2 GeV for charm, 4.75 GeV for bottom and µE(T)/
√
6

for light quarks; µM(T) is magnetic screening, where different non-perturbative approaches suggest
0.4 < µM(T)/µE(T) < 0.6 [73, 74]; q and k are transverse momenta of exchanged (virtual) and
radiated gluon, respectively. Q2

k = k2+χ(T)
x

in αS(
k2+χ(T)

x
) corresponds to the off-shellness of the jet

prior to the gluon radiation [58]. Note that, all αS terms in Eqs. (2.6) and (2.7) are infrared safe (and
moreover of a moderate value) [49]. Thus, contrary to majority of other approaches, we do not need
to introduce a cut-off in αS(Q

2).

2.2 Software implementation

2.2.1 DREENA-C

The implementation of the DREENA framework began with the simplest model, DREENA-C ("C"
for "constant") [75], which assumes a constant medium temperature throughout. This model served
as the foundational step in the framework’s development.

Initially, the theoretical computational procedure described in [49] was directly implemented.
However, this brute-force approach was found to be impractical due to exceedingly long execution
times on the available hardware, a shared memory machine with 112 cores and 224 threads. Even with
substantial computational resources, this approach could not deliver results in a reasonable timeframe.

To make the implementation viable, a series of optimizations were applied, leading to a speedup
of approximately two orders of magnitude compared to the unoptimized method described in [49].
These optimizations included:

15

2. Methodology

• Tabulation and Interpolation: The intermediate functions arising in energy loss calculations
were precomputed (tabulated) and subsequently interpolated. This drastically reduced the num-
ber of numerical integrations required while preserving precision. A thorough analysis of these
functions’ behavior guided the design of non-uniform sampling grids, ensuring that interpola-
tion errors remained negligible.

• Improved Numerical Integration: Quasi-Monte Carlo integration methods replaced the tra-
ditional approaches used in [49], yielding improved precision, numerical stability, and faster
execution times.

• Parallelization: The computational workload was parallelized to exploit the full potential of
contemporary multi-core processors, further reducing execution time.

These enhancements not only improved computational performance but also enabled refinements
to the physical model:

1. The multi-gluon fluctuation procedure, which was previously limited to three radiated glu-
ons due to numerical constraints, was redeveloped to allow for an arbitrary number of gluons.
Analysis showed that including 4-5 gluons provided an optimal balance between computational
feasibility and numerical accuracy in the constant-temperature case.

2. The combination of radiative and collisional energy losses along the parton’s path was im-
plemented. In contrast, the earlier approach in [49] treated these loss mechanisms separately,
simplifying the calculations at the cost of physical accuracy.

The results of the DREENA-C implementation and its numerical findings were presented in
the [75].

2.2.2 DREENA-B

While DREENA-C represented a significant step forward, the assumption of a constant temperature
medium was a crude approximation of the QGP’s actual evolution. Recognizing this limitation, the
development progressed to DREENA-B ("B" for "Bjorken") [2], which incorporates the Bjorken ap-
proximation for a longitudinally expanding medium. This model introduced a medium whose temper-
ature depends on proper time but remains spatially uniform, marking a gradual advancement toward
modeling a fully evolving QGP.

The transition from DREENA-C to DREENA-B necessitated significant changes to the computa-
tional algorithm:

• Algorithmic Modifications: In the constant-temperature scenario of DREENA-C, certain inte-
grations (e.g., over time) could be performed analytically. However, the introduction of proper-
time dependence in DREENA-B required a numerical integration over time, significantly in-
creasing computational complexity. For example, calculating radiative energy loss for a single
probe in the Bjorken scenario took approximately 10 hours on the available hardware. Given
that producing meaningful results required ~100 such runs, this approach was computationally
prohibitive.

• Optimization Techniques: To address these challenges, the following strategies were imple-
mented:

16

2.2. Software implementation

– Adaptive Sampling and Tabulation: As in DREENA-C, intermediate function values
were tabulated and interpolated, but with non-uniform grids adapted to the regions where
functions varied most rapidly.

– Dynamic Integration Parameters: The number of quasi-Monte Carlo sampling points
and required integration accuracy were adjusted dynamically across the parameter space
to balance precision and efficiency.

– Reimplementation in C: The code, initially developed in symbolic computation software,
was rewritten in C, leveraging its efficiency for numerical computations.

These improvements collectively achieved a computational speedup of nearly three orders of mag-
nitude. This acceleration not only made DREENA-B practical for analyzing Bjorken expansion sce-
narios but also established a foundation for further developments of the DREENA framework. Addi-
tional details on the DREENA-B implementation and results are provided in Section 4.

2.2.3 DREENA-A

The final stage of development in the DREENA framework, DREENA-A [4], represented a significant
leap in complexity and capability. Unlike its predecessors, DREENA-A was designed to accommo-
date arbitrary spatiotemporal temperature profiles, offering a fully general treatment of the medium’s
evolution.

In DREENA-C and DREENA-B, the simplifying assumptions about the medium’s evolution al-
lowed parton energy loss to depend only on the path length, independent of the direction or production
point. This simplification enabled analytical integration of certain factors in the energy-loss formulas
and precomputation of path-length distributions, yielding efficient computational algorithms.

In contrast, DREENA-A required a complete reevaluation of the computational approach. Its
inputs include:

1. Temperature Profile (Tprofile): A 3D matrix of temperature values at spatial and temporal
coordinates (x, y, τ).

2. Initial Parton Momentum Distributions: d2σ/dp2⊥

3. Jet Production Probability Distribution.

For each parton trajectory, determined by its transverse origin (x0, y0) and direction angle ϕ, the
combined radiative and collisional energy losses were calculated by integrating along the path until
the medium temperature dropped below Tc = 155MeV, signaling the parton’s exit from the QGP
phase. This required averaging energy losses over all possible trajectories, a process that substantially
increased computational demands.

To address these challenges, additional optimization techniques were employed:

• Reorganization of Integration Order: The sequence of numerical integrations was adjusted
to suit the specific behavior of the functions involved. For example, integrating over initial
momentum distributions first was computationally expensive for heavy-flavor particles, so this
step was deferred until the final stage of computation.

• Efficient Trajectory Averaging: Monte Carlo sampling of production points and directions
was replaced with equidistant sampling, where the transverse plane was divided into a grid, and

17

2. Methodology

trajectory angles were sampled uniformly. This approach weighted energy loss by jet produc-
tion probabilities, reducing execution time by over two orders of magnitude compared to the
Monte Carlo method.

The realization of DREENA-A, along with its results, is discussed in detail in Section 6. The
complete DREENA-A source code is provided in the Appendix.

18

Chapter 3

Testing path-length dependence in energy
loss mechanisms

Understanding properties of Quark-Gluon Plasma (QGP) [76] created at LHC and RHIC experiments
is a major goal of ultra-relativistic heavy ion physics [77], which would allow understanding proper-
ties of QCD matter at its most basic level. Energy loss of high p⊥ partons traversing this medium, is an
excellent probe of its properties [78], which provided a crucial contribution [77] to establishing that
QGP is created in these experiments. Comparing predictions of different energy loss models [79, 80],
and consequently different underlying energy loss mechanisms, with experimental data, is therefore
crucial for understanding properties of created QGP. However, an open question is how to provide the
most direct comparison of energy loss predictions with experimental data.

The most basic signature for distinguishing different energy loss models, is how the predicted
energy loss depends on the length of the traversed QCD medium (so-called path-length dependence).
This path-length dependence directly relates to different underlying energy loss mechanisms, such as
pQCD collisional (with typically linear [59, 81, 82]), radiative (with typically quadratic [43, 83, 60,
84, 85, 50, 61, 86]) or alternatively conformal AdS holography models (with third power [87, 88] en-
ergy loss path length dependence). Moreover, even in such cases, the division is not so clear, as there
are numerous other effects that can significantly alter these path-length dependencies [89, 90, 58, 64]:
inclusion of the mass of the leading particle, finite size and finite temperature effects in QGP, in-
terference effects, etc. Therefore, accurately assessing the path-length dependence is also crucial for
understanding mechanisms that underly the observed energy loss, which is in turn necessary for inves-
tigating the properties of QCD matter created at RHIC and LHC, i.e. for precision QGP tomography.

However, despite its essential importance and longstanding interest in this subject, it is still not
possible to directly infer the energy loss path-length dependence from experimental measurements,
and consequently provide a possibility to discriminate between different energy loss models. To our
knowledge, the most comprehensive study in this subject [91, 92], attempted to extract the energy
loss path-length dependence from a thorough simultaneous study of RAA and v2 predictions and data
(at Au + Au collisions at RHIC and Pb + Pb collisions at the LHC), but was not able to constrain
this dependence based on the existing observables and data. With this in mind, the goal of this paper
is to propose a novel approach for extracting the energy loss path-length dependence.

It is intuitively clear that the most direct probe of the path-length dependence would involve com-
paring experimental data (and the related theoretical predictions) for two collision systems of different

19

3. Testing path-length dependence in energy loss mechanisms

size. Moreover, it would be optimal if the size would be the only property distinguishing these two
systems, i.e. that other properties/parameters needed for generating relevant predictions would be the
same between the two systems. Equally important, it is necessary to propose an appropriate observ-
able from which the path-length dependence can be reliably extracted. Consequently, the aim of the
analysis presented in this paper, is to infer an optimal system and an optimal observable, for assess-
ing the energy loss path-length dependence. We will also test how reliable and robust is the inferred
observable to different types of energy loss, probes, centralities and collision systems.

3.1 Appropriate observable

In this section, we first start by asking what is an appropriate observable to assess the energy loss
path-length dependence? To start addressing this question, we note that such observable should be
sensitive to jet-medium interactions (so that energy loss path-length dependence can be reliably ex-
tracted). On the other hand, it should not be sensitive to the medium evolution, as the details of
the medium evolution would, for such a purpose, present an unwanted background. Having this in
mind, it is evident that such observable should be a function of RAA, since RAA has exactly these
desired properties - i.e. it is highly sensitive to the energy loss mechanisms in QGP [68, 93, 94, 95],
while being insensitive to the medium evolution (i.e. it can be characterized by mean QGP tempera-
ture) [93, 94, 95]. The medium evolution insensitivity is also consistent with results from Section 4 of
almost identical RAA for constant medium temperature and 1+1 D Bjorken expansion; however, this
still remains to be further verifed by using more realistic medium evolution calculations, including
event-by-event fluctuations [96, 92].

3.2 Appropriate systems

Measurements for 5.02 TeV Pb+Pb collisions are available, while precision measurements for
5.44 TeV smaller systems (Xe+Xe, Kr+Kr, Ar+Ar and O+O) will become available in the future,
with the planned Beam Size Scan (BSS) at the LHC. As these systems have similar collision ener-
gies but different sizes (atomic mass numbers are A = 208, 129, 78, 40, 16 for Pb,Xe,Kr,Ar,O),
comparison of Pb+Pbwith smaller systems appears to be a good candidate for the path-length depen-
dence study. Note that BSS at the LHC is complementary to the current Beam Energy Scan (BES) at
RHIC, as in BES the systems of the same size but different collision energies are tested, while in BSS
the systems of the same energy but different sizes will be explored, thus providing a crucial insight in
how properties of the created matter depend on the size of the colliding ions.

3.3 Computational framework

In this study, the RAA predictions will be generated by our full-fledged numerical procedure, recently
developed in [75]. The procedure is based on our state-of-the-art dynamical energy loss formal-
ism [58, 64, 59], which contains different important effects (some of which are unique to this model):
i) Finite size, finite temperature QGP, consisting of dynamical (that is moving) constituents. This
abolishes the widely used approximations of static scattering centers, vacuum-like propagators and/or
infinite size QGP (e.g. [43, 83, 60, 50, 61, 86]). ii) Our calculations are based on the finite tempera-
ture generalized Hard-Thermal-Loop approach [62], in which the infrared divergencies are naturally
regulated [58, 64]. iii). Both collisional [59] and radiative [58, 64] energy losses are computed under
the same theoretical framework, which is applicable to both light and heavy flavor. iv) The model is

20

3.4. Smaller systems

generalized to the case of finite magnetic mass [66] and running coupling [49]; we also applied first
steps towards removing widely used soft-gluon approximation [67]. Moreover, in [68], we showed
that all these ingredients are necessary for accurately explaining the high-p⊥ parton-medium interac-
tions in QGP.

To generate the final medium modified distribution of high-p⊥ hadrons, the formalism was inte-
grated into fully optimised numerical framework DREENA [75], which integrates initial p⊥ distribu-
tion of leading partons [97, 98], energy loss with multi-gluon [54] and path-length [99] fluctuations
and fragmentation functions [100, 101]. To generate RAA predictions for Pb+Pb collisions, we use
the set of parameters specified in [75], which correspond to standard literature values (details can be
found in Section 2).

The dynamical energy loss formalism was previously used to obtain a comprehensive set of RAA

predictions at RHIC and LHC [75]; it shows wide agreement with the existing data [49], explaining
puzzling data and generating nonintuitive predictions for future experiments [102, 103] (some of
which were already confirmed by subsequent data [104, 105]). This then strongly indicates that
our formalism can realistically describe high p⊥ parton-medium interactions, and that it provides a
suitable framework for the goal that we want to achieve in this study.

3.4 Smaller systems

ForRAA predictions in smaller systems, and their comparison with Pb+Pb collisions, one should note
that RAA depends on i) initial distribution of high-p⊥ partons, ii) average temperature of the created
QGP, and iii) path-length distributions. Regarding initial distributions, we previously showed [102]
that, when the collision energy is changed almost two times (from 2.76 to 5.02 TeV), the influence of
the change of p⊥ distributions leads to only a small change (less than 10%) in the resulting suppres-
sion. Consequently, for the increase of less than 10% in the collision energy (from 5.02 to 5.44 TeV),
the same high-p⊥ distributions can be assumed. The average temperature (T) for each centrality
region in 5.02 TeV Pb+Pb collisions is estimated according to [75]. Note that T is directly pro-
portional to the charged multiplicity, while inversely proportional to the overlap area and average
size of the medium, i.e. T = (dNch/dη

A⊥L
)
1
3 [75, 106]. To estimate T in smaller systems, we note that,

for each centrality region, all the above quantities change in the two collision systems: A⊥ ∼ A2/3;
L ∼ A1/3 [107, 108]; dNch/dη ∼ Npart, where Npart ∼ A, since, for the same collision energy,
dNch/dη
Npart

should remain constant with decreasing the systems size [109, 110]. This therefore leads to
T ∼ (A

A2/3A1/3)
1/3 ∼ const, i.e. we expect that, for a fixed centrality region, T will remain unchanged

when moving from large Pb+Pb to smaller systems.

Finally, the path-length distributions for smaller systems, at different centralities, can be calculated
in the same manner as previously for Pb+Pb [75]. It is straightforward to see that the two distributions
are similar up to a rescaling factor corresponding to A1/3. Consequently, we see that comparison of
Pb+Pb with smaller systems is in fact close to ideal, when it comes to probing the path-length
dependencies.

3.5 Suppression ratio

The next question is, what is the exact variable (i.e. its functional dependence on RAA) that should be
compared for the two systems, in order to extract the path-length dependence. Since RAA increases
when the system size decreases, it may seem that the ratio of RAA for the two systems is a natural

21

3. Testing path-length dependence in energy loss mechanisms

choice [111]. To test this proposal, in Fig. 3.1, we show momentum dependence of RAA ratio for the
Xe+Xe and Pb+Pb systems (note that, for easier reading, we will first concentrate on Xe+Xe and
Pb+Pb, and we will discuss smaller systems subsequently). We see that it would be very hard to
extract the path-length dependence from such ratio, e.g. for high p⊥ this ratio approaches 1, naively
suggesting that the underlying model has no (or only weak) path-length dependence. However, the
dynamical energy loss model has, in fact, a strong (between linear and quadratic) path-length depen-
dence. The same problem would emerge if experimental data would be plotted in that way, i.e. one
may naively conclude that high p⊥ suppression does not depend on the system size. Moreover, we see
that this quantity is not robust with respect to the changes in collision centrality, which would further
complicate extracting the path-length dependence from simple RAA ratio.

0 20 40 60 80 100
1.0

1.1

1.2

p⊥(GeV)

R
X
eX
e
/R
P
bP
b

0-5%

0 20 40 60 80 100

p⊥(GeV)

20-30%

0 20 40 60 80 100

p⊥(GeV)

50-60%

Figure 3.1: Ratio of RXeXe and RPbPb is shown as a function of p⊥ for charged hadrons, D and B
mesons (full, dashed and dot-dashed curves, respectively). Centrality regions are denoted in the upper
right corners of each panel. Figure adapted from [1].

The problem above can be intuitively understood by using scaling arguments. Fractional energy
loss ∆E/E, can be estimated as [75]:

∆E/E ∼ χT
a
L
b
, (3.1)

where a, b are proportionality factors, T is the average temperature of the medium, L is the average
path-length traversed by the jet and χ is a proportionality factor (which depends on initial jet p⊥).
b→ 1 corresponds to the linear, while b→ 2 corresponds to the quadratic (LPM like) dependence of
the energy loss.

If ∆E/E is small (i.e. for higher p⊥ of the initial jet, and for higher centralities), we can make
the following estimate [75]

RAA ≈ 1− ξT
a
L
b
, (3.2)

where ξ = (n− 2)χ/2, and n is the steepness of the initial momentum distribution function.

The ratio of RXeXe and RPbPb then becomes

RXeXe

RPbPb

≈ 1 + ξT
a
L
b

Pb

(
1−

(
AXe

APb

)b/3
)
. (3.3)

This quantity is rather complicated, depending explicitly on the initial jet energy (through ξ),
average medium temperature, and average size of the medium. Also, it explicitly depends on cen-
trality (through T and LPb, which decrease with increasing centrality), consistently with what is seen
in Fig. 3.1. Furthermore, as centrality and initial energy of the jet increase, ξ, T and LPb become
smaller, explaining why the ratio in Fig. 3.1 goes to 1 for high p⊥ and high centrality, which results in
the problem of concealing the path-length dependence. Consequently, the ratio of RAAs for different
collision systems is not a suitable observable for extracting path-length dependence.

22

3.6. Suitable observable

3.6 Suitable observable

It is clear that such observable should expose coefficient b in a simplest possible manner. To initially
gauge the appropriate functional dependence, we again resort to the scaling arguments given above,
for which we have shown to provide a reasonable description of the full fledged numerical model
results in Fig. 3.1. We proceed by subtracting RAAs (obtained from Eq. 3.2) from 1, which, in the
case of Xe and Pb, reduces to:

RXePb
L ≡ 1−RXeXe

1−RPbPb

≈ ξT
a
L
b

Xe

ξT
a
L
b

Pb

≈
(
AXe

APb

)b/3

. (3.4)

This new quantityRXePb
L has a very simple form, which depends only on the medium size (through

AXe/APb), and on the path length dependence, i.e. coefficient b, which is now directly exposed. Note
again that this simple dependence is expected to hold for higher centralities and higher initial p⊥,
where Eqs. 3.2 and 3.4 are applicable. Consequently, as one plots RXePb

L at higher centrality regions,
one may expect that this value will approach a limit that directly reflects the path-length dependence,
i.e. relation given by Eq. 3.4.

To numerically test our proposal and assess the applicability of the analytically derived scaling in
Eq. (3.4), we further concentrate only on higher centrality regions, and calculate (1 − RXeXe)/(1 −
RPbPb) using our full-fledged numerical procedure [75]. This ratio is shown in Fig. 3.2; full, dashed
and dot-dashed curves show our full results for charged hadrons, D and B mesons, respectively; the
dashed lines correspond to the b = 1 and 2 limit from Eq. (3.4). From Fig. 3.2, one can see that
RXePb

L is almost independent of centrality, which is exactly what one needs for such observable. At
high p⊥ → 100 GeV, we clearly see that RXePb

L for all types of particles reaches a limiting value, as
expected. Moreover, this limiting value (RXePb

L ≈ 0.8) directly reflects the underlying path-length
dependence, which is in our case (the dynamical energy loss formalism, with radiative and collisional
energy loss in a finite size QCD medium) between linear and quadratic (i.e. b ≈ 1.4), regardless of the
particle flavor; note that this extracted path-length dependence is different from a common assump-
tion of heavy flavor having linear, while light flavor having quadratic (LPM-like) dependance. It is,
therefore, clear that making such plots from experimental data, and extracting the corresponding path-
length dependence (exponent b), can be used to differentiate between different energy loss models in
a simple and direct manner. Also, note that, in distinction to Fig. 3.2, where the gray dashed lines are
simple and intuitive (allowing straightforward inference of path-length dependence), defining such
lines in Fig. 3.1 would not be possible.

3.7 Testing robustness and reliability

To address the robustness of RAB
L observable, i.e. if the observable is applicable to systems of diverse

sizes, we further test RAB
L on other smaller systems (Kr+Kr, Ar+Ar and O+O). With this goal

in mind, in Fig. 3.3, we concentrated on charged hadrons, and generated full-fledged predictions for
RAB

L for Xe−Pb, Kr−Pb, Ar−Pb and O−Pb, as a function of p⊥. From this figure, we first observe
that, for all four systems, this observable is almost independent on centrality, as expected from the
arguments presented above. Secondly, we also observe that, independent on the collision system,
this observable shows the same behavior, so it is very robust with respect to extracting path-length
dependence. We moreover observe that going to smaller systems makes extracting the path-length
dependence even more straightforward, since the separation between L and L2 lines becomes larger
when going to smaller systems, i.e. it increases for a factor of 2, when going from Xe−Pb to Ar−Pb

23

3. Testing path-length dependence in energy loss mechanisms

0 20 40 60 80 100

0.7

0.8

0.9

1.0

p⊥(GeV)
R
LX
eP
b

30-40%

L

L2

0 20 40 60 80 100

p⊥(GeV)

50-60%

L

L2

Figure 3.2: Predictions for RXePb
L as a function of p⊥ are shown for charged hadrons (full curves),

D mesons (dashed curves) and B mesons (dot-dashed curves). Upper (lower) dashed gray line cor-
responds to the case in which energy loss path-length dependence is linear (quadratic). Centrality
regions are denoted in the upper right corners of each panel. Figure adapted from [1].

and O−Pb. This then motivates using this observable across systems of different sizes, and provides
another argument for utility of high p⊥ measurements at BSS at the LHC.

0 20 40 60 80 100

0.7

0.8

0.9

p⊥(GeV)

R
LA
B

Xe-Pb

L

L2

coll

rad+coll

rad

0 20 40 60 80 100

0.5

0.6

0.7

0.8

p⊥(GeV)

Kr-Pb

coll

rad+coll

rad

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

p⊥(GeV)

Ar-Pb

coll

rad+coll

rad

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

p⊥(GeV)

O-Pb

L

L2

coll

rad+coll

rad

Figure 3.3: Predictions for RAB
L as a function of p⊥ are shown for charged hadrons, where darker

set of curves are obtained by using full dynamical energy loss, while upper and lower lighter set or
curves, correspond, respectively to the cases where only collisional, or only radiative, energy loss is
considered. 1st to 4th panel correspond to, respectively, RXePb

L , RKrPb
L , RArPb

L and ROPb
L . In each

panel, three centrality regions 30− 40%, 40− 50% and 50− 60% are, respectively, marked by blue,
orange and green. Figure adapted from [1].

Finally, to address the reliability of this RAB
L observable, in Fig. 3.3, we also show RAB

L , calcu-
lated by using full numerical procedure stated above, but if only collisional [59] (upper curves) or
radiative [58, 64] (lower curves) energy loss are taken into account - we here again concentrate on
higher centrality regions where Eqs. 3.2 and 3.4 are applicable. Within the dynamical energy loss
model, collisional energy loss is close to - though somewhat less then - linear (b ≈ 0.9), due to finite
size effects [59]. From Fig. 3.3, we see that this path-length dependence scenario is directly recov-
ered; where approach to the appropriate dashed line (indicating ≲ L dependence) is almost ideal.
For the radiative energy loss, due to LPM effect, path-length dependence approaches L2 for higher
p⊥ [58, 64], and we see that, for such scenario, RAB

L also unambiguously recovers this tendency,
though the spread of curves for different centralities is somewhat larger compared to the collisional
energy loss case. This therefore leads to the conclusion that, in addition to being simple and robust,
RAB

L is also an accurate observable for extracting path-length dependence.

Experimental measurements for smaller collision systems at future BSS at the LHC, will provide
previously unprecedented opportunity to distinguish between different energy loss mechanisms, and
consequently to better understand properties of created QGP. We here proposed a new - simple, robust
and reliable - observable for assessing the path-length dependence of the energy loss, which is a

24

3.7. Testing robustness and reliability

main signature of high p⊥ parton-medium interactions. Based on our results, this observable can
be used to straightforwardly extract the path-length dependence from experimental data, which can,
consequently, be directly compared with such dependencies from various theoretical models, as a
major test of our understanding of energy loss mechanisms.

Furthermore, our study also suggests that (1− RAA) might be a more suitable observable for the
exploration of QGP than commonly usedRAA, as we have here shown that it more directly reflects the
underlying energy loss of the jet traversing the QGP. Furthermore, (1 − RAA) observable appears to
be highly correlated to v2 (as noted in study [112]). Since high p⊥ observables are shown [112, 113]
to be sensitive to global QGP properties, we expect that including the full medium evolution models
(together with event-by-event fluctuations) into the high p⊥ predictions, and providing a detailed joint
study of high p⊥ (1 − RAA) and v2 (and possibly higher harmonics) for different collision systems
will prove as an excellent tool for high precision QGP tomography, which is a future major goal of
relativistic heavy ion physics.

25

Chapter 4

DREENA-B framework

It is by now established that quark-gluon plasma (QGP), being a new state of matter [76, 114] con-
sisting of interacting quarks, antiquarks and gluons, is created in ultra-relativistic heavy ion collisions
at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Energy loss of
rare high p⊥ particles, which are created in such collisions and which transverse QGP, is considered
to be an excellent probe of this form of matter [77, 115, 116, 117, 118]. Such energy loss is reflected
through different observables, most importantly angular averaged (RAA) [104, 119, 105, 120, 38, 121,
122, 123, 124] and angular differential (v2) [125, 126, 127, 128, 129, 130, 131, 132] nuclear modifi-
cation factor, which can be measured and predicted for both light and heavy flavor probes. Therefore,
comparing a comprehensive set of predictions, created under the same model and parameter set, with
the corresponding experimental data, allows for systematical investigation of QCD medium proper-
ties, i.e. QGP tomography.

We previously showed that the dynamical energy loss formalism [58, 64, 59] provides an excel-
lent tool for such tomography. In particular, we demonstrated that the formalism shows a very good
agreement [49, 133, 102, 134, 103] with a wide range of RAA data, coming from different experi-
ments, collision energies, probes and centralities. Recently, we also used this formalism to generate
first v2 predictions, within DREENA-C framework [75]. These predictions were compared jointly
with RAA and v2 data, showing a very good agreement with RAA data, while visibly overestimating
v2 data. This overestimation also clearly differentiates the dynamical energy loss from other models,
which systematically underestimated the v2 data, leading to so called v2 puzzle [135, 91, 136]. On the
other hand, it is also clear that v2 predictions have to be further improved - in particular v2 was shown
to be sensitive to medium evolution, while in DREENA-C medium evolution was introduced in the
simplest form, through constant medium temperature. This problem then motivated us to introduce
medium evolution in DREENA framework.

While several energy loss models already contain a sophisticated medium evolution, they employ
simplified energy loss models. On the other hand, the dynamical energy loss formalism corresponds
to the other "limit", where constant (mean) medium temperature was assumed, combined with a
sophisticated model of parton-medium interactions, which includes: i) QCD medium composed of
dynamical (i.e. moving) scattering centers, which is contrary to the widely used static scattering
centers approximation, ii) finite size QCD medium, iii) finite temperature QCD medium, modeled
by generalized HTL approach [62, 137], naturally regularizing all infrared and ultraviolet divergen-
cies [65, 58, 64, 59]. iv) collisional [59] and radiative [58] energy losses, calculated within the same
theoretical framework, v) finite parton mass, making the formalism applicable to both light and heavy

27

4. DREENA-B framework

flavor, vi) finite magnetic [66] mass and running coupling [49].

Note that we previously showed that all the ingredients stated above are important for accurately
describing experimental data [68]. Consequently, introducing medium evolution in the dynamical
energy loss, is a major step in the model development, as all components in the model have to be
preserved, and no additional simplifications should be used in the numerical procedure. In addition
to developing the energy loss expressions with changing temperature, we also wanted to develop a
framework that can efficiently generate a set of predictions for all types of probes and all centrality
regions. That is, we think that for a model to be realistically compared with experimental data, the
comparison should be done for a comprehensive set of light and heavy flavor experimental data,
through the same numerical framework and the same parameter set. To implement this principle, we
also had to develop a numerical framework that can efficiently (i.e. in a short time frame) generate
such predictions, which will be presented in this chapter.

We will start the task of introducing the medium evolution in the dynamical energy loss formal-
ism with DREENA-B framework presented here, where "B" stands for Bjorken. In this framework,
QCD medium is modeled by the ideal hydrodynamical 1 + 1D Bjorken expansion [138], which has
a simple analytical form of temperature (T) dependence. This simple T dependence will be used as
an intermediate between constant (mean) temperature DREENA-C framework and the full evolution
QGP tomography tool. While, on one hand, inclusion of Bjorken expansion in DREENA framework
is a major task (having in mind complexity of our model, see above), it on the other hand signifi-
cantly simplifies the numerical procedure compared to full medium evolutions. This will then allow
step-by-step development of full QGP tomography framework, and assessing improvements in the
predictions when, within the same theoretical framework, one is transitioning towards more complex
QGP evolution models within the dynamical energy loss framework.

4.1 Computational frameworks

To calculate the quenched spectra of hadrons, we use the generic pQCD convolution, while the as-
sumptions are provided in [49]:

Efd
3σ

dp3f
=
Eid

3σ(Q)

dp3i
⊗ P (Ei → Ef)⊗D(Q→ HQ)⊗ f(HQ → e, J/ψ), ; (4.1)

where "i" and "f", respectively, correspond to "initial" and "final", Q denotes quarks and gluons.
Eid

3σ(Q)/dp3i denotes the initial quark spectrum, computed at next to leading order [97, 98] for light
and heavy partons. D(Q→ HQ) is the fragmentation function of parton (quark or gluon)Q to hadron
HQ; for charged hadrons, D and B mesons we use DSS [100], BCFY [101, 139] and KLP [140] frag-
mentation functions, respectively. P (Ei → Ef) is the energy loss probability, generalized to include
both radiative and collisional energy loss in a realistic finite size dynamical QCD medium in which
the temperature is changing, as well as running coupling, path-length and multi-gluon fluctuations. In
below expressions, running coupling is introduced according to [49], where we note that temperature
T now changes with proper time τ ; the temperature dependence along the jet path is taken according
to the ideal hydrodynamical 1D Bjorken expansion [138]. Partons travel different paths in the QCD
medium, which is taken into account through path length fluctuations [141]. Multi-gluon fluctuations
take into account that the energy loss is a distribution, and are included according to [54, 49] (for
radiative energy loss) and [142, 141] (for collisional energy loss).

The dynamical energy loss formalism was originally developed for constant temperature QCD
medium, as described in detail in [58, 64, 59]. We have now derived collisional and radiative energy
loss expressions for the medium in which the temperature is changing along the path of the jet;
detailed calculations will be presented elsewhere, while the main results are summarized below.

28

4.1. Computational frameworks

For collisional energy loss, we obtain the following analytical expression:

dEcoll

dτ
=

2CR

πv2
αs(ET)αs(µ

2
E(T))

∫ ∞

0

neq(|k⃗|, T)d|k⃗|

×
[∫ |k⃗|/(1+v)

0

d|q⃗|
∫ v|q⃗|

−v|q⃗|
ωdω +

∫ |q⃗|max

|k⃗|/(1+v)

d|q⃗|
∫ v|q⃗|

|q⃗|−2|k⃗|
ωdω

]
×
[
|∆L(q, T)|2

(2|k⃗|+ ω)2 − |q⃗|2

2
+ ∆T (q, T)|2

(|q⃗|2 − ω2)((2|k⃗|+ ω)2 + |q⃗|2)
4|q⃗|4

(v2|q⃗|2 − ω2)
]
,

(4.2)

Here E is initial jet energy, τ is the proper time, T is the temperature of the medium, αS is running
coupling [49] and CR = 4

3
. k is the 4-momentum of the incoming medium parton, v is velocity of

the incoming jet and q = (ω, q⃗) is the 4-momentum of the gluon. neq(|k⃗|, T) = N

e|k⃗|/T−1
+

Nf

e|k⃗|/T+1

is the equilibrium momentum distribution [69] at temperature T including quarks and gluons (N and
Nf are the number of colors and flavors, respectively). ∆L(T) and ∆T (T) are effective longitudinal
and transverse gluon propagators [143, 144]:

∆−1
L (T) = q⃗2 + µE(T)

2(1 +
ω

2|q⃗|
ln |ω − |q⃗|

ω + |q⃗|
|), (4.3)

∆−1
T (T) = ω2 − q⃗2 − µE(T)

2

2
− (ω2 − q⃗2)µE(T)

2

2q⃗2
(1 +

ω

2|q⃗|
ln |ω − |q⃗|

ω + |q⃗|
|), (4.4)

while the electric screening (the Debye mass) µE(T) can be obtained by self-consistently solving the
expression [145] (nf is number of the effective degrees of freedom, ΛQCD is perturbative QCD scale):

µE(T)
2

Λ2
QCD

ln

(
µE(T)

2

Λ2
QCD

)
=

1 + nf/6

11− 2/3nf

(
4πT

ΛQCD

)2

. (4.5)

The gluon radiation spectrum takes the following form:

dNrad

dxdτ
=
C2(G)CR

π

1

x

∫
d2q

π

d2k

π

µ2
E(T)− µ2

M(T)

[q2 + µ2
E(T)][q

2 + µ2
M(T)]

Tαs(ET)αs

(k2 + χ(T)

x

)
×
[
1− cos

((k+ q)2 + χ(T)

xE+
τ
)] 2(k+ q)

(k+ q)2 + χ(T)

[k+ q

(k+ q)2 + χ(T)
− k

k2 + χ(T)

]
,

(4.6)

where C2(G) = 3 and µM(T) is magnetic screening. k and q are transverse momenta of radiated
and exchanged (virtual) gluon, respectively. χ(T) ≡M2x2 +mE(T)

2/2, where x is the longitudinal
momentum fraction of the jet carried away by the emitted gluon, M is the mass of the quark of gluon
jet andmg(T) = µE(T)/

√
2 is effective gluon mass in finite temperature QCD medium [65]. We also

recently abolished the soft-gluon approximation [67], for which we however showed that it does not
significantly affect the model results; consequently, this improvement is not included in DREENA-B,
but can be straightforwardly implemented in the future DREENA developments, if needed.

Note that, as a result of introducing medium evolution, we got that the dynamical energy loss for-
malism now explicitly contains changing temperature in the energy loss expression. This is contrary
to most of the other models, in which temperature evolution is introduced indirectly, through q̂ or dNg

dy

(see [79] and references therein). This then makes the dynamical energy loss a natural framework to
incorporate diverse temperature profiles as a starting point for QGP tomography. As a first (major)
step, we will below numerically implement this possibility through Bjorken 1D expansion [138].

29

4. DREENA-B framework

Regarding the numerical procedure, computation efficiency of the algorithm implemented in
DREENA-C framework [75] was already two orders of magnitude higher with respect to the ba-
sic (unoptimized) brute-force approach applied in [49]. However, straightforward adaptation of the
DREENA-C code to the case of the Bjorken type evolving medium was not sufficient. This was dom-
inantly due to additional integration over proper time τ , which increased the calculation time for more
than two orders of magnitude. The computation of e.g. the radiative energy losses alone, for a single
probe, took around 10 hours on the available computer resources (a high performance workstation).
Taking into account that it requires ∼ 103 such runs to produce the results presented in this paper, it
is evident that a substantial computational speedup was necessary.

The main algorithmic tool that we used to optimize the calculation was a combination of sampling
and tabulating various intermediate computation values and their subsequent interpolation. We used
nonuniform adaptive grids of the sampling points, denser in the parts of the parameter volume where
the sampled function changed rapidly. Similarly, the parameters used for the numerical integration
(the number of Quasi Monte Carlo sampling points and the required accuracy) were also suitably
varied throughout the parameter space. Finally, while the computation in DREENA-C was performed
in a software for symbolic computation, the new algorithm was redeveloped in C programming lan-
guage. The combined effect of all these improvements was a computational speedup of almost three
orders of magnitude, which was a necessary prerequisite for both current practical applicability and
future developments of DREENA framework.

Regarding the parameters, we implement Bjorken 1D expansion [138], with commonly used τ0 =
0.6 fm [146, 147], and initial temperatures for different centralities calculated according to T0 ∼
(dNch/dy/A⊥)

1/3 [148], where dNch/dy is charged multiplicity and A⊥ is overlap area for specific
collision system and centrality. We use this equation, starting from T0 = 500 MeV in 5.02 TeV
Pb+Pbmost central collisions at the LHC, which is estimated based on average medium temperature
of 348 MeV in these collisions, and QCD transition temperature of Tc ≈ 150 MeV [149]. Note
that the average medium temperature of 348 MeV in most central 5.02 TeV Pb + Pb collisions
comes from [133] the effective temperature (Teff) of 304 MeV for 0-40% centrality 2.76 TeV Pb+Pb
collisions at the LHC [150] experiments (as extracted by ALICE). Once T0s for most central Pb+Pb
collisions is fixed, T0 for both different centralities and different collision systems (Xe + Xe and
Pb+ Pb) are obtained from the expression above.

Other parameters used in the calculation remain the same as in DREENA-C [75]. In particular,
the path-length distributions for both Xe +Xe and Pb + Pb are calculated following the procedure
described in [99], with an additional hard sphere restriction r < RA in the Woods-Saxon nuclear
density distribution to regulate the path lengths in the peripheral collisions. Note that the path-length
distributions for Pb+Pb are explicitly provided in [75]; we have also checked that, for each centrality,
our obtained eccentricities remain within the standard deviation of the corresponding Glauber Monte
Carlo results [108] (results not shown). For Xe+Xe, it is straightforward to show that Xe+Xe and
Pb+Pb distributions are the same up to recalling factor (A1/3, where A is atomic number), as we dis-
cussed in Section 3. Furthermore,the path-length distributions correspond to geometric quantity, and
are therefore the same for all types of partons (light and heavy). For QGP, we take ΛQCD = 0.2 GeV
and nf =3. As noted above, temperature dependent Debye mass µE(T) is obtained from [145]. For
light quarks and gluons, we, respectively, assume that their effective masses are M ≈µE(T)/

√
6 and

mg ≈ µE(T)/
√
2 [65]. The charm and bottom masses are M =1.2GeV and M =4.75GeV, re-

spectively. Magnetic to electric mass ratio is extracted from non-perturbative calculations [73, 74],
leading to 0.4 < µM/µE < 0.6 - this range of screening masses lead to presented uncertainty in the
predictions. We note that no fitting parameters are used in the calculations, that is, all the parameters
correspond to standard literature values.

30

4.2. Results and discussion

4.2 Results and discussion

In this section, we will present joint RAA and v2 predictions for light (charged hadrons) and heavy
(D and B mesons) flavor in Pb + Pb and Xe + Xe collisions at the LHC, obtained by DREENA-B
framework. Based on the path-length distributions from Figure 1 in [75], we will, in Figures 4.1
to 4.2, show RAA and v2 predictions for light and heavy flavor, in 5.02 TeV Pb + Pb and 5.44 TeV
Xe + Xe collisions, at different centralities. We start by presenting charged hadrons predictions,
where RAA data are available for both Pb + Pb and Xe + Xe, while v2 data exist for Pb + Pb
collisions. Comparison of our joint predictions with experimental data is shown in Figure 4.1, where
1st and 2nd columns correspond, respectively, to RAA and v2 predictions at Pb + Pb, while 3rd and
4th columns present equivalent predictions/data for Xe+Xe collisions at the LHC. From this figure,
we see that DREENA-B is able to well explain joint RAA and v2 predictions. For 5.44 TeV Xe+Xe
collisions at the LHC, we observe good agreement of our predictions with preliminary RAA data from
ALICE, ATLAS and CMS data (where we note that these predictions were generated, and posted on
arXiv, before the data became available), except for high centrality regions, where our predictions do
not agree with ALICE (and partially with ATLAS) data; however, note that in these regions ALICE,
ATLAS and CMS data also do not agree with eachother.

Furthermore, comparison of predictions obtained with DREENA-B and DREENA-C frameworks
in Fig. 4.1, allow directly assessing the importance of inclusion of medium evolution on different ob-
servables, as the main difference between these two frameworks is that DREENA-B contains Bjorken
evolution, while DREENA-C accounts for evolution in simplest form (through constant mean tem-
perature). We see that inclusion of Bjorken evolution has negligible effect on RAA, while significant
effect on v2. That is, it keepsRAA almost unchanged, while significantly decreasing v2. Consequently,
small effect onRAA, supports the fact thatRAA is weekly sensitive to medium evolution, makingRAA

an excellent probe of jet-medium interactions in QGP; i.e. in QGP tomography, RAA can be used to
calibrate parton medium interaction models. On the other hand, medium evolution has significant
influence on v2 predictions, in line with previous conclusions [93, 94, 95]; this sensitivity makes v2
an ideal probe to constrain QGP medium parameters also from the point of high p⊥ measurements (in
addition to constraining them from low p⊥ predictions and data).

In Figure 4.2, we provide joint predictions for D and B mesonRAA (left panel) and v2 (right panel)
predictions for both 5.02 TeV Pb + Pb and 5.44 TeV Xe + Xe collisions at the LHC. Predictions
are compared with the available experimental data. For D mesons, we again observe good joint
agreement with the available RAA and v2 data. For B mesons (where the experimental data are yet to
become available), we predict notably large suppression (see also [49, 154]), which is consistent with
non-prompt J/Ψ RAA measurements [155] (indirect probe od b quark suppression). Additionally,
we predict non-zero v2 for higher centrality regions. This does not necessarily mean that heavy B
meson flows, since we here show predictions for high p⊥, and flow is inherently connected with low
p⊥ v2. On the other hand, high p⊥ v2 is connected with the difference in the B meson suppression for
different (in-plane and out-of-plane) directions, leading to our predictions of non zero v2 for high p⊥ B
mesons. Additionally, by comparing D and B meson v2s in Fig. 4.2, we observe that their difference
is large and that it qualitatively exhibits the same dependence on p⊥ as RAA. This v2 comparison
therefore presents additional important prediction of the heavy flavor dead-cone effect in QGP, where
a strikingly similar signature of this effect is observed for RAA and v2.

The predicted similarity between RAA and v2 dead-cone effects can be analytically understood by
using simple scaling arguments. Fractional energy loss can be estimated as [75]:

∆E/E ∼ ηT aLb, (4.7)

where a, b are proportionality factors, T and L are, respectively, the average temperature of the

31

4. DREENA-B framework

medium and the average path-length traversed by the jet. η is a proportionality factor that depends on
initial jet mass M and transverse momentum p⊥.

Under the assumption of small fractional energy loss, we can make the following estimate [75]:

RAA ≈ 1− ξ(M, p⊥)T
aLb,

v2 ≈ ξ(M, p⊥)
(T aLb−1∆L− T a−1Lb∆T)

2
, (4.8)

where ∆L and ∆T are, respectively, changes in average path-lengths and average temperatures along
out-of-plane and in-plane directions. ξ = (n−2)η/2, where n is the steepness of the initial momentum
distribution function.

The difference between RAA and v2 for D and B mesons then becomes:

RB
AA −RD

AA ≈ (ξ(Mc, p⊥)− ξ(Mb, p⊥))T
aLb,

vD2 − vB2 ≈ (ξ(Mc, p⊥)− ξ(Mb, p⊥))
(T aLb−1∆L− T a−1Lb∆T)

2
, (4.9)

where Mc and Mb are charm and bottom quark masses respectively. From Eq. 4.9, we see the same
mass dependent prefactor for both RAA and v2 comparison, intuitively explaining our predicted dead-
cone effect similarity for high-p⊥ RAA and v2.

4.3 Summary

Overall, we see that comprehensive joint RAA and v2 predictions, obtained with our DREENA-B
framework, lead to a good agreement with all available light and heavy flavor data. This is, to our
knowledge, the first study to provide such comprehensive predictions for high p⊥ observables. In
the context of v2 puzzle, this study presents a significant development, as the other models were not
able to achieve this agreement without introducing new phenomena [156, 157]. However, for more
definite conclusions, the inclusion of more complex QGP evolution within DREENA framework is
needed, which is highly non-trivial task, due to the complexity of underlying energy loss formalism.

As an outlook, for Xe + Xe, we also showed an extensive set of predictions for both RAA and
v2, for different flavors and centralities, to be compared with the upcoming experimental data. Rea-
sonable agreement with these data would present a strong argument that the dynamical energy loss
formalism can provide a reliable tool for precision QGP tomography. Moreover, such comparison
between predictions and experimental data can also confirm interesting new patterns in suppression
data, such as our prediction of strikingly similar signature of the dead-cone effect between RAA and
v2 data.

32

4.3. Summary

Figure 4.1: First column: RAA vs. p⊥ predictions are compared with 5.02 TeV Pb+PbALICE [104],
ATLAS [119] and CMS [105] h± experimental data. Second column: v2 vs. p⊥ predictions are
compared with 5.02 TeV Pb + Pb ALICE [125], ATLAS [126] and CMS [127] data. Third column:
RAA vs. p⊥ predictions are compared with 5.44 TeV Xe + Xe ALICE [151], ATLAS [152] and
CMS [153] preliminary data. Fourth column: v2 vs. p⊥ predictions are shown for 5.44 TeV Xe+Xe
collisions. Rows 1-7 correspond to 0−5%, 5−10%, 10−20%,..., 50−60% centrality regions. ALICE,
ATLAS and CMS data are respectively represented by red circles, green triangles and blue squares.
Full and dashed curves correspond, respectively, to the predictions obtained with DREENA-B and
DREENA-C frameworks. In each panel, the upper (lower) boundary of each gray band corresponds
to µM/µE = 0.6 (µM/µE = 0.4). Figure adapted from [2].

33

4. DREENA-B framework

Figure 4.2: First column: Theoretical predictions for D and B meson RAA vs. p⊥ are compared
with the available 5.02 TeV Pb + Pb ALICE [120] (red circles) D meson experimental data. Second
column: v2 vs. p⊥ predictions are compared with 5.02 TeV Pb + Pb ALICE [130] (red circles) and
CMS [129] (blue squares) D meson experimental data. Third and fourth column: Heavy flavor RAA

and v2 vs. p⊥ predictions are, respectively, provided for 5.44 TeVXe+Xe collisions at the LHC. First
to third row, respectively, correspond to 0−10%, 10−30% and 30−50% centrality regions. On each
panel, the upper (lower) boundary of each gray band corresponds to µM/µE = 0.6 (µM/µE = 0.4).
Figure adapted from [2].

34

Chapter 5

Exploring the initial stages in heavy-ion
collisions

It is by now firmly confirmed that a new state of matter − the quark-gluon plasma (QGP) [76, 114], in
which quarks, antiquarks and gluons are deconfined, is formed at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC). Rare high transverse momentum (high-p⊥) particles,
which are created immediately upon the collision, are sensitive to all stages of QGP evolution, and are
considered to be excellent probes [77, 115, 116, 117, 118] of this extreme form of matter. As these
probes traverse QGP, they lose energy, which is commonly assessed through high-p⊥ angular averaged
(RAA) [104, 105, 119, 120, 158, 159, 122, 123, 124] and high-p⊥ angular differential (v2) [125, 127,
126, 130, 129] nuclear modification factors.

Commonly, the high-p⊥ particles are used to study the nature of jet-medium interactions, while
the low-p⊥ particles are used to infer the bulk QGP properties. Accordingly, the scarce knowledge
of the features of initial stages before QGP thermalization (τ < τ0) was mostly inferred by utilizing
data from low-p⊥ sector [160, 161, 162] (p⊥ ≲ 5 GeV). However, since high-p⊥ partons effectively
probe QGP properties, which in turn depend on initial stages, the idea of utilizing high-p⊥ theory and
data in exploring the initial stages emerged. This idea acquired an additional boost, since a wealth
of precision high-p⊥ RAA [104, 105, 119, 120, 158, 159] and v2 [125, 127, 126, 130, 129] data have
recently became available. Thus, the main goal of this paper is to assess to what extent and through
what observables, the initial stages of QGP evolution can be restrained by exploiting the energy loss
of high-p⊥ particles in evolving medium.

While clarifying these issues is clearly intriguing, the results of current theoretical studies on this
subject are either inconclusive or questionable [113, 163, 106], as e.g., the energy loss parameters are
fitted to reproduce the experimentally observed high-p⊥ RAA data, individually for different analyzed
initial stages. The energy loss parametrization should, however, clearly be a property of high-p⊥
parton interactions with the medium, rather than of individual temperature profiles. Consequently, to
more rigorously study this issue, one needs a high control on both the energy loss and the analyzed
temperature (T) profiles. To achieve this, we here use our state-of-the-art dynamical energy loss
formalism, embedded in Bjorken 1D medium evolution [138] (DREENA-B framework from Section
4). Bjorken 1D medium evolution has a major advantage for this study, as it allows to analytically
introduce different evolutions before thermalization, with the same evolution after thermalization,
which therefore allows to clearly isolate only the effects of different initial stages. Consequently,
we will here consider the effects on high-p⊥ RAA and v2 predictions of four common initial-stage

35

5. Exploring the initial stages in heavy-ion collisions

cases [106], which have the same T profiles after, but differ in T profiles before the thermalization.

Furthermore, we demonstrated that DREENA-B framework (see Section 4) is able to accurately
reproduce both high-p⊥ RAA and v2 data for diverse colliding systems and energies (Pb+ Pb at 2.76
TeV and 5.02 TeV and Xe + Xe at 5.44 TeV), for both light and heavy flavors (h±, B, D) and all
available centralities, without introducing new phenomena [156, 157, 164]. This is in distinction to
many other formalisms, which employ more advanced medium evolution models, but contain sim-
plified energy loss models, which have a tendency to underestimate v2 relative to the experimental
data, which is widely known as the v2 puzzle [135, 165]. Moreover, we obtained that going from
1D Bjorken to full 3+1D hydrodynamics evolution (see Section 6), does not significantly change the
agreement between our predictions and experimental data, strongly suggesting that, for high-p⊥ data,
accurate energy loss description is more important than the medium evolution. Consequently, for
this study, using 1D Bjorken evolution has a major advantage of a tight control over the temperature
profiles used to mimic different initial states, while, at the same time, providing a reasonably realistic
description of the data within our model.

The chapter is organized as follows. In Section 5.1, theoretical and computational frameworks are
outlined. In Section 5.2, we first assess the sensitivity of RAA and v2 to the aforementioned initial
stages. We then adopt the approach of fitting initial temperature (T0) to reproduce the same RAA

in all cases, and then assess the effect of thus obtained "modified" temperature profiles on RAA and
v2. We finally reexamine the validity of widely-used procedure [113, 163, 106] of fitting the energy
loss parameters for different initial-stage cases to reproduce the same RAA. For all these studies, we
analytically pinpoint the origin of the obtained results. Our conclusions are presented in Section 5.3.

5.1 Theoretical and computational frameworks

To obtain the medium modified distribution of high-p⊥ light and heavy flavor particles, the generic
pQCD convolution formula [49, 141] is utilized:

Efd
3σ

dp3f
=
Eid

3σ(Q)

dp3i
⊗ P (Ei → Ef) ⊗D(Q→ HQ), (5.1)

where indexes f and i refer to the final hadron (HQ) and initial parton (Q), respectively. Eid
3σ(Q)

dp3i
denotes the parton initial momentum distribution, calculated according to [97, 98]. P (Ei → Ef)
presents the energy loss probability based on our dynamical energy loss formalism (see below).
D(Q → HQ) stands for fragmentation function of parton into the hadron (HQ), where for the light
hadrons, D and B mesons we apply DSS [100], BCFY [101, 139] and KLP [140] fragmentation func-
tions, respectively.

The dynamical energy loss formalism [58, 64, 59] includes several unique features in model-
ing jet-medium interactions: i) The finite size QCD medium consisting of dynamical (moving) as
opposed to static scattering centers, which allows the longitudinal momentum exchange with the
medium constituents. ii) The calculations within the finite temperature generalized Hard-Thermal-
Loop approach [62], so that infrared divergences are naturally regulated in a highly non-trivial man-
ner, contrary to many models which apply tree-level (vacuum-like) propagators [43, 166, 60, 50, 61].
iii) Both radiative [58, 64] and collisional [59] contributions are calculated within the same theoret-
ical framework. iv) The generalization to a finite magnetic mass [66], running coupling [49] and
beyond the soft-gluon approximation [67] is performed. In this chapter for magnetic to electric mass
ratio we assume value µM/µE = 0.5, since various non-perturbative [73, 74] approaches reported
it to be in the range 0.4 − 0.6. v) The energy loss probability comprises also multigluon [54] and

36

5.1. Theoretical and computational frameworks

path-length [141] fluctuations. The path-length fluctuations are calculated according to the procedure
presented in [99], and are provided in Ref. [75].

As outlined in Section 4, the analytical expression for single gluon radiation spectrum, in evolving
medium, reads:

dNrad

dxdτ
=
C2(G)CR

π

1

x

∫
d2q

π

d2k

π

µ2
E(T)− µ2

M(T)

[q2 + µ2
E(T)][q

2 + µ2
M(T)]

Tαs(ET)αs

(k2 + χ(T)

x

)
×
[
1− cos

((k+ q)2 + χ(T)

xE+
τ
)] 2(k+ q)

(k+ q)2 + χ(T)

[k+ q

(k+ q)2 + χ(T)
− k

k2 + χ(T)

]
,

(5.2)

where k and q denote transverse momenta of radiated and exchanged gluons, respectively, C2(G) =
3, CR = 4/3 (CR = 3) for quark (gluon) jet, while µE(T) and µM(T) are electric (Debye) and
magnetic screening masses, respectively. Temperature dependent Debye mass [145] is obtained by
self-consistently solving Eq. (5) from Ref. [2]. αs is the (temperature dependent) running cou-
pling [167], E is the initial jet energy, while χ(T) = M2x2 + m2

g(T), where x is the longitudi-
nal momentum fraction of the jet carried away by the emitted gluon, M is the mass of the quark
(Mu,d,s ≈ µE(T)/

√
6 i.e., the thermal mass, whereas Mc = 1.2 GeV and Mb = 4.75 GeV) or gluon

jet and mg(T) = µE(T)/
√
2 [65] is the effective gluon mass in finite temperature QCD medium.

Note that for all parameters we use standard literature values, i.e., we do not include additional fitting
parameters when comparing our predictions with experimental data.

The analytical expression for the collisional energy loss per unit length in the evolving medium is
given by [59]:

dEcoll

dτ
=

2CR

πv2
αs(ET)αs(µ

2
E(T))

∫ ∞

0

neq(|k⃗|, T)d|k⃗|

×
[∫ |k⃗|/(1+v)

0

d|q⃗|
∫ v|q⃗|

−v|q⃗|
ωdω +

∫ |q⃗|max

|k⃗|/(1+v)

d|q⃗|
∫ v|q⃗|

|q⃗|−2|k⃗|
ωdω

]
×
[
|∆L(q, T)|2

(2|k⃗|+ ω)2 − |q⃗|2

2
+ ∆T (q, T)|2

(|q⃗|2 − ω2)((2|k⃗|+ ω)2 + |q⃗|2)
4|q⃗|4

(v2|q⃗|2 − ω2)
]
,

(5.3)

where neq(|k⃗|, T) = N

e|k⃗|/T−1
+

Nf

e|k⃗|/T+1
is the equilibrium momentum distribution [69] comprising

gluons, quarks and antiquarks (N = 3 andNf = 3 are the number of colors and flavors, respectively).
k is the 4-momentum of the incoming medium parton, v is velocity of the initial jet and q = (ω, q⃗) is
the 4-momentum of the exchanged gluon. |q⃗|max is provided in Ref. [59], while ∆T (T) and ∆L(T)
are effective transverse and longitudinal gluon propagators given by Eqs. (3) and (4) in Ref. [2].

One of the assets of our energy loss formalism is the fact that energy loss explicitly depends on
T , which makes it naturally suited for examining the QGP properties via implementation of various
temperature profiles. In this paper, the temperature dependence on proper time (τ) is taken according
to the ideal hydrodynamical 1D Bjorken expansion [138] T (τ) ∼ 3

√
(τ0/τ), with thermalization time

τ0 = 0.6 fm [146, 147]. The initial QGP temperature T0 for the chosen centrality bin is not a free
parameter, i.e., it is constrained starting from the ALICE effective temperature [150] and following the
numerical procedure outlined in Ref. [148]. In this paper, we will concentrate on mid central 30−40%
centrality region at 5.02 TeV Pb + Pb at the LHC, which corresponds to T0 = 391 MeV [2]. We
however performed the extensive study on all centrality regions (as in Section 4), and checked that
the results/conclusions obtained here are the same irrespectively of the centrality region. The QGP
transition temperature is considered to be TC ≈ 160MeV [149].

DREENA-B framework is applied for generating predictions for two main high-p⊥ observables
− RAA and v2. The angular averaged nuclear modification factor RAA is defined as the ratio of the

37

5. Exploring the initial stages in heavy-ion collisions

quenched A+ A spectrum to the p+ p spectrum, scaled by the number of binary collisions Nbin:

RAA(pT) =
dNAA/dpT

NbindNpp/dpT
, (5.4)

while for intuitive understanding of the underlying effects we also use [75]:

RAA ≈ Rin
AA +Rout

AA

2
, (5.5)

where Rin
AA and Rout

AA denote in-plane and out-of-plane nuclear modification factors, respectively. The
expression for the high-p⊥ elliptic flow is derived in [106] (see also [75, 168, 91]), under the assump-
tion of negligible higher harmonics at high-p⊥ ≳ 10 GeV, leading to:

v2 ≈
1

2

Rin
AA −Rout

AA

Rin
AA +Rout

AA

. (5.6)

The advantage of using Eq. 5.6 for high-p⊥ predictions is that it is computationally significantly
less demanding than the commonly used v2 expression (see, e.g., Eq. (1) from [125]). However,
to explicitly verify its applicability, we checked that, for average temperature profiles, Eq. 5.6 will
lead to the same result (up to less than 1% difference) as the commonly used azimuthally dependent
expression. We also note that the approach to experimentally infer v2 (see, e.g., Eq. (16) in [125])
is different from the abovementioned theoretical approaches. However, that approach could lead to
different v2 predictions only if event-by-event fluctuations are considered (which we do not do in this
study). We also note that the importance of event-by-event fluctuations in adequately addressing high-
p⊥ v2 is currently an open question; i.e., in [135], it was proposed that event-by-event fluctuations may
increase the high-p⊥ v2, while this was not supported by two subsequent independent studies [157,
164, 169].

5.2 Results and discussion

In the first part of this section we address how different initial stages (before the thermalization time
τ0) affect our predictions of high-p⊥ RAA and v2. To this end, we consider the following four common
cases of initial stages [106], which assume the same 1D Bjorken hydro temperature (T) profile [138]
upon thermalization (for τ ≥ τ0), but have different T profiles before the thermalization (for τ < τ0):

a T = 0, the so-called free-streaming case, which corresponds to neglecting interactions (i.e.,
energy loss) before the QGP thermalization.

b The linear case, corresponding to linearly increasing T with time from transition temperature
(TC = 160 MeV at τC = 0.25 fm) to the initial temperature T0.

c The constant case T = T0, and

d The divergent case, corresponding to 1D Bjorken expansion from τ = 0.

These initial stages are depicted in Fig. 5.1, and it is clear that (a)-(d) case ordering corresponds to
gradually increasing pre-thermal interactions. Note that we use this classification (a)-(d) consistently
throughout the chapter to denote initial stages (for τ < τ0), as well as for the entire evolution. Also,
note that in this part of the study, we will include experimental data for comparison with our predic-
tions. However, to allow better visualization of our obtained numerical results, in the other two parts

38

5.2. Results and discussion

τ0

T0

τ

T (a)

τC τ0

TC

T0

τ

T (b)

τ0

T0

τ

T (c)

τ0

T0

τ

T (d)

Figure 5.1: Four temperature evolution profiles, which differ at the initial stages. At τ ≥ τ0, all
profiles assume the same temperature dependence on the proper time (1D Bjorken [138]). At the
initial stage, i.e., for 0 < τ < τ0, the temperature is considered to be: (a) equal to zero; (b) increasing
linearly from TC to T0 between τC and τ0, otherwise zero; (c) constant and equal to T0; and (d) a
continuous function of τ matching the dependence for τ ≥ τ0. Note that, in each panel, T0 has the
same value at τ0. Figure adapted from [3].

of the study we will omit the comparison with the data, as the error bars are large and the data remain
the same.

Intuitively, one would expect that introducing these pre-thermal interactions would increase the
energy loss compared to the commonly considered free-streaming case, and consequently lead to
smaller RAA. In Fig. 5.2 we indeed observe that RAA is sensitive to the initial stages. That is, as
expected, we see that the suppression progressively increases from case (a) to case (d). However,
these differences are not very large, and the current errorbars at the LHC do not allow distinguishing
between these scenarios, as can be seen in Fig. 5.2 (left).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

p⊥(GeV)

R
A
A

h±

0 20 40 60 80 100

p⊥(GeV)

D

0 20 40 60 80 100

p⊥(GeV)

B

30-40%

Figure 5.2: RAA dependence on p⊥ for four different initial stages depicted in Fig. 5.1 is shown for
charged hadrons (left panel), D mesons (central panel) and B mesons (right panel). For charged
hadrons, the predictions are compared with 5.02 TeV Pb + Pb ALICE [104] (red circles), AT-
LAS [119] (green triangles) and CMS [105] (blue squares) h± RAA experimental data. In each panel,
temperature profile from Fig. 5.1 are presented by full red curve (case (a)), by dashed blue curve
(case (b)), by dot-dashed orange curve (case (c)) and by dotted green curve (case (d)). The results
correspond to the centrality bin 30− 40%, and µM/µE = 0.5. Figure adapted from [3].

In contrast to RAA, the effect of initial stages on v2 is intuitively less clear, as this observable
non-trivially depends on the energy loss or RAAs (see Eq. 5.6). From Fig. 5.3, we surprisingly infer
that v2 is insensitive to the presumed initial stage for all types of particles (in distinction to the results
obtained in [113]), so that v2 is unable to distinguish between different initial-stage scenarios.

To quantitatively understand this unexpected observation, in Fig. 5.4 we show transverse momen-
tum dependence of Rin

AA, Rout
AA and RAA in i = b, c, d cases relative to the baseline case (a) for charged

hadrons. The conclusions for heavy particles are the same and therefore omitted. We distinguish three

39

5. Exploring the initial stages in heavy-ion collisions

0 20 40 60 80 100
0

0.04

0.08

0.12

p⊥(GeV)

v
2

h±

0 20 40 60 80 100
0

0.04

0.08

p⊥(GeV)

D

0 20 40 60 80 100
0

0.02

0.04

p⊥(GeV)

B

30-40%

Figure 5.3: v2 dependence on p⊥ for four different initial stages depicted in Fig. 5.1. Left, central
and right panels correspond to charged hadrons, D mesons and B mesons, respectively. For charged
hadrons, the predictions are compared with 30-40% centrality 5.02 TeV Pb + Pb ALICE [125] (red
circles), ATLAS [126] (green triangles) and CMS [127] (blue squares) h± v2 experimental data. The
labeling and remaining parameters are the same as in Fig. 5.2. Figure adapted from [3].

sets of curves, which corresponds to the ratio of RAAs in linear (b), constant (c), and divergent (d)
cases relative to free-streaming (a) case. Note that the free-streaming case is used as a baseline, as it
corresponds to the most commonly used scenario, both in low and high-p⊥ calculations.

RAA

RAA
in

RAA
out

0 20 40 60 80 100

0.6

0.8

1.0

p⊥(GeV)

R
A
A
,i
/R
A
A
,a

h± I

II

III

Figure 5.4: Transverse momentum dependence of in-plane (dashed), out-of plane (dot-dashed) and
angular averaged (full curves) RAA relative to the free-streaming case for charged hadrons. Blue
(upper), orange (middle) and green (lower) set of curves correspond, respectively, to (b), (c) and (d)
cases. The remaining parameters are the same as in Fig. 5.2. Figure adapted from [3].

Each set of curves in Fig. 5.4 contains three lines, representing proportionality functions γ(p⊥)s,
which are defined as follows:

γinia =
Rin

AA,i

Rin
AA,a

, γoutia =
Rout

AA,i

Rout
AA,a

, γia =
RAA,i

RAA,a

, (5.7)

where i = b, c, d denotes the corresponding cases from Fig. 5.1. From Fig. 5.4 we see that for the
same i (i.e., within the same set of curves (b), (c) or (d)) the proportionality functions γia(p⊥) are
practically identical for the relations involving in-plane, out-of-plane and angular averaged RAAs:

γinia ≈ γoutia ≈ γia. (5.8)

40

5.2. Results and discussion

Note also that γia < 1, while γias from distinct sets significantly differ from one another (i.e., for
i ̸= j → γia(p⊥) ̸= γja(p⊥)).

Consequently, by implementing Eq. (5.7) in Eq. 5.6 and acknowledging Eq. 5.8, we obtain:

v2,i ≈
1

2

γia(R
in
AA,a −Rout

AA,a)

γia(Rin
AA,a +Rout

AA,a)
= v2,a, (5.9)

for any choice of i = b, c, d, as observed in 5.3. Therefore, we here showed that initial stages alone
do not affect v2, i.e., they affect only RAA. RAA susceptibility to the initial stages is in a qualitative
agreement with papers [93, 94, 95, 2], where RAA is shown to be only sensitive to the averaged
properties of the evolving medium, i.e., average temperature (T). Since RAA is proportional to the T ,
and since for all four initial-stage cases (a)-(d) the T is different (T a < T b < T c < T d), it is evident
that RAA will be different in these cases.

The fact that RAA depends on the average temperature of the medium, motivate us to further
explore the case in which we modify the above temperature profiles to reproduce the same aver-
age temperature. This is equivalent to re-evaluating the initial temperatures for different cases from
Fig. 5.1, and based on the reasoning above, it is evident that new initial temperatures should satisfy
the following ordering: T0,d′ < T0,c′ < T0,b′ < T0,a′ . This leads to T profiles, which do not differ
only at early times (τ < τ0), but represent different evolutions altogether. These new evolutions, that
are illustrated in Fig. 5.5 (which is a counterpart of Fig. 5.1 for the second part of this section), are
denoted as (a’)-(d’) and referred to as "modified" T profiles ((a)≡ (a’)).

τC
, τ0

TC

T0

τ

T
Lin L Lout

Figure 5.5: Temperature dependence on the proper time in the setup with the same average tempera-
tures. The labeling is the same as in Fig. 5.1, apart from the fact that initial temperatures (T0’s) now
differ in these four cases. As in Fig. 5.1, TC = 160 MeV, τ0 = 0.6 fm and τ ′C = 0.27 fm. Vertical gray
dashed lines correspond to average in-medium path length (L), and to the path lengths along in-plane
(Lin) and out-of-plane (Lout) directions, as labeled in the figure. Figure adapted from [3].

In this second T -profiles setup, we first verify from Fig. 5.6 that RAAs in all four cases practically
overlap, as expected. We next address how these modified evolution cases (a′) − (d′) affect v2.
From Fig. 5.7 we see that v2 is now very sensitive to the transition from free-streaming case to other
modified T profiles. More accurately, for all types of particles, the lowest v2 is observed in modified
divergent case, while the highest v2 is observed in the free-streaming case.

The observation from Fig. 5.7 leads to the following two questions: i) Why is v2 altered by these
modified T profiles (a′) − (d′)? and ii) Are these discrepancies a consequence of different initial
stages? The answer to these questions, we first note that, within this setup, the differences between
v2 (observed in Fig. 5.7) are proportional to Rin

AA − Rout
AA, as the denominator in Eq. 5.6 (as a starting

premise) remains practically unchanged (see Fig. 5.6). The transverse momentum dependence of

41

5. Exploring the initial stages in heavy-ion collisions

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

p⊥(GeV)

R
A
A

h±

0 20 40 60 80 100

p⊥(GeV)

D

0 20 40 60 80 100

p⊥(GeV)

B

30-40%

Figure 5.6: RAA dependence on p⊥ for four different medium evolutions depicted in Fig. 5.5. Left,
central and right panels correspond to charged hadrons, D mesons and B mesons, respectively. In
each panel, T profile corresponding to the case: (a’) from Fig. 5.5 is presented by full red curve, (b’)
dashed blue curve, (c’) dot-dashed orange curve and (d’) dotted green curve. The results correspond
to the centrality bin 30− 40%, and µM/µE = 0.5. Figure adapted from [3].

0 20 40 60 80 100
0

4

8

12

p⊥(GeV)

v
2

h±
10-2

0 20 40 60 80 100
0

4

8

p⊥(GeV)

D

0 20 40 60 80 100
0

2

4

p⊥(GeV)

B

30-40%

Figure 5.7: v2 dependence on p⊥ for four different medium evolutions depicted in Fig. 5.5. Left,
central and right panels correspond to charged hadrons, D mesons and B mesons, respectively. The
labeling and remaining parameters are the same as in Fig 5.6. Figure adapted from [3].

Rin
AA −Rout

AA is further shown in Fig. 5.8 for charged hadrons (as results for D and B mesons will lead
to the same conclusion). We see a clear hierarchy, i.e., the largest Rin

AA − Rout
AA for free-streaming,

descending towards divergent case. To quantitatively understand this observation, we note that for
Rin

AA, the high-p⊥ probes traverse, on the average, the medium up to Lin, while for Rout
AA, the medium

is traversed up to Lout. Consequently, if we refer to Fig. 5.5, Rin
AA − Rout

AA comes from T -profile
difference in the time region between Lin and Lout, i.e., upon thermalization. Since in this region
T d′ < T c′ < T b′ < T a′ holds, Rin

AA − Rout
AA is the largest for free-streaming case and the smallest

for the divergent case, as observed in Fig. 5.8, and in agreement with v2 ordering in Fig. 5.7. This
therefore provides clarification of why Rin

AA − Rout
AA, and consequently v2, is affected by these four

different QGP evolution profiles, and that this difference originates primarily from the interactions
of high-p⊥ parton with thermalized QGP, and not the initial stages. This agrees with the first part
of this section (Figs. 5.2 and 5.3), where we showed and explained insensitivity of v2 to different
initial stages. It is worth emphasizing that, contrary to the first part of this section, in the second
part we tested the effects on RAA and v2 not from distinctive initial stages, but instead from four
entirely different evolutions of the QCD medium (related by the same global property, i.e., average
temperature).

42

5.2. Results and discussion

0 20 40 60 80 100
0

0.05

0.10

0.15

0.20

p⊥(GeV)

R
A

A

in
-
R

A
A

o
u
t

h±

Figure 5.8: Rin
AA − Rout

AA dependence on p⊥ for charged hadrons. The labeling and remaining param-
eters are the same as in Fig. 5.6. Figure adapted from [3].

In the final, third, part of this section we adopt a commonly used approach, in which the energy
loss is fitted through change of multiplicative fitting factor in the energy loss, to reproduce the desired
high-p⊥ RAA, e.g., the one that best fits the experimental data (see e.g., [113, 91, 135, 92, 89, 170]).
To this end, we use the same four T -profiles from the first part of this section (Fig. 5.1), while, in our
full-fledged calculations (see Sec. 5.1) we introduce an additional multiplicative fitting factor (free
parameter) Cfit

i , i = b, c, d. Cfit
i is then estimated for each initial-stage case as a best fit to the free-

streamingRAA (see Table 5.1). Thus obtainedRAAs are shown in the left panel of Fig. 5.9 only for the
representative case of h±, as the same conclusions stand for both light and heavy flavor hadrons. From
the left panel of this figure we observe practically overlappingRAAs in all (a)-(d) cases, as anticipated,
which is obtained by decreasing Cfit

i consistently from the free-streaming to the divergent case (each
Cfit

i ≤ 1) in order to compensate for the higher energy losses in the corresponding cases compared
to the case (a).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1.0

p⊥(GeV)

R
A
A

0 20 40 60 80 100
0

4

8

12

p⊥(GeV)

v
2

h±
10-2

Figure 5.9: RAA (left panel) and v2 (right panel) dependence on p⊥ for charged hadrons, when ad-
ditional energy loss multiplicative factor is introduced to reproduce the free-streaming RAA, in four
different initial-stage cases depicted in Fig. 5.1. The labeling and remaining parameters are the same
as in Figs. 5.2 and 5.3. Figure adapted from [3].

The effect of different T -profiles from Fig. 5.1 after introduction of multiplicative fitting factor
Cfit

i in full-fledged numerical procedure on v2 is depicted on the right panel of Fig. 5.9, where we see
that elliptic flow in (a)-(d) cases notably differs, i.e., is the highest in the free-streaming case, while

43

5. Exploring the initial stages in heavy-ion collisions

T profile case Cfit
i

Free-streaming case (a) 1
Linear case (b) 0.87

Constant case (c) 0.74
Divergent case (d) 0.67

Table 5.1: Fitting factors values. Table adapted from [3].

the lowest in the divergent case. Based on this observation, one could naively infer that initial stages,
i.e., τ < τ0 region (the only region in which T profiles differ), have a significant effect on v2, as
recently observed by alternative approach [113].

However, this kind of reasoning is inconsistent with our analysis outlined in the first two parts of
this section, as well as with intuitive expectation that introduction of the energy loss at the initial stage
affects RAA. To quantitatively understand this result, we introduce asymptotic scaling behavior [75,
2, 1]. That is, for higher p⊥ of the initial jet, and for higher centralities (where fractional energy loss
is expected to be small), we can make the following estimates:

∆E/E ≈ χT
m
L
n
, RAA ≈ 1− l − 2

2

∆E

E
= 1− ξT

m
L
n
, (5.10)

wherem,n are proportionality factors, T is the average temperature of the QGP,L denotes the average
path length traversed by the jet, χ is a proportionality factor (that depends on p⊥ and flavor of the jet).
ξ = l−2

2
χ, where l is the steepness of a power law fit to the transverse momentum distribution.

If ∆E/E is fitted by additional multiplicative factor C, the new Rfit
AA becomes:

Rfit
AA,i ≈ 1− CiξT

m

i L
n

i ≈ 1− Ci(1−RAA,i), (5.11)

where i = b, c, d and Ci (Ci < 1,∀i) denotes the fitting factor, and the last part of Eq. (5.11) is
obtained by using Eq. (5.10), leading to:

Ci ≈
1−Rfit

AA,i

1−RAA,i

. (5.12)

We note that Eq. (5.12) is applicable to the average, in-plane and out-of-plane RAAs, since the same
fitting factor is consistently applied in all three cases. By imposing the condition (which quantifies
the equivalence of fitted RAA in (b)-(d) cases to the free-streaming case):

Rfit
AA,i = RAA,a, (5.13)

and by applying Eqs. (5.5)-(5.8) and (5.13), together with Eqs. (5.10, 5.11) and their in-plane and
out-of-plane analogons, we obtain:

vfit2,i ≈ 1

2

Ci(R
in
AA,i −Rout

AA,i)

2RAA,a

=
1

2

Ciγi(R
in
AA,a −Rout

AA,a)

Rin
AA,a +Rout

AA,a

= Ciγiav2,a, (5.14)

which can also be written as:

Ci ≈
vfit2,i

γiav2,a
. (5.15)

From Eq. (5.14), we see that decrease of vfit2 in (b)-(d) cases compared to (a) is a result of a
fitting factor Ci(p⊥) (which is smaller than 1), as well as the proportionality functions γi(p⊥) (also

44

5.3. Conclusion

smaller than 1). However, note that Eq. (5.14) describes asymptotic behavior at very high p⊥, where,
as mentioned earlier, γs approach 1. Consequently, the diminishing of elliptic flow compared to the
case (a) is predominantly due to a decrease of the artificially imposed fitting factor C. Therefore, we
obtain that, contrary to [113], initial stages are not mainly responsible for the obtained differences
(the right panel of Fig. 5.9) in the vfit2 curves for different T profiles. Moreover, this argument, as
well as the obtained inconsistency of the results in this and the first two parts of the paper, implies that
application of multiple fitting procedure for each different initial stage may result in incorrect energy
loss estimates and in misinterpreting the underlying physics.

To asses if this qualitative conclusion indeed holds, i.e. that v2 succesibility observed in Fig. 5.9
(as well as in [113]) is indeed a consequence of a fitting factor in the energy loss, in Fig. 5.10 we
check the consistency of Eqs. (5.12) and (5.15) with the full-fledged numerical calculations. That is,
a non-trivial consequence of Eqs. (5.12) and (5.15), is that Ci factors for the average, in-plane and
out-of-plane RAAs (Eq. 5.12) and v2 (Eq. 5.15), should be the same in high-p⊥ limit, and moreover
overlap with Cfit

i in this limit. To this end, we define the following C factors (originating from
Eqs. (5.12, 5.15)):

Cin
i =

1−Rin,fit
AA,i

1−Rin
AA,i

,

Cout
i =

1−Rout,fit
AA,i

1−Rout
AA,i

,

Cav
i =

1−Rfit
AA,i

1−RAA,i

,

Cv2
i =

1

γia

vfit2,i

v2,a
,

(5.16)

and compare them with Cfit
i , for each separate initial-stages case, i = b, c, d. Note that, while ex-

pression themselves on the right-hand side of each expression in Eq. (5.16) are obtained in high-p⊥
limit (and consequently are expected to overlap in this limit, if our analytical estimate is valid), we
calculate Cfit

i , and the terms on the the right-hand side of each expression in Eq. (5.16), through
full-fledged numerical procedure. We indeed observe that, for each i and at high-p⊥: Cin

i , Cout
i , Cav

i

and Cv2
i factors are practically overlapping, and approach the value Cfit

i . Consequently, this highly
non-trivial observation confirms that our qualitative conclusion is valid, and that v2 susceptibility in
this case is indeed a consequence of an additionally introduced fitting factor.

5.3 Conclusion

Traditionally, the features of initial stages before QGP thermalization are explored through compar-
ison of bulk medium simulations and low-p⊥ data. On the other hand, recent abundance of high-p⊥
experimental data, motivates exploiting the high-p⊥ energy loss in studying the initial stages. We
here utilized state-of-the-art dynamical energy loss embedded in analytical 1D Bjorken medium ex-
pansion (DREENA-B framework), which allowed to tightly control the analyzed temperature profiles.
In particular, we considered four temperature profiles, which are identical after, but are different be-
fore, thermalization, which correspond to four commonly considered initial-stage cases. This allowed
to study the effects of different initial-stage cases on high-p⊥ RAA and v2 predictions, under highly
controlled conditions, by combining full-fledged numerical results and analytical estimates used to
interpret the experimental results.

45

5. Exploring the initial stages in heavy-ion collisions

0 20 40 60 80 100

0.6

0.8

1.0

1.2

p⊥(GeV)

F
itt
in
g
fa
ct
or
s

h±

(b)

Cfit

0 20 40 60 80 100

p⊥(GeV)

(c)
Cfit

Cav

Cin

Cout

Cv2

0 20 40 60 80 100

p⊥(GeV)

(d)Cfit

Figure 5.10: Comparison of four fitting factors defined by Eq. 5.16 with Cfit
i value, obtained from

full-fledged numerical procedure, in linear (b) (left), constant (c) (central) and divergent (d) (right
panel) cases. C factors presented by full, long dashed, dot-dashed and dot-dot-dashed curves corre-
spond to h± angular averaged, in-plane, out-of-plane RAA and v2 cases, respectively. The horizontal
gray dashed line presents energy loss fitted value Cfit

i . The results correspond to the centrality bin
30− 40%, and µM/µE = 0.5. Figure adapted from [3].

We found that high-p⊥ RAA is sensitive to the pretermalized stages of the medium evolution,
however, within the current errorbars, the senistivity is not sufficient to distinguish between different
scenarios. On the other hand, the high-p⊥ v2 is unexpectedly insensitive to the initial stages. We
furthermore found that previously reported sensitivity [113] of high-p⊥ v2 to initial stages is mainly
a consequence of the fitting procedure in which the parameters in the energy loss are adjusted to
reproduce experimentally observed RAA, individually for different initial-stage cases. On the other
hand, if the same global property, in particular the same average temperature, is imposed to tested
temperature profiles, high sensitivity of high-p⊥ v2 is again obtained. This sensitivity is, however, a
consequence of differences in final, rather than initial, stages. Overall, our results underscore that the
simultaneous study of high-p⊥ RAA and v2, with consistent/fixed energy loss parameters across the
entire study and controlled temperature profiles (reflecting only the differences in the initial stages),
is crucial to impose accurate constraints on the initial stages.

46

Chapter 6

DREENA-A framework as a QGP
tomography tool

QCD predicted that a new form of matter [76, 114]— consisting of quarks, antiquarks, and gluons
that are no longer confined—is created at extremely high energy densities. According to the current
cosmology, this new state of matter, called Quark-Gluon Plasma (QGP) [115, 116, 77, 117, 118], ex-
isted immediately after the Big Bang [171]. Today, QGP is created in ’Little Bangs’, when heavy ions
collide at ultra-relativistic energies [77, 117]. Such collisions lead to an expanding fireball of quarks
and gluons, which thermalises to form QGP; the QGP then cools down, and when the temperature
reaches a critical point, quarks and gluons hadronise.

Successful production of this exotic state of matter at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) allowed systematical testing of different models of QGP evolu-
tion against experimental data. Up to now, it has been established that QGP is formed at the LHC and
RHIC experiments through two main lines [77, 117, 172] of evidence: i) by comparison of low mo-
mentum (p⊥) measurements with relativistic hydrodynamic predictions, which implied that created
QGP is consistent with the description of a nearly perfect fluid [146, 173, 174], ii) by comparison of
high-p⊥ data [175, 176, 177, 178, 179] with pQCD predictions, which showed that high-p⊥ partons
(jets) significantly interact with an opaque medium. Beyond this discovery phase, the current chal-
lenge is to investigate the properties of this extreme form of matter.

While high-p⊥ physics had a decisive role in the QGP discovery [77], it was rarely used for
understanding the bulk medium properties. On the other hand, low-p⊥ observables do not provide
stringent constraints to all parameters of the models used to describe the evolution of QGP, and thus
leave some properties of QGP badly constrained [180, 181, 182, 183]. Thus, it is desirable to explore
QGP properties through independent theory and data set. We argue that this is provided by jet energy
loss and high-p⊥ data, complementing the low-p⊥ constraints to QGP.

To use high-p⊥ theory and data as a QGP tomography tool, it is necessary to have a realistic
high-p⊥ parton energy loss model. We use our dynamical energy loss formalism, which has the fol-
lowing properties: i) It is based on finite size, finite temperature field theory [62, 137], and takes into
account that QGP constituents are dynamical (moving) particles. Consequently, all divergences are
naturally regulated in the model. ii) Both collisional [59] and radiative [58, 64] energy losses are
calculated in the same theoretical framework. In radiative energy loss, finite size effects induce a
non-linear path length dependence of the energy loss, recovering both the incoherent Gunion Bertsch

47

6. DREENA-A framework as a QGP tomography tool

and destructive Landau-Pomeanchuk-Migdal limit [58, 64]. For collisional energy loss, we show
that finite size effects can be neglected [59], i.e., path-length dependence is close to linear. iii) It
is applicable to both light and heavy flavors, so it can provide predictions for an extensive set of
probes. iv) Temperature is a natural variable in the framework [184], so that the T profiles resulting
from bulk medium simulations are a direct input in the model. v) The non-perturbative effects re-
lated to screening of the chromo-magnetic and chromo-electric fields are included [66] through the
generalized hard-thermal-loop (HTL) approach. For radiative energy loss, the effective cross-section
is handled through sum-rules [185], which allows consistent inclusion of non-perturbative medium-
related interactions captured by lattice QCD (see [66] for more details). For collisional energy loss,
the correction was done at the leading order through modification of the running coupling, follow-
ing the procedure from [186] (see also [49]). vi) No parameters are adjusted when comparing the
dynamical energy loss predictions with high-p⊥ data [187, 188], i.e., all parameters are fixed to the
standard literature values (specified in Subsection 2.1). The formalism explained a wide range of
high-p⊥ data [49, 133, 102, 134, 103], including puzzling data [103] and generating predictions for
future experiments [102]. This suggests that the model realistically describes high-p⊥ parton-medium
interactions. While other available energy loss models (see e.g. [166, 83, 189, 60, 50, 84, 190]) have
some of the above properties, none have all (or even most of them), making the dynamical energy
loss an advanced framework for QGP tomography. As the temperature is the only input in the energy
loss model, this allows further exploiting different temperature profiles that agree with low-p⊥ data
by testing their agreement with high-p⊥ data. Consequently, a systematic comparison of data and pre-
dictions obtained by the same formalism and parameter set allows constraining the QGP parameters
from both low and high-p⊥ theory and data.

Including full medium evolution in the dynamical energy loss is, however, a highly non-trivial
task, as all the model properties have to be preserved [68], without additional simplifications in the
numerical procedure. Furthermore, to be effectively used as a precision QGP tomography tool, the
framework needs to efficiently (timewise) generate a comprehensive set of light and heavy flavor
suppression predictions through the same numerical framework and the same parameter set. Such
predictions can then be compared with the available experimental data, sometimes even repeatedly
(i.e., iteratively) – for different combinations of QGP medium parameters – to extract medium prop-
erties that are consistent with both low and high-p⊥ data.

To introduce the medium evolution in the dynamical energy loss, we took a step-by-step ap-
proach, allowing us to check the consistency of each consecutive step by comparing its results with
the previous (simpler) framework versions. Consequently, we first developed the DREENA-C frame-
work [75], continuing to DREENA-B (details in Section 4). In this chapter, we present a fully opti-
mised DREENA-A framework, where ’A’ stands for ’adaptive’ (i.e., arbitrary) temperature evolution.
The convergence speed of the developed numerical procedure is analysed, as well as consistency with
other (earlier) versions of the framework, as necessary for the reliable and efficient QGP tomography
tool. Finally, as a utility check of the DREENA-A framework, the sensitivity of high-p⊥ observables
to different temperature profiles is presented.

The link to the software code implementing the DREENA-A framework (with usage instructions
and example data) is provided [191]. Using this software, researchers can generate high-p⊥ predic-
tions for their own (different) models of medium evolution and compare the results with experimental
data.

48

6.1. Methods

6.1 Methods

6.1.1 Theoretical outline

The calculation of the final hadron spectrum includes initial high-p⊥ parton (quark and gluon) distri-
butions from perturbative QCD, energy loss (if the QCD medium is formed), and fragmentation into
hadrons. The cross section for quenched spectra is schematically written as [141, 148]:

Efd
3σq(HQ)

dp3f
=
Eid

3σ(Q)

dp3i
⊗ P (Ei → Ef)⊗D(Q→ HQ), (6.1)

where ⊗ is a generic convolution, and the change in the initial spectra due to energy loss in QGP
is denoted P (Ei → Ef). If the medium is not created, then Eq. (6.1) reduces to cross section for
unquenched spectra:

Efd
3σu(HQ)

dp3f
=
Eid

3σ(Q)

dp3i
⊗D(Q→ HQ) . (6.2)

More specifically, Efd
3σq(HQ)

dp3f
is the final hadron spectrum in the presence of QGP, while Efd

3σu(HQ)

dp3f

is the spectrum in the absence of QGP. ’i’ and ’f ’ correspond to ’initial’ and ’final’, respectively.
Q denotes quarks and gluons, while HQ denotes hadrons. Initial parton spectrum is denoted by
Eid

3σ(Q)/dp3i , and computed at next to leading order [97, 98, 192] for light and heavy partons.
P (Ei → Ef) is the probability for energy transfer, which includes medium induced radiative [58, 64]
and collisional [59] contributions in a finite size dynamical QCD medium with running coupling [49].
Both contributions include multi-gluon fluctuations, introduced according to Refs. [54, 49] for ra-
diative and [142, 141] for collisional energy loss (for more details, see below). Q to hadron HQ

fragmentation is denoted by D(Q → HQ). For charged hadrons we use DSS [100], for D mesons
BCFY [101, 139] and for B mesons KLP [140] fragmentation functions, respectively.

In DREENA-A, the medium temperature needed to calculate P (Ei → Ef) depends on the posi-
tion of the parton according to a temperature profile given as an input. Therefore, the temperature that
the parton experiences along its path, becomes a function of the coordinates of its origin (x0, y0), the
angle of its trajectory ϕ, and the proper time τ :

T (x0, y0, ϕ, τ) = Tprofile(x0 + τ cosϕ, y0 + τ sinϕ, τ), (6.3)

where Tprofile is, in principle, arbitrary. This temperature then appears in the expressions below.

The collisional energy loss is given by the following analytical expression [59]:

dEcoll

dτ
=

2CR

πv2
αs(ET)αs(µ

2
E(T))

∫ ∞

0

neq(|k⃗|, T)d|k⃗|

×
[∫ |k⃗|/(1+v)

0

d|q⃗|
∫ v|q⃗|

−v|q⃗|
ωdω +

∫ |q⃗|max

|k⃗|/(1+v)

d|q⃗|
∫ v|q⃗|

|q⃗|−2|k⃗|
ωdω

]
×
[
|∆L(q, T)|2

(2|k⃗|+ ω)2 − |q⃗|2

2
+ ∆T (q, T)|2

(|q⃗|2 − ω2)((2|k⃗|+ ω)2 + |q⃗|2)
4|q⃗|4

(v2|q⃗|2 − ω2)
]
,

(6.4)

Here we used the following notation: k is the 4-momentum of the incoming medium parton; T
is the current temperature along the path, given by Eq. (6.3); neq(|k⃗|, T) = N

e|k⃗|/T−1
+

Nf

e|k⃗|/T+1
is

the equilibrium momentum distribution [69] at temperature T including quarks and gluons. N = 3

49

6. DREENA-A framework as a QGP tomography tool

and Nf represent, respectively, the number of colors and flavors, where we assume Nf = 3 for
the LHC and Nf = 2.5 for RHIC; q = (ω, q⃗) is the 4-momentum of the exchanged gluon; E2 =
p2 +M2 denotes the initial jet energy, p is the jet momentum, while M is the mass (specified below)
of the quark or gluon jet; v = p/

√
p2 +M2 denotes velocity of the incoming jet; CR = 4

3
for

quark jet and 3 for gluon jet; ∆L(T) and ∆T (T) are effective longitudinal and transverse gluon
propagators [143, 144], while the electric screening (the Debye mass) µE(T) is obtained by self-
consistently solving the expression from [145] (ΛQCD is perturbative QCD scale):

µE(T)
2

Λ2
QCD

ln

(
µE(T)

2

Λ2
QCD

)
=

1 +Nf/6

11− 2/3Nf

(
4πT

ΛQCD

)2

. (6.5)

Note that such solution leads to the Debye mass consistent with lattice QCD results [145, 74].

Running coupling αS(Q
2) is defined as [167]

αS(Q
2) =

4π

(11− 2/3Nf) ln(Q2/Λ2
QCD)

, (6.6)

where, in the collisional energy loss case, the coupling appears through the term α2
S [59], which can

be factorised to αS(µ
2
E)αS(E T) [186] (see also [49]).

The radiation spectrum, as outlined in Section 4, is:

dNrad

dxdτ
=
C2(G)CR

π

1

x

∫
d2q

π

d2k

π

µ2
E(T)− µ2

M(T)

[q2 + µ2
E(T)][q

2 + µ2
M(T)]

Tαs(ET)αs

(k2 + χ(T)

x

)
×
[
1− cos

((k+ q)2 + χ(T)

xE+
τ
)] 2(k+ q)

(k+ q)2 + χ(T)

[k+ q

(k+ q)2 + χ(T)
− k

k2 + χ(T)

]
,

(6.7)

Here C2(G) = 3; χ(T) ≡ M2x2 + mg(T)
2, where x is the longitudinal momentum fraction of

the jet carried away by the emitted gluon, and mg(T) = µE(T)/
√
2 is the effective gluon mass in

finite temperature QCD medium [65]; M = 1.2 GeV for charm, 4.75 GeV for bottom and µE(T)/
√
6

for light quarks; µM(T) is magnetic screening, where different non-perturbative approaches suggest
0.4 < µM(T)/µE(T) < 0.6 [73, 74]; q and k are transverse momenta of exchanged (virtual) and
radiated gluon, respectively. Q2

k = k2+χ(T)
x

in αS(
k2+χ(T)

x
) corresponds to the off-shellness of the jet

prior to the gluon radiation [58]. Note that, all αS terms in Eqs. (6.4) and (6.7) are infrared safe (and
moreover of a moderate value) [49]. Thus, contrary to majority of other approaches, we do not need
to introduce a cut-off in αS(Q

2).

We further assume that radiative and collisional energy losses can be separately treated in P (Ei →
Ef), i.e., jet quenching is performed via two independent branching processes [49, 141]. We first cal-
culate the modification of the quark and gluon spectrum due to radiative energy loss, then collisional
energy loss (we checked that change of order is unimportant within our model). This is a reasonable
approximation when the radiative and collisional energy losses can be considered small (which is in
the essence of the soft-gluon, soft-rescattering approximation widely used in energy loss calculations)
and when radiative and collisional energy loss processes are decoupled, as is the case in the general-
ized HTL approach [193] used in our energy loss calculations.

To obtain the radiative energy loss contribution to the suppression [54], we start with Eq. (6.7) and,
for a given trajectory, we first compute the mean number of gluons emitted due to induced radiation
(further denoted as N tr(E)), as well as the mean number of gluons emitted per fractional energy loss
x (i.e., dNtr(E)

dx
, for compactness further denoted as N

′
tr(E, x)):

N tr(E) =

∫
tr

(∫
d2Nrad

dxdτ
dx

)
dτ, N

′
tr(E, x) =

∫
tr

d2Nrad

dxdτ
dτ, (6.8)

50

6.1. Methods

where the subscript tr indicates that the value depends on the trajectory. Radiative energy loss sup-
pression takes multi-gluon fluctuations into account, where we assume that the fluctuations of gluon
number are uncorrelated. Such assumption is reasonable, as Ref. [194] studied full splitting cascade
and found that independent branchings reasonably well approximate a full branching. The radiative
energy loss probability can then be expressed via Poisson expansion [54, 49]:

P tr
rad(Ei → Ef) =

δ(Ei − Ef)

eNtr(Ei)
+
N

′
tr(Ei, 1− Ef

Ei
)

Ei eNtr(Ei)
+

+
∞∑
n=2

e−Ntr(Ei)

n!Ei

∫
dx1 · · · dxnN

′
tr(Ei, x1) · · ·

N
′
tr(Ei, xn−1)N

′
tr(Ei, 1−

Ef

Ei

− x1 − · · · − xn−1),

(6.9)

Ei and Ef are initial and final jet energy (before and after) radiative process.

To calculate the parton spectrum after radiative energy loss, we apply

Ef,Rd
3σ

dp3f,R
=
Eid

3σ(Q)

dp3i
⊗ P tr

rad(Ei → Ef,R), (6.10)

where the final spectra is obtained after integrating over pi > pf,R.

To find collisional energy loss contribution, Eq. (6.4) is first integrated over the given trajectory:

E
tr

col(E) =

∫
tr

dEcol

dτ
dτ. (6.11)

For collisional energy loss, the full fluctuation spectrum is approximated by a Gaussian centered at
the average energy loss E

tr

col(E) [142, 141]:

P tr
col(Ei, Ef) =

1√
2πσtr

col(Ei)
exp

(
− (Ei − Ef − E

tr

col(Ei))
2

2σtr
col(Ei)2

)
, (6.12)

with a variance

σtr
col(E) =

√
2T tr E

tr

col(E), (6.13)

where T tr is the average temperature along the trajectory, Ei and Ef are initial and final energy
(before and after collisional processes).

To calculate the quenched hadron spectrum after collisional energy loss, we apply

Efd
3σq(HQ)

dp3f
=
Ei,Cd

3σ(Q)

dp3i,C
⊗ P tr

col(Ei,C → Ef)⊗D(Q→ HQ) , (6.14)

where we assume Ei,C = Ef,R, i.e. the final jet energy after radiative quenching corresponds to the
initial jet energy for collisional quenching. Since both collisional energy loss and gain contribute to
the final spectra [59, 141], both Ei,C > Ef and Ei,C < Ef have to be taken into account in Eq. (6.14).
Finally, the hadron suppression Rtr

AA(pf , HQ) for the single trajectory, after radiative and collisional
energy loss, is equal to the ratio of quenched and unquenched momentum spectra:

Rtr
AA(pf , HQ) =

Efd
3σq(HQ)

dp3f

/
Efd

3σu(HQ)

dp3f
, (6.15)

51

6. DREENA-A framework as a QGP tomography tool

where Efd
3σu(HQ)

dp3f
is given by Eq. (6.2). Rtr

AA(pf , HQ) then needs to be averaged over trajectories

with the same direction angle ϕ to obtain the suppression as a function of angle, RAA(pf , ϕ,HQ).
This is an important intermediary step since, depending on the details of QGP temperature evolution
and the spatial variations in the temperature profile, energy loss may significantly depend on the
parton’s direction of motion. In earlier DREENA frameworks, this dependence was also present but
was solely a consequence of the path-length distribution dependence on the angle. Once we have
calculated RAA(pf , ϕ,HQ), we can easily evaluate RAA and v2 observables as [195] (we here omit
HQ in the expressions, and denote pf = p⊥).

RAA(p⊥) =
1

2π

∫ 2π

0

RAA(p⊥, ϕ)dϕ , (6.16)

v2(p⊥) =
1
2π

∫ 2π

0
cos(2ϕ)RAA(p⊥, ϕ)dϕ

RAA(p⊥)
. (6.17)

Note that, in Eqs. 6.16 and 6.17, using RAA(p⊥, ϕ), instead of the hadron p⊥ spectrum, is compu-
tationally more efficient since RAA(p⊥, ϕ) is a well-behaved function, and the number of p⊥ points
where we need to evaluate RAA(p⊥, ϕ) is significantly smaller.

While the general expressions of the dynamical energy loss formalism are the same as in the
DREENA-B framework [2], the fact that, in DREENA-A, the temperature entering the Eqs. (6.4 -
6.7) explicitly depends on the current parton position, notably complicates the implementation of
these formulas, as we discuss in the following section.

6.1.2 Framework outline

Our previous DREENA-C and DREENA-B frameworks were based on computationally useful, but
rough, approximations of the medium evolution: while in DREENA-C, there was no evolution, and
the temperature remained constant both in time and along spatial dimensions, in DREENA-B, the
medium was assumed to evolve according to 1D Bjorken approximation [138]. Due to these approx-
imations, parton energy loss depended on its path length independently of its direction or production
point. This allowed to analytically integrate energy-loss formulas to a significant extent, which no-
tably reduced the number of required numerical integrations. Furthermore RAA only needed to be
averaged out over precalculated path-length distributions. Thus, these approximations of the medium
evolution straightforwardly led to efficient computational algorithms for DREENA-C and DREENA-
B.

DREENA-A framework, on the other hand, addresses fully general medium dynamics, with ar-
bitrary spatio-temporal temperature distribution. The main input to the algorithm is the tempera-
ture profile Tprofile given as a three-dimensional matrix of temperature values at points with coor-
dinates (x, y, τ) (in the input file, the values should be arranged in an array of quartets of the form
(τ, x, y, Tprofile), and the lowest value of τ appearing in the data is taken to be τ0). In addition to the
temperature profile, the DREENA-A algorithm also takes, as inputs, the initial parton p⊥ distributions
d2σ
dp2⊥

(each as an array of (p⊥, d2σ
dp2⊥

) pairs) and the jet production probability distribution (as a matrix of
probability density values in the transversal plane, formatted analogously as the profile temperature
values). This level of generality requires a different approach than in previous frameworks. Since the
DREENA-A algorithm takes arbitrary medium temperature evolution as the input, the energy loss has
to be individually calculated for each parton trajectory.

This means that for each trajectory – given by the coordinates x0 and y0 of the parton origin (in
the transversal plane) and the direction angle ϕ – we must first numerically evaluate integrals (6.8)

52

6.1. Methods

and (6.11). Since the current parton position – for a given trajectory – becomes a function of the
proper time τ , integrands in (6.8) and (6.11) also become functions of τ , either through an explicit
dependence, or via position and time dependent medium temperature (6.3). We numerically integrate
these functions along the trajectory (parametrized by τ as x = x0+ τ cosϕ, y = y0+ τ sinϕ), starting
from the origin at (x0, y0) and moving in small integration steps along the direction ϕ (in practice,
0.1 fm step is sufficiently small for most of the profiles). The integration is terminated when the
medium temperature at the current parton’s position drops below Tc = 155 MeV [149], i.e., when the
parton leaves the QGP phase. Also, we approximate that there are no energy losses before the initial
time τ0 (which is a parameter of the temperature evolution) and thus the first part of the trajectory,
corresponding to τ < τ0, is effectively skipped (i.e., τ0 is taken as the lower limit of integration in
(6.8) and (6.11)).

Once we, for a given trajectory, compute the integrals (6.8) and (6.11), we then perform the
rest of procedure laid out by Eqs. (6.8-6.15). Most of the computation time is spent on numerical
integrations, in particular for evaluating integrals in Eqs. (6.9,6.10). While, in principle, n → ∞ in
Eq. (6.9), in practice we show that n = 5 is sufficient for convergence in the case of quark jets, while
for gluon jets n = 7 is needed. In general, the Quasi-Monte Carlo integration method turned out to be
the most efficient and is used for all these integrals (as quasirandom numbers, we use precalculated
and stored Halton sequences). The result of the integration, 6.15, is the final hadron suppression
Rtr

AA(p⊥, HQ) for the jet moving along the chosen trajectory, given as the function of its transversal
momentum.

To obtain RAA(p⊥, ϕ,HQ), we have to average this result over all production points (taking into
account the provided jet production probability distribution) and repeat the procedure for many angles
ϕ. In practice, this means that we must evaluate energy loss along a very large number of trajectories.
This has significantly increased the computational complexity of the problem compared to DREENA-
C and DREENA-B and required a number of optimisations.

6.1.3 Numerical optimisations of DREENA-A

We started by adapting optimisation methods that we successfully implemented in earlier versions.
One useful approach was a tabulation and consequent interpolation of values for computationally ex-
pensive functions. In particular, this is crucial for the complicated integrals (6.4-6.7): while a two
dimensional array is sufficient to tabulate dEcol

dτ
(which is a function of T and p), values of d2Nrad

dxdτ
(de-

pending on τ, T, p and x) must be stored in a four-dimensional array. Tabulating such functions is done
adaptively, with the density of evaluated points varying, depending on the function behaviour (i.e.,
using a denser grid where the functions change rapidly and sparser where the behaviour is smooth).
In the case of these two functions, not only that the consequent interpolation can significantly reduce
the overall number of integral evaluations, but the corresponding tables (for each particle type) can be
evaluated only once and then permanently stored and reused for all trajectories and even for different
temperature profiles. To further optimise the algorithm, we also precalculate the integral

∫
d2Nrad

dxdτ
dx

values and store a corresponding three-dimensional array (since it is a function of τ, T , and p).

When using this table-interpolation method, it is often necessary to make a function transforma-
tion before tabulation: e.g., it is more efficient and accurate to sample and later interpolate logarithm
of a rapidly (nearly or approximately-exponentially) increasing function than the function itself (simi-
larly, it is sometimes more optimal to tabulate ratio, or a product of functions than each of the functions
separately). For example, it is much more optimal to tabulate and consecutively interpolateRAAs (and
other similarly behaving expressions) than the corresponding momentum distributions. This method-
ology is now extensively applied throughout DREENA-A (from some intermediate-level energy loss
results to evaluating multi-dimensional integrals in the calculation of radiated gluon rates). Given the

53

6. DREENA-A framework as a QGP tomography tool

Figure 6.1: D meson RAA (left) and v2 (middle) at 30-40% centrality computed using different num-
bers of randomly generated trajectories (Monte Carlo approach), together with their deviations (right,
scaled 1-norm was used as a metric) from the results averaged over the same ensemble of trajectories.
The dashed horizontal line in rightmost panels indicates the threshold of 1% deviation. The top row
depicts results obtained from sampling 25 trajectories at different angles originating from each of 100
randomly selected jet-production points; the middle row—50 angles from 1000 points; the bottom
row—100 angles from 10000 points. Each panel shows the results of eight repeated computations
(each with an independent ensemble of randomly generated trajectories), the dashed line representing
the mean. M = 1.2 GeV. We use a single value µM/µE = 0.5 [73, 74] to make the figure clearer.
Figure adapted from [4].

size of some of these tables and that many interpolations are needed, we ensured that the table lookup
and interpolation algorithm are efficient.

As we encounter multiple numerical integrations at different stages of the computation, modifying
their order was another type of optimisation, where the natural order (from the theoretical viewpoint)
is not necessarily followed but is instead adapted to the particular function behaviour. Specifically,
it turned out that a different order of integration (for radiative contribution) is optimal for heavy
flavor particles compared to gluons. I.e., while it is natural, from the physical perspective, to start
with the initial momentum distributions of partons and integrate over the radiative energy loss (see
Eqs. (6.9,6.10)), it turned out that (for heavy flavor) the shape of the initial distributions necessitates
a very high number of integration points to achieve the required computation precision. Reorganising

54

6.1. Methods

the formulas and postponing the integration over initial distributions to the very end turned much more
computationally optimal for heavy flavor. A similar procedure in the case of light quarks allowed
much of the integration to be carried out jointly for all quarks, since their effective masses are the
same, but initial p⊥ distributions differ.

The crucial optimisation in DREENA-A is the method used for averaging over the particle trajec-
tories. In suppression calculations, it is common to carry out the averaging over production points
and directions by Monte Carlo (MC) sampling, but it turned out that the equidistant sampling of both
jet production points and direction angles was here significantly more efficient. We initially imple-
mented the Monte Carlo approach, randomly selecting both the origin coordinates and the angles of
particle trajectories. The binary collision density was used as the probability density for coordinates
of origins, while the angles were generated from a uniform distribution. Convergence of the results
by using this method required a large number of sampled trajectories, as illustrated in Fig. 6.1. The
figure shows RAA and v2 results obtained by the DREENA-A algorithm for a different total number
of trajectories (the computation was done for D meson traversing the temperature evolution generated
using a Glauber initialised viscous hydrodynamic code [196], at 30-40% centrality class). The plots
in the right column of Fig. 6.1 show the magnitude of the deviation of the particular curve from the
median curve, where the latter is the arithmetic mean of all curves in the plot (as the measure of de-
viation of a function f(p) from a reference function f(p) we use: |δf | =

∫
|f(p)−f(p)|dp∫

|f(p)|dp). We see that
RAA convergence is easily achieved, where relative deviations of the order of 1% are obtained by
taking into account only 2500 trajectories (see Fig. 6.1-A and Fig. 6.1-A∗). Computing the v2 value
requires much more trajectories, i.e., we see a substantial scattering of the Monte Carlo results with
2500 trajectories, while ∼ 106 trajectories are needed to reduce relative deviation below 1%. Note
that a small number of sampled trajectories also causes a systematic error: the smaller the number of
trajectories, the lower the averaged v2.

Figure 6.2: D meson RAA (left) and v2 (middle) at 30-40% centrality computed using different num-
bers of trajectories originating from equidistant points. Results are labeled by numbers nϕ×(nx×ny):
jet directions are along nϕ uniformly distributed angles (from 0 to 2π) originating from each point of
the nx-by-ny equidistant grid in the transversal plane. Deviation of each line from the baseline result
(chosen as the outcome for 100 × (150 × 150) trajectories, dashed line) is shown in right panels.
M = 1.2 GeV, µM/µE = 0.5. Figure adapted from [4].

When using the equidistant sampling method instead of Monte Carlo, we divide the transverse
plane into an equidistant grid, whose points are used as jet origins. Energy loss for each trajectory is
then weighted with the jet production probability at each point, and summed up. As production prob-
ability, we used the binary collision density evaluated using the optical Glauber model. In Fig. 6.2,
we see that, for already ∼ 10.000 evaluated trajectories, the integral has converged within 1% of the
estimated ’proper’ value. This modification resulted in a more than two orders of magnitude reduction

55

6. DREENA-A framework as a QGP tomography tool

of the execution time. We also tested two hybrid variants: i) where trajectory origins were randomly
selected but directions equidistantly, and ii) where production points were equidistantly selected, but
directions randomly sampled. The convergence of the two variants interpolated between the MC sam-
pling and the equidistant sampling (Figs. 6.1 and 6.2, respectively).

6.1.4 Convergence test of different DREENA methods

Figure 6.3: Temperature distribution (Pb + Pb collision, 30-40% centrality, mid-rapidity) for constant
temperature [75] (first row) and 1D Bjorken evolution [2] (second row), at time (from left to right)
τ = τ0, 3, and 5 fm/c, represented by colour mapping. For constant temperature approximation,
τ0 = 0 fm. For 1D Bjorken approximation, τ0 = 0.6 fm. Figure adapted from [4].

Finally, as a consistency check for DREENA-A, we compared its predictions with DREENA-C
and DREENA-B results. For this purpose, we generated artificial T profiles suitable for this com-
parison, illustrated in Figure 6.3. The results of the DREENA-A and DREENA-B comparison, for
RAA and v2, are shown in the upper panels of Figure 6.4, respectively. Lower panels of Figure 6.4
show the comparison of all three frameworks on the hard-cylinder collision profile constant in time
(for this comparison, we modified the DREENA-B code to remove temperature dependence on time).
We see that all frameworks lead to consistent results (up to computational precision), supporting the
reliability of the DREENA-A.

6.2 Results and discussion

To demostrate the utility of the DREENA-A approach, we generated temperature profiles for Pb+Pb
collisions at the full LHC energy (

√
sNN = 5.02 TeV) and Au+Au collisions at the full RHIC energy

(
√
sNN = 200 GeV) using three different initialisations of the fluid-dynamical expansion.

First, we used optical Glauber initialisation at initial time τ0 = 1.0 fm without initial transverse
flow. The evolution of the fluid was calculated using a 3+1D viscous fluid code from Ref. [196]. The
parameters to describe collisions at the LHC energy were tuned to reproduce the low-p⊥ data obtained
in Pb+Pb collisions at

√
sNN = 5.02 TeV [187]. In particular, shear viscosity over entropy density

ratio was constant η/s = 0.12, there was no bulk viscosity, and the equation of state (EoS) parametri-
sation was s95p-PCE-v1 [197]. For RHIC energy we used ’LH-LQ’ parameters from Ref. [196],

56

6.2. Results and discussion

Figure 6.4: Comparison of different DREENA frameworks, for Bjorken medium evolution (upper
panels) and for constant medium temperature approximation (lower panels), demonstrating inter-
framework consistency. Upper panels show D meson RAA (left) and v2 (right) at 30-40% centrality
computed using DREENA-A (supplied with temperature profiles representing Bjorken evolution) and
DREENA-B. Lower panels show the same observables, computed using all three DREENA frame-
works, when applied to the same constant temperature medium. M = 1.2 GeV, µM/µE = 0.5. Figure
adapted from [4].

except that we used constant η/s = 0.16. Binary collision density from Glauber model was used as
the probability distribution for the initial points of jets, while their directions were sampled from a
uniform angular distribution.

Second, we used the EKRT initialisation [29, 30, 31], and evolved it using the same code we
used to evolve the Glauber initialisation, but restricted to a boost-invariant expansion. In this case,
the initial time was τ0 = 0.2 fm, and parameters were the favoured values of a Bayesian analysis
of the data from Pb+Pb collisions at

√
sNN = 2.76 and 5.02 GeV, and from Au+Au collisions at√

sNN = 200 GeV using the EoS parametrisation s83s18 [181]. In particular, there was no bulk
viscosity and the minimum value of temperature-dependent η/s was 0.18. Origins of the high-p⊥
particles were sampled using the binary collision density of Glauber model, while the distribution of
their directions was uniform.

Our third option was the TRENTo initialisation [198] evolved using the VISH2+1 code [199]
as described in [200, 201]. To describe collisions at LHC, parameters were based on a Bayesian
analysis of the data at the above mentioned two LHC collision energies [201], although the analysis
was done event-by-event, whereas we carried out the calculations using simple event-averaged initial
states. In particular, the calculation included free streaming stage until τ0 = 1.16 fm, EoS based
on the lattice results by the HotQCD collaboration [149], and temperature-dependent shear and bulk
viscosity coefficients with the minimum value of (η/s)min = 0.081 and maximum of (ζ/s)max =
0.052. For RHIC, we used the ’PTB’ maximum a posteriori parameter values from Ref. [202], but
changed the temperature-dependent shear viscosity coefficient (η/s)(T) to a constant η/s = 0.16.
The initial event-by-event collision points were used to generate the spatial probability distribution

57

6. DREENA-A framework as a QGP tomography tool

Figure 6.5: Temperature distribution (Pb + Pb
√
sNN = 5.02 TeV collision for 30-40% centrality at

mid-rapidity) for different medium evolution models, at time (from left to right) τ = τ0, 2, 3, 4 and
5 fm/c, represented by colour mapping. First row: ’Glauber’, τ0 = 1 fm; second row: ’EKRT’, τ0 =
0.2 fm; third row: ’TRENTo’, τ0 = 1.16 fm. Note that distributions in the first column correspond to
different times. Figure adapted from [4].

for the initial coordinates of the high- p⊥ particles, while their angular distribution was uniform.

All these calculations lead to an acceptable fit to measured charged hadron multiplicities, low-p⊥
spectra, and p⊥-differential v2 in 10 − 20%, 20 − 30%, 30 − 40%, and 40 − 50% centrality classes.
As we may expect, different initialisations and initial times lead to a visibly different temperature
evolution. This is demonstrated in Fig. 6.5 where we show the calculated temperature distributions
in collisions at the LHC energy at various times. Looking at the profiles, it is easily noticeable that
they evolve differently in space and time. Even if the initial anisotropy of the Glauber initialisation is
lowest, later in time, its anisotropy is largest, since the very early start of EKRT initialisation, or the
early free streaming of TRENTo, dilute the spatial anisotropy very fast. That is, ’Glauber’ exhibits
larger asymmetry throughout the QGP evolution compared to the other two profiles (though ’EKRT’
has larger asymmetry than ’Trento’), which might accordingly translate to differences in high-p⊥ v2.
Similarly, the early start of EKRT leads to a large initial temperature, which is expected to result in a
smaller RAA than the other two profiles.

To test if these visual differences can be quantified through high-p⊥ data at the LHC and RHIC,
we used these profiles as an input to the DREENA-A to generate high-p⊥ RAA and v2 predictions for
charged hadrons, D and B mesons. As can be seen in Figs. 6.6 and 6.7, both RAA and v2 show notable
differences for both experiments and all types of flavor. For example, ’EKRT’ leads to the smallest
RAA, i.e., largest suppression, as can be expected based on the largest temperature. Similarly, the cal-
culated high-p⊥ v2 depicts the same ordering as the system anisotropy during the evolution: ’Glauber’
leads to the largest, followed by ’EKRT’, while TRENTo leads to the lowest v2. Consequently, the
DREENA-A framework can differentiate between temperature profiles by corresponding differences
in high-p⊥ observables, where these differences agree with the qualitative observations from Fig. 6.5.
Since the differences in evolution are due to different initialisations, and different properties of the
fluid (EoS and/or dissipative coefficients), RAA and v2 observables can be used to provide further
constraints to the fluid properties. We note here that even low-p⊥ data could be used to differentiate
our three evolution scenarios, but such analysis would require evaluating χ2 or a similar measure of

58

6.3. Summary

Figure 6.6: DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Pb+Pb collisions at√
sNN = 5.02 TeV are generated for different models of QGP medium evolution (indicated in the

legend). Charged hadron (left) predictions are generated for 30-40% centrality, while D (middle) and
B (right) meson predictions are generated for 30-50% centrality region. For charged hadrons, the
predictions are compared with the experimental data from CMS [105, 127], ALICE [104, 125] and
ATLAS [119, 126] experiments. For D mesons, the predictions are compared with ALICE [203, 130]
and CMS [129] data. For B mesons predictions are compared with preliminary ALICE [204] and
CMS [205] data. The boundary of each gray band corresponds to 0.4 < µM/µE < 0.6 [73, 74].
Figure adapted from [4].

the quality of the fit, or computing Bayes factors [202]. The high-p⊥ observables, on the other hand,
show clear differences visible by the naked eye.

Moreover, from Figs. 6.6 and 6.6, we see that all types of flavor, at both RHIC and LHC, show
apparent sensitivity to differences in medium evolution, making them equally suitable for exploring
the bulk QGP properties with high-p⊥ data. With the expected availability of precision data from the
upcoming high-luminosity experiments at RHIC and LHC (see e.g., [212, 213, 214]), the DREENA-
A framework provides a unique opportunity for exploring the bulk QGP properties. We propose that
the adequate medium evolution should be able to reproduce high-p⊥ observables in both RHIC and
LHC experiments for different collision energies and collision systems, with reasonable accuracy.
As demonstrated in this study, an equal emphasis should be given to light and heavy flavor, as they
provide a valuable independent constraint for bulk medium evolution. Overall, DREENA-A provides
a versatile tool to put large amounts of data generated at RHIC and LHC experiments to optimal use.

6.3 Summary

We presented the DREENA-A computational framework for tomography of quark-gluon plasma cre-
ated in heavy-ion collisions at RHIC and the LHC. The tool is based on state-of-the-art energy loss
calculation and can include arbitrary temperature profiles. This feature allows fully exploiting differ-

59

6. DREENA-A framework as a QGP tomography tool

Figure 6.7: DREENA-A RAA (top panels) and v2 (bottom panels) predictions in Au+Au collisions
at

√
sNN = 200 GeV are generated for different models of QGP medium evolution (indicated in the

legend). Charged hadron (left), D meson (middle) and B meson (right) predictions are generated for
20-30% centrality region. The h± predictions are compared with π0 data from PHENIX [123, 206]
and h± data from STAR [207, 208] - note that for v2 10-40% centrality data is shown for STAR. For
D mesons, the predictions are compared with STAR [209, 210] data at 10-40% centrality and with
PHENIX [211] data at 20-40%. B mesons predictions are compared with PHENIX [211] data at 20-
40%. The boundary of each gray band corresponds to 0.4 < µM/µE < 0.6 [73, 74]. Figure adapted
from [4].

ent temperature profiles as the only input in the framework. We showed that the calculated high-p⊥
RAA and v2 exhibit notable sensitivity to the details of the temperature profiles, consistent with intu-
itive expectations based on the profile visualisation. The DREENA-A framework applies to different
types of flavor, collision systems, and collision energies. It can, consequently, provide an efficient
and versatile QGP tomography tool for further constraining the bulk properties of this extreme form
of matter. To facilitate this, we also provided the fully optimized, publicly available software for gen-
erating DREENA-A predictions. The code allows straightforwardly generating high-p⊥ predictions
for diverse models of QGP evolution.

60

Chapter 7

Importance of higher harmonics in
quark-gluon plasma tomography

During the past two decades, an impressive experimental and theoretical effort has been invested in
generating and exploring a new form of matter called Quark-Gluon Plasma (QGP) [115, 116, 77,
117, 118]. This form of matter consists of interacting and no longer confined quarks, antiquarks,
and gluons [76, 114] and is created at extremely high energy densities achieved in ultra-relativistic
heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) experiments. An unprecedented amount of data for different collision systems (large and
small), collision energies, types of particles, momentum regions, centralities, etc., are generated in
these experiments, and one of the major current goals is to optimally use these data to investigate the
properties of this exciting form of matter.

As one of the latest experimental achievements, the high momentum (high-p⊥) higher harmonics
have recently become available at RHIC and the LHC. For example, for charged hadrons, the data
are available up to the 7th harmonic (for ATLAS [126]) and cover the p⊥ region up to 100 GeV (for
CMS [127]). For heavy flavor, the coverage is not that extensive (for both harmonics and momentum
region)—still, the upcoming experimental data at high-luminosity LHC Run3 should provide these
data for both light and heavy flavor with much higher precision. In the upcoming RHIC (sPHENIX
and STAR) experiments, similar quality data is expected, with p⊥ coverage up to 20 GeV. Even if the
p⊥ range accessible at RHIC is narrower than at the LHC, it is particularly useful for QGP tomography
due to the pronounced difference between light and heavy flavor in that region. While these data (will)
represent the state-of-the-art in the experimental sector, theoretically the higher harmonics at high-p⊥
have not been well explored.

To use these data for QGP tomography, i.e., for exploring the bulk QGP properties through high-
p⊥ theory and data, one should first identify and address potential limitations, in particular related
to coverage and design of different experiments. For example, four different methods are commonly
used in the literature to evaluate vn: two-particle cumulant vn{2}, four-particle cumulant vn{4},
event plane vn{EP}, and scalar product vn{SP} methods (see section 7.1.3 for more details). Do
these methods provide consistent results, especially when different experimental collaborations even
define vn{SP} in different ways?

Furthermore, in experimental analysis, the scalar product method correlates the particle of inter-
est at midrapidity with the bulk medium constituents at higher rapidity regions to avoid non-flow

61

7. Importance of higher harmonics in quark-gluon plasma tomography

effects on measured vn [126, 127]. From theoretical perspective, this means the use of the experimen-
tal definition for vn{SP} necessitates 3+1D hydrodynamic modeling for event-by-event simulations.
However, 3+1D simulations are computationally several orders of magnitude more demanding than
2+1D simulations and consequently time-wise impractical for high precision QGP tomography. Thus,
the question arises whether it would be plausible to compare vn{SP} obtained in boost-invariant
2+1D simulations to experimental data in a model where the high- and low-p⊥ particles have separate
sources (fragmenting jets and a thermal fireball, respectively), and are thus uncorrelated.

Next, for the second harmonic, v2, event-by-event fluctuations are expected to either have a signif-
icant effect on v2 values [135], or to be small enough to be considered negligible [215, 164]. However,
these studies were done in limited and different centrality regions. It is expected [92] that the effects
of event-by-event fluctuations increase with decreasing centrality. Thus, it is important to systemati-
cally investigate and quantify these effects for the high-p⊥ region at different centralities.

Therefore, the study presented in this manuscript has the following main goals:

(i) Explore to what extent the different methods for calculating higher harmonics are compatible
with each other.

(ii) Explore the importance of event-by-event fluctuations and correlations to high-p⊥ v2 and RAA.

(iii) Explore the qualitative and quantitative effects of different medium evolution scenarios on high-
p⊥ higher harmonics, and how well the existing high-p⊥ data can be reproduced without further
tuning of parameters.

Overall, this study explores whether and how high-p⊥ higher harmonics, with an adequate theoretical
framework, can provide further constraints to the bulk QGP properties.

7.1 Methods

7.1.1 Outline of DREENA-A framework

To use the high-p⊥ particles to explore the bulk properties, we developed a fully optimized modular
framework DREENA-A (for more details see Section 6). We further optimized the framework for this
study to efficiently incorporate any, arbitrary, event-by-event fluctuating temperature profile within the
dynamical energy loss formalism. Due to the very large amount of temperature profile data processed
in event-by-event calculations, we optimized file handling and formats. Also, we reorganized the
parallelization of computation, as well as ensured that spatio-temporal resolution and calculation
precision are optimal and adjusted to the event-by-event type of profiles.

The framework does not have fitting parameters within the energy loss model (i.e., all parameters
used in the model correspond to standard literature values), which allows to systematically compare
the data and predictions obtained by the same formalism and parameter set. Therefore different
temperature profiles (which are the only input in the DREENA-A framework) resulting from different
initial states, and QGP properties, can be distinguished by the high-p⊥ observables they lead to, and
the bulk QGP properties can be further constrained by studying low and high-p⊥ theory and data
jointly.

The dynamical energy loss formalism [58, 64, 59] has several important features, all of which
are needed for accurate predictions [68]: i) QCD medium of finite size and temperature consisting
of dynamical (i.e., moving) partons. ii) Calculations are based on generalized Hard-Thermal-Loop
approach [62], with naturally regulated infrared divergences [58, 59, 65]. iii) Both radiative [58,

62

7.1. Methods

64] and collisional [59] energy losses are calculated in the same theoretical framework and apply
to both light and heavy flavors. iv) The framework is generalized toward running coupling [49]
and finite magnetic mass [66]. We have also investigated the validity of the widely used soft-gluon
approximation [67], but found it a very good approximation which does not need to be relaxed.

The initial quark spectrum, for light and heavy partons, is computed at next to leading order [97,
98]. We use DSS [100] fragmentation functions to generate charged hadrons, and BCFY [101, 139]
and KLP [140] fragmentation functions for D and B mesons, respectively. To generate high-p⊥ pre-
dictions, we use the same parameter set as in DREENA-A from Section 6. Specifically, we assume
effective light quark flavors nf =3 and ΛQCD = 0.2 GeV. The temperature-dependent Debye mass
µE is obtained by applying the procedure from [145] and leads to results compatible with the lat-
tice QCD [216, 217]. For the gluon mass, we assume mg = µE/

√
2 [65], and for light quark mass

M =µE/
√
6. The charm mass is M =1.2GeV and the bottom mass is M =4.75GeV. For magnetic

to electric mass ratio, we use µM/µE = 0.5 [73, 74].

7.1.2 Modeling the bulk evolution

We investigate three different event-by-event initializations for the bulk evolution. The first is Monte
Carlo Glauber (MC-Glauber) initialization at initial time τ0 = 1.0 fm without initial transverse flow.
We assign the binary collision points at halfway between the two colliding nucleons and convert these
points to a continuous binary collision density using 2-D Gaussian distributions:

nBC(x, y) =
1

2πσ2
BC

NBC∑
i=1

exp

(
−(x− xi)

2 + (y − yi)
2

2σ2
BC

)
, (7.1)

with a width parameter σBC = 0.35 fm. The binary collision density is then converted to energy
density with the formula:

ϵ(x, y) = C0(nBC + c1n
2
BC + c2n

3
BC) , (7.2)

and further extended in the longitudinal direction using the LHC parametrization from Ref. [196].
The evolution of the fluid is calculated using a 3+1D viscous fluid code [196], with a constant shear
viscosity over entropy density ratio η/s = 0.03 and no bulk viscosity. The equation of state (EoS)
parametrization is s95p-PCE-v1 [197]. The model parameters were tuned to ALICE charged particle
multiplicity [218] and vn(p⊥) data [219] for 10-20%, 20-30% and 30-40% centrality classes in Pb+Pb
collisions at

√
sNN = 5.02 TeV.

The second model is the TRENTo initialization [198] with a free streaming stage until τ0 = 1.16
fm, further evolved using the VISH2+1 code [199] as described in [200, 201]. The parameters in this
calculation are based on a Bayesian analysis of the data at Pb+Pb collisions at

√
sNN = 2.76 and

5.02 TeV [201]. In particular the calculation includes temperature dependent shear and bulk viscosity
coefficients with the minimum value of η/s = 0.081 and maximum of ζ/s = 0.052. The EoS [200]
is based on the lattice results by the HotQCD collaboration [149].

The third investigated initialization model is IP-Glasma [27, 28]. The calculated event-by-event
fluctuating initial states [220] are further evolved [221] using the MUSIC code [222, 223, 224] con-
strained to boost-invariant expansion. In these calculations, the switch from Yang-Mills to fluid-
dynamical evolution takes place at τswitch = 0.4 fm, shear viscosity over entropy density ratio is
constant η/s = 0.12, and the temperature-dependent bulk viscosity coefficient over entropy density
ratio has the maximum value ζ/s = 0.13. The equation of state is based on the HotQCD lattice
results [149] as presented in Ref. [225].

63

7. Importance of higher harmonics in quark-gluon plasma tomography

7.1.3 Flow analysis

Scalar product and event plane methods

We start by defining the low-p⊥ normalized flow vector for n-th harmonic based on M particles as:

Qn =
1

M

M∑
j=1

einϕj ≡ |vn|einΨn , (7.3)

where Ψn is the event plane angle: Ψn = arctan(ImQn

ReQn
)/n.

Similarly to low p⊥, we can define the flow vector for a high-p⊥ bin as:

qhardn =
1
2π

∫ 2π

0
einϕRAA(p⊥, ϕ) dϕ

RAA(p⊥)
, (7.4)

and single-event high-p⊥ flow coefficients vhardn as [135]

vhardn =
1
2π

∫ 2π

0
cos[n(ϕ−Ψhard

n (p⊥))]RAA(p⊥, ϕ) dϕ

RAA(p⊥)
, (7.5)

where RAA(p⊥) is defined as:

RAA(p⊥) =
1

2π

∫ 2π

0

RAA(p⊥, ϕ) dϕ . (7.6)

and the event plane angle Ψhard
n (p⊥) is defined as:

Ψhard
n (p⊥) =

1

n
arctan

(∫ 2π

0
sin(nϕ)RAA(p⊥, ϕ) dϕ∫ 2π

0
cos(nϕ)RAA(p⊥, ϕ) dϕ

)
. (7.7)

The high-p⊥ vn is then calculated by correlating qn with Qn [135, 113, 215]:

vhardn {SP} =
⟨Re (qhardn (Qn)

∗)⟩ev√
⟨Qn(Qn)∗⟩ev

=
⟨|vhardn ||vn| cos[n(Ψhard

n (p⊥)−Ψn)]⟩ev√
⟨|vn|2⟩ev

.

(7.8)

We may also simply calculate the high-p⊥ anisotropy with respect to the event plane Ψn, which we
shall denote as the “event plane” vn [215]:

vn{EP} = ⟨⟨cos[n(ϕhard −Ψn)]⟩⟩ev
= ⟨vhardn cos[n(Ψhard

n −Ψn)]⟩ev .
(7.9)

For our theoretical vn{SP}, the reference flow vector Qn is calculated using only midrapidity
particles. In order to reduce non-flow effects, it is common in experiments to introduce a rapidity gap
between the particles of interest and the reference flow particles. ATLAS defines the scalar product
vn as [126]:

vn{SPATLAS} =
Re ⟨⟨einϕ(Q−|+

n)∗⟩⟩ev√
⟨Q−

n (Q
+
n)

∗⟩
ev

, (7.10)

64

7.1. Methods

where Q−
n = 1

M−

∑M−

j=1 e
inϕj refers to particles in the rapidity interval −4.9 < η < −3.2 and Q+

n sim-
ilarly to particles in the interval 3.2 < η < 4.9, while einϕ is associated with particles in midrapidity
|η| < 2.5. Q−|+

n indicates that particle of interest with η < 0 are coupled to Q+
n and particles with

η > 0 to Q−
n to maximize the rapidity gap. Since our high-p⊥ particles are produced at η = 0, the

choice of Q+
n or Q−

n for the correlation is arbitrary.

CMS definition for the scalar product is [127]

vn{SPCMS} =
Re ⟨QnQ

∗
nA⟩ev√

⟨QnAQ∗
nB⟩ev⟨QnAQ∗

nC⟩ev
⟨QnBQ∗

nC⟩ev

, (7.11)

where the flow vector Qn =
∑M

j=1 e
inϕj consists of particles of interest in midrapidity |η| < 1.0, vec-

tors QnA, QnB =
∑MA,B

j=1 ET e
inϕj are measured from the HF calorimeters at 2.9 < |η| < 5.2, one at

the negative and the other at the positive rapidity, and the third reference vector QnC =
∑MC

j=1 p⊥ e
inϕj

is obtained from tracks with |η| < 0.75. If the particle of interest comes from the positive-η side of
the tracker, then QnA is calculated using the negative-η side of HF, and vice versa.

Cumulant method

For 2- and 4-particle cumulant analysis, we use the unnormalized flow vector:

Q̃n =
M∑
j=1

einϕj . (7.12)

The low-p⊥ integrated reference flow is calculated using Eqs. (7)-(18) from Ref. [226]: The 2-
particle cumulant vn is defined as:

vn{2} =
√
cn{2} , (7.13)

where the second order cumulant cn{2} equals the event-averaged 2-particle correlation ⟨⟨2⟩⟩ev. The
4-particle cumulant vn is:

vn{4} = 4
√
−cn{4} , (7.14)

where cn{4} is the 4th order cumulant ⟨⟨4⟩⟩ev − 2⟨⟨2⟩⟩2ev.

For a single event, the 2-particle correlation is

⟨2⟩ = |Q̃n|2 −M

W2

, (7.15)

with a combinatorial weight factor W2 =M(M − 1) and the single-event 4-particle correlation is:

⟨4⟩ = |Q̃n|4 + |Q̃2n|2 − 2Re|Q̃2nQ̃∗
nQ̃

∗
n|

W4

− 2
2(M − 2)|Q̃n|2 −M(M − 3)

W4

,

(7.16)

with W4 =M(M − 1)(M − 2)(M − 3).

65

7. Importance of higher harmonics in quark-gluon plasma tomography

Using the weight factors defined above, the weighted average of a k-particle correlation over
multiple events is then

⟨⟨k⟩⟩ev =

Nevents∑
i=1

Wk,i ⟨k⟩i
Nevents∑
i=1

Wk,i

. (7.17)

Once the reference flow has been determined, the pT -differential flow can be calculated using
Eqs. (20)-(35) of [226]. Here we denote the flow vector in a p⊥ bin with mq particles as:

qn =

mq∑
j=1

einϕj . (7.18)

For high-p⊥ particles, qn is calculated from the distribution

qn =

∫ 2π

0

einϕ
dN

dp⊥dϕ
dϕ , (7.19)

with the associated multiplicity:

mq =

∫ 2π

0

dN

dp⊥dϕ
dϕ . (7.20)

For high-p⊥ differential flow, none of the particles in a p⊥ bin are included in the calculation of the
reference flow, so the weight factors are W ′

2 = mqM and W ′
4 = mqM(M − 1)(M − 2), and the

2-particle correlation is simply:

⟨2′⟩ = qnQ̃
∗
n

W ′
2

, (7.21)

while the 4-particle correlation is

⟨4′⟩ = qnQ̃nQ̃
∗
nQ̃

∗
n − qnQ̃nQ̃

∗
2n − 2MqnQ̃

∗
n + 2qnQ̃

∗
n

W ′
4

. (7.22)

With the knowledge of the correlations, we can calculate the differential cumulants:

dn{2} = ⟨⟨2′⟩⟩ev ,
dn{4} = ⟨⟨4′⟩⟩ev − 2⟨⟨2′⟩⟩ev⟨⟨2⟩⟩ev

(7.23)

and the differential flow:

v′n{2} =
dn{2}√
cn{2}

,

v′n{4} = − dn{4}
(−cn{4})3/4

.

(7.24)

7.2 Results and discussion

7.2.1 Compatibility of analysis methods

In Fig. 7.1, we compare vn(p⊥) for high-p⊥ particles obtained using six different methods: 2- and
4-particle cumulants vn{2} and vn{4} given by Eq. (7.24), event plane vn{EP} defined by Eq. (7.9),

66

7.2. Results and discussion

midrapidity scalar product vn{SP} calculated using Eq. (7.8), scalar product vn{SPATLAS} as defined
by the ATLAS collaboration (Eq. (7.10)), and scalar product vn{SPCMS} as defined by the CMS col-
laboration (Eq. (7.11)). High-p⊥ RAA and vn predictions were obtained using generalized DREENA-
A framework with the temperature profiles calculated using the combination of 3+1D viscous fluid
code and MC-Glauber initial conditions (i.e., the first bulk model described in the section 7.1.2).

0 20 40 60 80 100
0

2

4

6

8

10

p⊥(GeV)

v
2

10
-2

20-30%

0 20 40 60 80 100
0

1

2

3

p⊥(GeV)

v
3

10
-2

vn{2}

vn{4}

vn{EP}

vn{SP}

vn{SPATLAS}

vn{SPCMS}

0 20 40 60 80 100

-4

-2

0

2

4

6

8

10

p⊥(GeV)

v
4

10
-3

Figure 7.1: Charged hadron v2 (left), v3 (middle) and v4 (right) in Pb+Pb collisions at
√
sNN =

5.02 TeV for 20-30% centrality class, computed using different analysis methods: 2-particle cumu-
lant, 4-particle cumulant, event plane, midrapidity scalar product, ATLAS-defined scalar product,
and CMS defined scalar product, each described in the section 7.1.3. Energy loss calculation was
performed on MC-Glauber+3d-hydro temperature profiles, with µM/µE = 0.5.

As illustrated in Fig. 7.1, different scalar product methods for evaluating the vn coefficients, and
the 2-particle cumulant method, lead to the same results with ≈ 5% level accuracy. In agreement
with Refs. [215, 227, 164], the event plane results are also comparable to the scalar product results
deviating only ≈ 10%, i.e., less than the current experimental uncertainty. The only method with
significantly different results is the four-particle cumulant method vn{4}, which is expected to differ
from vn{2} in the presence of event-by-event fluctuations [92, 228]. The equivalence of different
approaches simplifies comparison between theoretical predictions and experimental results, since a
theoretical prediction calculated using any method (with the exception of the 4-particle cumulant
method) can be directly compared to experimental data analyzed using any method. We have also
checked that, in the scalar product method, the rapidity of particles used to calculate the reference
flow vector has a negligible impact on high-p⊥ particle vn in our framework and setup, allowing us to
make meaningful vn{SP} data comparisons using the boost-invariant hydro simulations. However,
it must be remembered that the scalar product method with large rapidity gap can be affected by the
event plane decorrelation at different rapidities [229, 230]. In our approach the event plane is the
same independent of rapidity, and thus the effect of decorrelation is not included. How the event
plane depends on rapidity depends on the model used to create the longitudinal structure of the initial
state, and since there are very few theoretical constraints for it, we leave these studies for a later work.

7.2.2 Event-by-event fluctuations

To investigate the influence of event-by-event fluctuations on high-p⊥ observables, MC-Glauber ini-
tial conditions for all events within a single centrality class were averaged (we kept reaction planes
aligned, and averaged binary collision densities before converting to energy density, (Eq. 7.2)) and
then evolved using the 3+1D viscous fluid code (in a single run, instead of one run for each event).
Obtained smooth temperature profile was used to calculate high-p⊥ predictions, and RAA as well
as v2{2} and v2{4} results were compared to those obtained using full event-by-event calculations
(evolved separately for each event), see Fig 7.2.

67

7. Importance of higher harmonics in quark-gluon plasma tomography

ebe RAA

avg RAA

0

0.20

0.40

0.60

0.80

1.00

R
A

A

h±

10-20% 20-30% 30-40% 40-50%

ebe v2{2}

ebe v2{4}

avg v2{2}

avg v2{4}

0 20 40 60 80 100
0

0.04

0.08

0.12

p⊥(GeV)

v
2

0 20 40 60 80 100

p⊥(GeV)

0 20 40 60 80 100

p⊥(GeV)

0 20 40 60 80 100

p⊥(GeV)

Figure 7.2: Upper panels: charged hadronRAA calculated using event-by-event (ebe) fluctuating tem-
perature profiles compared toRAA calculated using a smooth temperature profile (avg). Lower panels:
charged hadron vn{2} and vn{4} calculated using event-by-event (ebe) fluctuating temperature pro-
files compared to vn{2} and vn{4} calculated using a smooth temperature profile (avg). Calculation
was done for Pb+Pb collisions at

√
sNN = 5.02 TeV, µM/µE = 0.5, using MC-Glauber+3d-hydro

bulk evolution. Each column represents different centrality class (from left to right: 10-20%, 20-
30%, 30-40% and 40-50%).

We see that event-by-event fluctuations increase both RAA and v2. While the effect on the RAA

values is rather small (≈ 7%) and does not have clear centrality dependence, the effect on v2{2} is
more pronounced and increases with decreasing centrality. Quantitatively, we obtain that the average
difference between event-by-event v2{2} and v2{2} calculated using smooth temperature profile goes
from 14% for the 40-50% centrality class to 32% in the 10-20% centrality class. The observed
centrality dependence can be explained by the fact that with the increase in centrality, the influence
of geometry on v2{2} becomes larger, while at low centralities, event-by-event fluctuations have
the dominant impact on v2{2}. We also observe a p⊥ dependence of these differences (generally
decreasing with increasing p⊥) and no notable difference between v2{2} and v2{4} when calculated
on the smooth temperature profile, where initial state eccentricity fluctuations are absent.

7.2.3 Effects of initial state

To demonstrate the applicability of high-p⊥ theoretical predictions as a QGP tomography tool, we
generated three different sets of temperature profiles using three different initial conditions and hy-
drodynamics codes (see Section 7.1.2). Generalized DREENA-A from Section 6 was then used to
calculate high-p⊥ predictions, which are compared to experimental data and, for charged hadrons,
presented in Fig. 7.3, and for D and B mesons in Fig. 7.4. As can be seen, different initializations of
fluid-dynamical evolution lead to different high-p⊥ predictions for both RAA and v2, v3 and v4, even
though they all provide good agreement with low-p⊥ data. Specific differences are visible already on
the level of RAA values, where the IP-Glasma model results in discernibly stronger suppression. The
differences in predictions become even higher when we consider the v2 observable, with TRENTo
leading to lower v2 than IP-Glasma, while MC-Glauber predictions are far above the two. A similar
magnitude of relative differences is also obtained for v3 and v4 predictions, with an additional quali-
tative signature appearing for these observables: we notice that some initializations lead to negative

68

7.2. Results and discussion

values of high-p⊥ v3 and v4, i.e., models can differ even in the expected sign of the flow coefficients.

0.20

0.40

0.60

0.80

1.00

R
A

A

h±

10-20% 20-30% 30-40% 40-50%

0.04

0.08

0.12

v
2

-0.02

0

0.02

0.04

0.06

v
3

0 20 40 60 80 100

0

0.02

0.04

0.06

p⊥(GeV)

v
4

0 20 40 60 80 100

p⊥(GeV)

MCGl+3dHydro

IPG+MUSIC

TRENTO+VISHNU

0 20 40 60 80 100

p⊥(GeV)

CMS

ALICE

ATLAS

0 20 40 60 80 100

p⊥(GeV)

Figure 7.3: Charged hadron RAA (first row) v2 (second row), v3 (third row) and v4 (fourth row) in
Pb+Pb collisions at

√
sNN = 5.02 TeV for different initializations of the QGP evolution (indicated

in the legend). Theoretical predictions, obtained using SP method, are compared to CMS [105, 127]
(blue squares), ALICE [104, 125] (red circles) and ATLAS [119, 126] (green triangles) data. Columns
1-4 correspond to, respectively, 10-20%, 20-30%, 30-40% and 40-50% centrality classes. µM/µE =
0.5.

Since DREENA-A does not have fitting parameters in the energy loss (the only inputs are the tem-
perature profile and binary collisions, which come as a direct output from fluid-dynamical calculation
and the initial state model), Figs. 7.3 and 7.4 demonstrate that high-p⊥ RAA and higher harmonics
can distinguish between different initializations and temperature profiles, and subsequently further
constrain their parameters. Furthermore, Fig. 7.4 suggests that heavy flavor high-p⊥ observables are
even more sensitive to different temperature profiles than the light flavor. We also see that predictions
for high-p⊥ higher harmonics can be either positive or negative. Thus, the high-p⊥ sector can provide
both quantitative and qualitative constraints for different initial states.

Presently, of the considered models, the best agreement is observed for MC-Glauber. This result
is compatible with our earlier findings [187], where the best agreement with high-p⊥ data was found
by delaying the start of transverse expansion and energy loss to time τ0 ≈ 1.0 fm. However, all

69

7. Importance of higher harmonics in quark-gluon plasma tomography

0

0.20

0.40

0.60

0.80

1.00
R

A
A

D

10-30% 30-50%

0.04

0.08

0.12

v
2

MCGl+3dHydro

IPG+MUSIC

TRENTO+VISHNU

0

0.04

0.08

0.12

v
3

CMS

ALICE

0 10 20 30 40 50

-0.005

0

0.005

0.010

p⊥(GeV)

v
4

0 10 20 30 40 50

p⊥(GeV)

0

0.20

0.40

0.60

0.80

1.00

R
A

A

B

10-30% 30-50%

0

0.01

0.02

0.03

0.04

0.05

v
2

MCGl+3dHydro

IPG+MUSIC

TRENTO+VISHNU

-0.01

0

0.01

0.02

0.03

0.04

v
3

CMS

ALICE

0 10 20 30 40 50

-0.002

0

0.002

0.004

p⊥(GeV)

v
4

0 10 20 30 40 50

p⊥(GeV)

Figure 7.4: D meson (left 4×2 panel) and B meson (right 4×2 panel) predictions in Pb+Pb collisions
at
√
sNN = 5.02 TeV for different initializations of QGP evolution (indicated in the legend). In each

4×2 panel, first row corresponds toRAA, the second, third, fourth to v2, v3, v4, respectively, while the
left (right) column corresponds to 10-30% (30-50%) centrality class. D meson theoretical predictions
are compared to CMS [231] (blue squares) and ALICE [232, 233] (red circles) data, while B meson
predictions are compared to preliminary CMS [205] (blue squares) and preliminary ALICE [204] (red
circles) data for non-prompt D meson from b decay. µM/µE = 0.5.

models seem to vastly underestimate the v4 values, though the error bars for the available v4 data are
quite large. If this tendency is preserved in future high luminosity experiments (e.g., in LHC run 3),
it will present a new “high-p⊥ v4 puzzle”, whose solution will require modifications to the present
initial state models and/or energy loss mechanisms. Additionally, better quality heavy flavor data are
needed, especially D and B-meson data, as they present valuable constraint to the evolution of the
medium.

7.3 Summary

We obtained four main conclusions in this work: i) We found that different methods to calculate
higher harmonics at high-p⊥ are compatible with each other within ≈ 5–10% accuracy, which is less
than the current experimental uncertainties. ii) Event-by-event calculations are particularly important

70

7.3. Summary

for high-p⊥ v2 in mid-central collisions. iii) Predictions for high-p⊥ observables, and especially for
higher harmonics, are sensitive to the initial state of fluid-dynamical evolution, and can distinguish
between different initial state models. iv) All initial state models lead to way smaller high-p⊥ v4 than
experimentally observed, and this disparity deserves to be called a “v4 puzzle”. Overall, the higher
harmonics provide an exciting opportunity to obtain further constraints to the QGP properties and its
evolution in heavy-ion collisions by combining new theoretical developments (with the corresponding
predictions) and upcoming higher luminosity experimental measurements.

71

Chapter 8

Conclusions

This thesis presents a comprehensive study of the quark-gluon plasma (QGP), utilizing the dynam-
ical energy loss formalism to investigate high-p⊥ parton-medium interactions, QGP properties, and
experimental observables from heavy-ion collisions. Through detailed theoretical modeling, numeri-
cal simulations, and comparisons with experimental data, the research advances our understanding of
strongly interacting matter under extreme conditions. Below, the major findings and setups of each
chapter are summarized.

Chapters 1 and 2 provide the theoretical foundations for the study, outlining the principles of
Quantum Chromodynamics (QCD) and the QCD phase diagram. These chapters discusses the critical
transitions between confined and deconfined phases, highlighting high-p⊥ experimental observables
such as nuclear modification factors (RAA) and anisotropic flow coefficients (v2). The introduction of
the dynamical energy loss formalism, which unifies collisional and radiative energy loss mechanisms,
sets the stage for subsequent analyses.

Chapter 3 explores the path-length dependence of energy loss mechanisms of high-energy partons
traversing the quark-gluon plasma. The objective is to address how different energy loss mechanisms,
such as collisional and radiative, behave in terms of their sensitivity to the distance traversed in a QCD
medium. Path-length dependence is a crucial signature to distinguish between different energy loss
models and mechanisms and to understand the underlying physics of parton-medium interactions.

The chapter begins by identifying suitable observables for studying path-length dependence. The
nuclear modification factor (RAA) is utilized due to its sensitivity to jet-medium interactions while
being relatively insensitive to the details of medium evolution. However, RAA alone cannot directly
extract path-length dependence. To overcome this, the study introduces 1 − RAA ratio between two
systems - path-length sensitive suppression ratio, RL

AB, which enhances sensitivity to the path length
and reduce centrality and p⊥ dependence.

The systems analyzed include Pb+Pb collisions at LHC energies and smaller systems such as
Xe+Xe, Kr+Kr, Ar+Ar and O+O, with collision energies set to minimize differences in medium
temperature and density. This allows for the clean extraction of path-length dependencies by focusing
on the system size as the primary variable.

The study finds that radiative energy loss exhibits a quadratic dependence on path length, while
collisional energy loss is closer to linear dependence. The chapter identifies path-length sensitive sup-
pression ratio as a reliable and robust observable for extracting path-length dependence, highlighting

73

8. Conclusions

its utility in precision QGP tomography.

Chapter 4 of the thesis introduces and elaborates on the DREENA-B framework, a computational
model that incorporates 1 + 1D Bjorken expansion to study partonic energy loss in a dynamically
evolving QCD medium. The chapter focuses on extending the applicability of the dynamical energy
loss formalism by introducing a more realistic treatment of medium evolution while maintaining the
rigor of high-p⊥ parton-medium interaction modeling. The DREENA-B framework addresses limi-
tations in earlier energy loss models by combining a sophisticated treatment of parton-medium inter-
actions with a dynamically evolving QCD medium. Existing models either oversimplify medium dy-
namics or rely on static approximations, while DREENA-B uses ideal hydrodynamic Bjorken expan-
sion to model temperature evolution, bridging the gap between the constant temperature DREENA-C
framework and more complex full-evolution models.

The framework produces comprehensive predictions for nuclear modification factor (RAA) and
eliptic flow coefficient (v2) for light and heavy flavor particles. Predictions align closely with experi-
mental data from ALICE, ATLAS, and CMS for a range of centralities and multiple collision system.
v2 predictions resolve the "v2 puzzle" where earlier models systematically underestimated data, while
the optimized implementation allows for large-scale calculations, making the framework suitable for
future QGP tomography studies.

The chapter concludes with the potential for dynamical energy loss formalism to be extended to
more complex medium evolution models. DREENA-B provides a critical step towards a full hydro-
dynamic treatment. The agreement of predictions with experimental data strengthens the role of the
dynamical energy loss formalism as a reliable tool for precision QGP studies.

Chapter 5 delves into the initial stages of heavy-ion collisions and their impact on the evolution of
the quark-gluon plasma (QGP). The chapter emphasizes the role of initial dynamics, particularly the
effects of the early-stage temperature profiles and their influence on high-p⊥ observables.

The analysis relies on the dynamical energy loss formalism embedded within the 1+ 1D Bjorken
medium expansion model. This approach allows precise control over the temperature profiles during
the initial stages. Four different initial-stage scenarios are considered: i) free-streaming profile with
non-interacting medium prior to thermalization, ii) linear increase profile where the temperature rises
linearly until thermalization, iii) constant profile in which the medium maintains a constant temper-
ature prior to thermalization and iv) divergent profile where the temperature evolves continuously,
matching the thermalized profile. All scenarios converge to the same hydrodynamic evolution after
thermalization, isolating the impact of early-stage dynamics.

The results show that RAA is moderately sensitive to the initial stages of QGP evolution, with
suppression increasing progressively from free-streaming to divergent cases. This sensitivity arises
because high-p⊥ partons interact with the medium as it thermalizes, and the energy loss reflects differ-
ences in the early-time temperature profiles. Contrary to expectations, v2 demonstrates insensitivity
to initial stages, irrespective of the particle type (charged hadrons, D-mesons and B-mesons). This
contrasts with earlier studies that suggested significant sensitivity. The findings indicate that v2 is
more influenced by differences in the final stages of medium evolution rather than the early stages.

A commonly used approach involves fitting energy loss parameters to reproduce experimental
RAA data for different initial-stage scenarios. This chapter critiques such methods, arguing that en-
ergy loss parameters should reflect intrinsic medium properties, not depend on specific initial-stage
assumptions. The chapter concludes that high-p⊥ RAA is a viable observable for probing early-stage
dynamics, but v2 may not be as effective in distinguishing between initial-stage scenarios. The find-
ings underscore the importance of consistent energy loss modeling and precise control over tempera-
ture profiles to disentangle the effects of initial stages from those of later evolution.

Chapter 6 introduces the DREENA-A framework, a computational model designed for precision

74

tomography of the QGP. By incorporating arbitrary temperature profiles into the dynamical energy
loss formalism, this framework extends beyond its predecessors, DREENA-C (constant temperature)
and DREENA-B (Bjorken expansion), to account for the full 3D evolution of the QGP medium.
The chapter systematically develops the framework, demonstrates its reliability, and evaluates its
sensitivity to medium properties.

Numerical optimizations, including trajectory averaging and integration order adjustments, ensure
computational efficiency. Equidistant sampling of jet trajectories reduces execution time by orders of
magnitude while maintaining precision.

The framework uses temperature profiles derived from various hydrodynamic models that evolve
different initial conditions, including Glauber, EKRT and TRENTo initial conditions. Energy loss was
calculated for temperature profiles in

√
sNN = 5.02 TeV Pb + Pb and

√
sNN = 200 GeV Au + Au

collisions with the goal of understanding their influence on RAA and v2.

Both RAA and v2 exhibit notable sensitivity to the initial temperature and its evolution. Glauber
profiles show higher anisotropy throughout the QGP lifetime, influencing v2, while EKRT profiles
result in smaller RAA due to higher initial temperatures.

By addressing the limitations of previous frameworks and integrating state-of-the-art energy loss
mechanisms, DREENA-A establishes itself as a cornerstone in the study of QGP dynamics and prop-
erties. This chapter solidifies the framework’s role as a critical instrument for future theoretical inves-
tigations in high-energy nuclear physics.

Chapter 7 examines the significance of higher harmonics in the study of the quark-gluon plasma
(QGP) using high transverse momentum observables. The focus is on utilizing the anisotropic flow
coefficients, particularly higher-order harmonics (v3 and v4) as tools for constraining QGP properties
and probing its bulk evolution. The chapter also addresses methodological challenges and evaluates
the consistency of various experimental and theoretical approaches.

Anisotropic flow coefficients (vn) capture the asymmetry in particle momentum distributions rela-
tive to the reaction plane, offering clues about the QGP’s initial state and its hydrodynamic evolution.
Higher harmonics, such as triangular (v3) and quadrangular flow (v4), are particularly sensitive to
event-by-event fluctuations in the initial state and transport properties.

Simulations demonstrate that fluctuations in the initial geometry significantly enhance eliptic flow,
particularly in central collisions. The effect becomes smaller at higher centralities, where geometric
anisotropy dominates. Using various initial condition models (e.g., Monte Carlo Glauber, TRENTo,
IP-Glasma), the study evaluates their impact on high-p⊥ vn predictions. Models with stronger initial
fluctuations yield higher harmonics, underscoring their importance for QGP tomography. v4 predic-
tions are systematically lower than experimental data, revealing a potential "v4 puzzle". This discrep-
ancy emphasizes the need for refined medium modeling and better constraints on initial conditions.

The results establish higher harmonics as a critical component of QGP tomography. By incorpo-
rating event-by-event fluctuations and comparing theoretical predictions with high-p⊥ data from LHC
experiments, this chapter advances the understanding of QGP properties. The findings also highlight
the sensitivity of higher harmonics to temperature profiles, transport coefficients, and initial-state fluc-
tuations, providing avenues for future research.

Overall, this thesis demonstrates that the developed DREENA framework is a powerful tool for
exploring the properties of the QGP using both low-p⊥ and high-p⊥ theory and data. By integrating
state-of-the-art dynamical energy loss models with realistic medium evolution, the DREENA frame-
work bridges the complementary insights offered by low- and high-p⊥ observables. Its ability to
unify these datasets within a single theoretical framework marks a significant advancement, enabling
a more comprehensive characterization of the QGP across a wide range of temperatures and scales.

75

8. Conclusions

These findings emphasize the importance of integrating diverse datasets and highlight the transfor-
mative potential of the DREENA framework for future studies in heavy-ion physics. As experimental
facilities like the LHC and RHIC continue to produce increasingly precise datasets, the DREENA
framework is well-equipped to extract deeper insights into the fundamental properties of the QGP.
This thesis thus establishes a robust foundation for advancing our understanding of the QGP and sets
the stage for further theoretical and computational developments to study this extraordinary state of
matter.

76

Appendix: DREENA-A code

DREENA-A is publicly available on GitHub [191]. It is written in C++ and is organized in two main
classes: i) lTables class that contains code used for calculation of radiated gluon and collisional rates;
these are calcuated only once and can be reused for energy loss calculations on different hydrody-
namical backgrounds; ii) enrergyLoss class that contains code used for high-p⊥ parton energy loss
calculation along a path that uses precalculated rates.

Content of the header file for energyLoss class - energyLoss.hpp is:
1 #ifndef HEADERFILE_ELOSSHEADER
2 #define HEADERFILE_ELOSSHEADER
3
4 #include "grids.hpp"
5 #include "linearinterpolation.hpp"
6
7 #include <string>
8 #include <vector>
9 #include <map>

10
11 class energyLoss {
12
13 public:
14 energyLoss(int argc, const char *argv[]);
15 ~energyLoss();
16 void runEnergyLoss();
17
18 private:
19 bool m_error; //flag that checks if previous calculation is done properly
20
21 std::string m_collsys; // collision system
22 std::string m_sNN; // collision energy
23 std::string m_pName; // particle name
24 std::string m_centrality; // centrality class
25 double m_xB; // xB value
26 size_t m_xGridN; // initial position grid points and angle number
27 long m_yGridN; // initial position grid points and angle number
28 size_t m_phiGridN; // initial position grid points and angle number
29 double m_TIMESTEP, m_TCRIT; // time step and critical temperature
30
31 double m_nf; // effective number of flavours
32 const double m_lambda = 0.2; // QCD scale
33 double m_mgC, m_MC; // constant particle and gluon masses used for dA

integrals
34 double m_TCollConst; // constant temperature used for Gauss filter

integration
35 double m_tau0; // thermalization time
36
37 gridPoints m_Grids; // grid points
38
39
40 int loadInputsFromFile(const std::string &filePath, std::map<std::string, std::string

> &inputParamsFile);

77

Appendix

41
42 double productLog(double x) const;
43
44 interpolationF<double> m_dsdpti2; // initial pT distribution interpolated function
45 int loaddsdpti2(const std::string &pname, interpolationF<double> &dsdpti2int) const;
46
47 interpolationF<double> m_LNorm, m_Ldndx, m_LColl; // interpolated L tables
48 int loadLdndx();
49 int loadLNorm();
50 int loadLColl();
51
52 interpolationF<double> m_tempEvol; // temperature evolution interpolated function
53 int loadTempEvol();
54
55 interpolationF<double> m_binCollDensity; // binary collision density

interpolated function
56 int loadBinCollDensity(interpolationF<double> &binCollDensity);
57 int loadPhiPoints(std::vector<double> &phipoints);
58 int loadBinCollPoints(std::vector<std::vector<double>> &bcpoints);
59 std::vector<double> m_xGridPts, m_yGridPts, m_phiGridPts; // vectors that store

initial position points and angles
60 int generateInitPosPoints();
61
62
63 double haltonSequence(int index, int base) const;
64
65 size_t m_FdAMaxPoints2, m_FdAMaxPoints3, m_FdAMaxPoints4, m_FdAMaxPoints5; //number

of points for FdA integration
66 std::vector<double> m_FdAHS2, m_FdAHS3, m_FdAHS4, m_FdAHS5; //vectors

that store Halton sequences for FdA integrals
67 void FdAHaltonSeqInit(size_t FdAMaxPts);
68 double dAp410(double ph, const interpolationF<double> &norm) const;
69 double FdA411(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const;
70 double FdA412(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const;
71 double FdA413(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const;
72 double FdA414(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const;
73 double FdA415(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const;
74 double FdA(double ph, double dp, const interpolationF<double> &currnorm, const

interpolationF<double> &currdndx) const;
75
76 size_t m_dAMaxPoints1, m_dAMaxPoints2, m_dAMaxPoints3, m_dAMaxPoints4, m_dAMaxPoints5

, m_dAMaxPoints6, m_dAMaxPoints7; //number of points for dA integration
77 std::vector<double> m_dAHS1, m_dAHS2, m_dAHS3, m_dAHS4, m_dAHS5, m_dAHS6, m_dAHS7;

//vectors that store Halton sequences for dA integrals
78 void dAHaltonSeqInit(size_t dAMaxPts);
79 double dA410(double ph, const interpolationF<double> &norm) const;
80 double dA411(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
81 double dA412(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
82 double dA413(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
83 double dA414(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
84 double dA415(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
85 double dA416(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
86 double dA417(double ph, const interpolationF<double> &norm, const interpolationF<

double> &dndx) const;
87 double dA41(double ph, interpolationF<double> &currnorm, interpolationF<double> &

currdndx) const;
88
89 void radCollEnergyLoss(double x, double y, double phi, std::vector<double> &radRAA1,

std::vector<std::vector<double>> &radRAA2, std::vector<double> &collEL, double &
pathLength, double &temperature) const;

90 void radCollEnergyLoss(double x, double y, double phi, std::vector<double> &radRAA,

78

DREENA-A code

std::vector<double> &collEL, double &pathLenght, double &temperature) const;
91
92 void generateGaussTab(std::vector<double> &qGTab, std::vector<double> &fGTab) const;
93 void gaussFilterIntegrate(const std::vector<double> &radiativeRAA1, const std::vector

<std::vector<double>> &radiativeRAA2, const std::vector<double> &collisionalEL, std::
vector<double> &singRAA1, std::vector<std::vector<double>> &singRAA2) const;

94 void gaussFilterIntegrate(const interpolationF<double> &dsdpti2lquark, const std::
vector<double> &radiativeRAA1, const std::vector<std::vector<double>> &radiativeRAA2,
const std::vector<double> &collisionalEL, std::vector<double> &singRAA1, std::vector

<std::vector<double>> &singRAA2) const;
95 void gaussFilterIntegrate(const std::vector<double> &radiativeRAA, const std::vector<

double> &collisionalEL, std::vector<double> &singRAA) const;
96
97 void calculateAvgPathlenTemps(const std::vector<double> &pathLenghDist, const std::

vector<double> &temperatureDist, std::vector<double> &avgPathLength, std::vector<
double> &avgTemp) const;

98
99 int exportResults(const std::string &pName, const std::vector<std::vector<double>> &

RAADist, const std::vector<double> avgPathLength, const std::vector<double> avgTemp);
100
101 void runELossHeavyFlavour();
102 void runELossLightQuarks();
103 void runELossLightFlavour();
104 };
105
106 #endif

energyLoss class methods are separated into two files - one containing integrals in the Poisson
expansion of the radiative energy loss, and the other one containing everything else. Content of the
main source file for energyLoss class, energyLoss.cpp follows:

1 #include "energyloss.hpp"
2 #include "grids.hpp"
3 #include "linearinterpolation.hpp"
4 #include "polyintegration.hpp"
5
6 #include <iostream>
7 #include <string>
8 #include <sstream>
9 #include <vector>

10 #include <algorithm>
11 #include <random>
12 #include <map>
13 #include <tuple>
14 #include <fstream>
15 #include <cmath>
16 #include <limits>
17 #include <iomanip>
18
19 energyLoss::energyLoss(int argc, const char *argv[])
20 {
21 m_error = false;
22
23 std::vector<std::string> inputs; for (int i=2; i<argc; i++) inputs.push_back(argv[i]);
24
25 if ((inputs.size() == 1) && (inputs[0] == "-h")) {
26 std::cout << "default values: --collsys=PbPb --sNN=5020GeV --pName=Charm --centrality

=30-40% --xB=0.6 --xGridN=50 --yGridN=50 --phiGridN=25 --TIMESTEP=0.1 --TCRIT=0.155"
<< std::endl;

27 m_error = true;
28 }
29
30 std::map<std::string, std::string> inputParams;
31 for (const auto &in : inputs) {
32 std::string key = in.substr(0, in.find("="));
33 std::string::size_type n = 0; while ((n = key.find("-", n)) != std::string::npos) {

key.replace(n, 1, ""); n += 0;} //replacing all ’-’
34 std::string val = in.substr(in.find("=")+1, in.length());
35 inputParams[key] = val;
36 }
37

79

Appendix

38 std::vector<std::string> arguments = {"collsys", "sNN", "pName", "centrality", "xB", "
xGridN", "yGridN", "phiGridN", "TIMESTEP", "TCRIT", "config", "h"};

39 for (const auto &inputParam : inputParams) {
40 if(std::find(arguments.begin(), arguments.end(), inputParam.first) == arguments.end()

) {
41 std::cerr << "Error: provide argument flag: " << inputParam.first << " is not an

option." << std::endl;
42 std::cerr << "Valid parameters and default values are: ";
43 std::cerr << "--collsys=PbPb --sNN=5020GeV --pName=Charm --centrality=30-40% --xB

=0.6 --xGridN=50 --yGridN=50 --phiGridN=25 --TIMESTEP=0.1 --TCRIT=0.155" << std::endl
;

44 std::cerr << "For congiguration file use: --config=[pathToConfFile]" << std::endl;
45 m_error = true;
46 }
47 }
48
49 //checking if configuration file is provided:
50 std::map<std::string, std::string> inputParamsFile;
51 if (inputParams.count("config") > 0) {
52 if (loadInputsFromFile(inputParams.at("config"), inputParamsFile) != 1) {
53 m_error = true;
54 }
55 }
56 std::vector<std::string> argumentsFile = {"collsys", "sNN", "pName", "centrality", "xB"

, "xGridN", "yGridN", "phiGridN", "TIMESTEP", "TCRIT"};
57 for (const auto &inputParam : inputParamsFile) {
58 if(std::find(argumentsFile.begin(), argumentsFile.end(), inputParam.first) ==

argumentsFile.end()) {
59 std::cerr << "Error: in configration file provided argument: ’" << inputParam.first

<< "’ is not an option." << std::endl;
60 std::cerr << "Valid parameters and default values are: \n";
61 std::cerr << "collsys = PbPb\nsNN = 5020GeV\npName = Charm\ncentrality = 30-40%\nxB

= 0.6\nxGridN = 50\nyGridN = 50\nphiGridN = 25\nTIMESTEP = 0.1\nTCRIT = 0.155\n" <<
std::endl;

62 m_error = true;
63 }
64 }
65
66 //setting parameter values based on config file values and overwriting with command

line values:
67 //
68 m_collsys = "PbPb"; if (inputParamsFile.count("collsys") > 0) m_collsys =

inputParamsFile.at("collsys");
69 if (inputParams.count("collsys") > 0) m_collsys = inputParams.at("

collsys");
70
71 m_sNN = "5020GeV"; if (inputParamsFile.count("sNN") > 0) m_sNN = inputParamsFile.at("

sNN");
72 if (inputParams.count("sNN") > 0) m_sNN = inputParams.at("sNN");
73
74 m_pName = "Charm"; if (inputParamsFile.count("pName") > 0) m_pName = inputParamsFile.at

("pName");
75 if (inputParams.count("pName") > 0) m_pName = inputParams.at("pName"

);
76
77 m_centrality = "30-40%"; if (inputParamsFile.count("centrality") > 0) m_centrality =

inputParamsFile.at("centrality");
78 if (inputParams.count("centrality") > 0) m_centrality =

inputParams.at("centrality");
79
80 m_xB = 0.6; if (inputParamsFile.count("xB") > 0) m_xB = stod(inputParamsFile.at("xB"));
81 if (inputParams.count("xB") > 0) m_xB = stod(inputParams.at("xB"));
82
83 m_xGridN = 25; if (inputParamsFile.count("xGridN") > 0) m_xGridN = stoi(

inputParamsFile.at("xGridN"));
84 if (inputParams.count("xGridN") > 0) m_xGridN = stoi(inputParams.at("

xGridN"));
85
86 m_yGridN = 25; if (inputParamsFile.count("yGridN") > 0) m_yGridN = stoi(

inputParamsFile.at("yGridN"));
87 if (inputParams.count("yGridN") > 0) m_yGridN = stoi(inputParams.at("

yGridN"));

80

DREENA-A code

88
89 m_phiGridN = 25; if (inputParamsFile.count("phiGridN") > 0) m_phiGridN = stoi(

inputParamsFile.at("phiGridN"));
90 if (inputParams.count("phiGridN") > 0) m_phiGridN = stoi(inputParams.

at("phiGridN"));
91
92 m_TIMESTEP = 0.1; if (inputParamsFile.count("TIMESTEP") > 0) m_TIMESTEP = stod(

inputParamsFile.at("TIMESTEP"));
93 if (inputParams.count("TIMESTEP") > 0) m_TIMESTEP = stod(inputParams.

at("TIMESTEP"));
94
95 m_TCRIT = 0.155; if (inputParamsFile.count("TCRIT") > 0) m_TCRIT = stod(inputParamsFile

.at("TCRIT"));
96 if (inputParams.count("TCRIT") > 0) m_TCRIT = stod(inputParams.at("

TCRIT"));
97
98 //checking if provided value of sNN is an option:
99 if ((m_sNN != "5440GeV") && (m_sNN != "5020GeV") && (m_sNN != "2760GeV") && (m_sNN != "

200GeV")) {
100 std::cerr << "Error: provided sNN parameter not an option, please try 5440GeV, 5020

GeV, 2760GeV or 200GeV. Aborting..." << std::endl;
101 m_error = true;
102 }
103
104 m_nf = m_sNN == "200GeV" ? 2.5 : 3.0;
105 double T = 3.0 / 2.0*m_TCRIT;
106 double mu = 0.197*std::sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

107 m_mgC = mu / std::sqrt(2.0);
108 if (m_pName == "Bottom") m_MC = 4.75;
109 else if (m_pName == "Charm") m_MC = 1.2;
110 else if (m_pName == "Gluon") m_MC = mu/std::sqrt(2.0);
111 else m_MC = mu/sqrt(6.0);
112 m_TCollConst = T;
113 }
114
115 int energyLoss::loadInputsFromFile(const std::string &filePath, std::map<std::string, std

::string> &inputParamsFile)
116 {
117 std::ifstream file_in(filePath);
118 if (!file_in.is_open()) {
119 std::cerr << "Error: unable to open configuration file. Aborting..." << std::endl;
120 return -1;
121 }
122 std::string line, key, sep, val;
123 while (std::getline(file_in, line))
124 {
125 std::stringstream ss(line);
126 ss >> key; ss >> sep; ss >> val;
127 inputParamsFile[key] = val;
128 }
129 file_in.close();
130 return 1;
131 }
132
133 energyLoss::~energyLoss() {}
134
135 void energyLoss::runEnergyLoss()
136 {
137 if (m_error) return;
138
139 m_Grids.setGridPoints(m_sNN, m_pName, m_TCRIT);
140
141 if (loadLdndx() != 1) return;
142 if (loadLNorm() != 1) return;
143 if (loadLColl() != 1) return;
144
145 if (generateInitPosPoints() != 1) return;
146 if (loadTempEvol() != 1) return;
147
148 if ((m_pName == "Bottom") || (m_pName == "Charm")) {

81

Appendix

149 runELossHeavyFlavour();
150 }
151 else if (m_pName == "LQuarks") {
152 runELossLightQuarks();
153 }
154 else {
155 runELossLightFlavour();
156 }
157 }
158
159 double energyLoss::productLog(double x) const
160 {
161 if (x == 0.0) {
162 return 0.0;
163 }
164
165 double w0, w1;
166 if (x > 0.0) {
167 w0 = std::log(1.2 * x / std::log(2.4 * x / std::log1p(2.4 * x)));
168 }
169 else {
170 double v = 1.4142135623730950488 * std::sqrt(1.0 + 2.7182818284590452354 * x);
171 double N2 = 10.242640687119285146 + 1.9797586132081854940 * v;
172 double N1 = 0.29289321881345247560 * (1.4142135623730950488 + N2);
173 w0 = -1 + v * (N2 + v) / (N2 + v + N1 * v);
174 }
175
176 while (true) {
177 double e = std::exp(w0);
178 double f = w0 * e - x;
179 w1 = w0 - f / ((e * (w0 + 1.0) - (w0 + 2.0) * f / (w0 + w0 + 2.0)));
180 if (std::abs(w0 / w1 - 1.0) < 1.4901161193847656e-8) {
181 break;
182 }
183 w0 = w1;
184 }
185 return w1;
186 }
187
188
189 int energyLoss::loaddsdpti2(const std::string &pname, interpolationF<double> &dsdpti2int)

const
190 {
191 const std::string path_in = "./ptDists/ptDist" + m_sNN + "/ptDist_" + m_sNN + "_" +

pname + ".dat";
192
193 std::ifstream file_in(path_in);
194 if (!file_in.is_open()) {
195 std::cerr << "Error: unable to open initial pT distribution file. Aborting..." << std

::endl;
196 return -1;
197 }
198
199 std::vector<double> pTdistX, pTdistF;
200
201 std::string line; double buffer;
202
203 while (std::getline(file_in, line))
204 {
205 if (line.at(0) == ’#’)
206 continue;
207
208 std::stringstream ss(line);
209 ss >> buffer; pTdistX.push_back(buffer);
210 ss >> buffer; pTdistF.push_back(buffer);
211 }
212
213 dsdpti2int.setData(pTdistX, pTdistF);
214
215 file_in.close();
216
217 return 1;

82

DREENA-A code

218 }
219
220 int energyLoss::loadLdndx()
221 {
222 std::string partName;
223 if (m_pName == "Bottom") partName = "Bottom";
224 else if (m_pName == "Charm") partName = "Charm";
225 else if (m_pName == "Gluon") partName = "Gluon";
226 else partName = "LQuarks";
227
228 std::stringstream xBss; xBss << std::fixed << std::setprecision(1) << m_xB;
229 std::stringstream nfss; nfss << std::fixed << std::setprecision(1) << m_nf;
230
231 const std::string path_in = "./ltables/ldndx_nf=" + nfss.str() + "_" + partName + "_xB=

" + xBss.str() + ".dat";
232
233 std::ifstream file_in(path_in);
234 if (!file_in.is_open()) {
235 std::cerr << "Error: unable to open Ldndx table file. Aborting..." << std::endl;
236 return -1;
237 }
238
239 std::vector<double> Ldndx_tau, Ldndx_p, Ldndx_T, Ldndx_x, Ldndx_f;
240
241 std::string line; double buffer;
242
243 while (std::getline(file_in, line))
244 {
245 if (line.at(0) == ’#’)
246 continue;
247
248 std::stringstream ss(line);
249 ss >> buffer; Ldndx_tau.push_back(buffer);
250 ss >> buffer; Ldndx_p.push_back(buffer);
251 ss >> buffer; Ldndx_T.push_back(buffer);
252 ss >> buffer; Ldndx_x.push_back(buffer);
253 ss >> buffer; Ldndx_f.push_back(buffer);
254 }
255
256 file_in.close();
257
258 m_Ldndx.setData(Ldndx_tau, Ldndx_p, Ldndx_T, Ldndx_x, Ldndx_f);
259
260 std::vector<std::vector<double>> domain = m_Ldndx.domain();
261 if (m_Grids.tauPts(0) < domain[0][0]) {std::cerr << "Error: tau grid point(s) out of

lower bound of Ldndx domain. Aborting..." << std::endl; return -1;}
262 if (m_Grids.tauPts(-1) > domain[0][1]) {std::cerr << "Error: tau grid point(s) out of

upper bound of Ldndx domain. Aborting..." << std::endl; return -1;}
263 if (m_Grids.pPts(0) < domain[1][0]) {std::cerr << "Error: p grid point(s) out of

lower bound of Ldndx domain. Aborting..." << std::endl; return -1;}
264 if (m_Grids.pPts(-1) > domain[1][1]) {std::cerr << "Error: p grid point(s) out of

upper bound of Ldndx domain. Aborting..." << std::endl; return -1;}
265 if (m_Grids.TPts(0) < domain[2][0]) {std::cerr << "Error: T grid point(s) out of

lower bound of Ldndx domain. Aborting..." << std::endl; return -1;}
266 if (m_Grids.TPts(-1) > domain[2][1]) {std::cerr << "Error: T grid point(s) out of

upper bound of Ldndx domain. Aborting..." << std::endl; return -1;}
267 if (m_Grids.xPts(0) < domain[3][0]) {std::cerr << "Error: x grid point(s) out of

lower bound of Ldndx domain. Aborting..." << std::endl; return -1;}
268 if (m_Grids.xPts(-1) > domain[3][1]) {std::cerr << "Error: x grid point(s) out of

upper bound of Ldndx domain. Aborting..." << std::endl; return -1;}
269
270 return 1;
271 }
272
273 int energyLoss::loadLNorm()
274 {
275 std::string partName;
276 if (m_pName == "Bottom") partName = "Bottom";
277 else if (m_pName == "Charm") partName = "Charm";
278 else if (m_pName == "Gluon") partName = "Gluon";
279 else partName = "LQuarks";
280

83

Appendix

281 std::stringstream xBss; xBss << std::fixed << std::setprecision(1) << m_xB;
282 std::stringstream nfss; nfss << std::fixed << std::setprecision(1) << m_nf;
283
284 const std::string path_in = "./ltables/lnorm_nf=" + nfss.str() + "_" + partName + "_xB=

" + xBss.str() + ".dat";
285
286 std::ifstream file_in(path_in);
287 if (!file_in.is_open()) {
288 std::cerr << "Error: unable to open LNorm table file. Aborting..." << std::endl;
289 return -1;
290 }
291
292 std::vector<double> LNorm_tau, LNorm_p, LNorm_T, LNorm_f; //defining vectors that store

LNorm table values
293
294 std::string line; double buffer;
295
296 while (std::getline(file_in, line))
297 {
298 if (line.at(0) == ’#’)
299 continue;
300
301 std::stringstream ss(line);
302 ss >> buffer; LNorm_tau.push_back(buffer);
303 ss >> buffer; LNorm_p.push_back(buffer);
304 ss >> buffer; LNorm_T.push_back(buffer);
305 ss >> buffer; LNorm_f.push_back(buffer);
306 }
307
308 file_in.close();
309
310 m_LNorm.setData(LNorm_tau, LNorm_p, LNorm_T, LNorm_f);
311
312 std::vector<std::vector<double>> domain = m_LNorm.domain();
313 if (m_Grids.tauPts(0) < domain[0][0]) {std::cerr << "Error: tau grid point(s) out of

lower bound of LNorm domain. Aborting..." << std::endl; return -1;}
314 if (m_Grids.tauPts(-1) > domain[0][1]) {std::cerr << "Error: tau grid point(s) out of

upeer bound of LNorm domain. Aborting..." << std::endl; return -1;}
315 if (m_Grids.pPts(0) < domain[1][0]) {std::cerr << "Error: p grid point(s) out of

lower bound of LNorm domain. Aborting..." << std::endl; return -1;}
316 if (m_Grids.pPts(-1) > domain[1][1]) {std::cerr << "Error: p grid point(s) out of

upeer bound of LNorm domain. Aborting..." << std::endl; return -1;}
317 if (m_Grids.TPts(0) < domain[2][0]) {std::cerr << "Error: T grid point(s) out of

lower bound of LNorm domain. Aborting..." << std::endl; return -1;}
318 if (m_Grids.TPts(-1) > domain[2][1]) {std::cerr << "Error: T grid point(s) out of

upeer bound of LNorm domain. Aborting..." << std::endl; return -1;}
319
320 return 1;
321 }
322
323 int energyLoss::loadLColl()
324 {
325 std::string partName;
326 if (m_pName == "Bottom") partName = "Bottom";
327 else if (m_pName == "Charm") partName = "Charm";
328 else if (m_pName == "Gluon") partName = "Gluon";
329 else partName = "LQuarks";
330
331 std::stringstream nfss; nfss << std::fixed << std::setprecision(1) << m_nf;
332
333 const std::string path_in = "./ltables/lcoll_nf=" + nfss.str() + "_" + partName + ".dat

";
334
335 std::ifstream file_in(path_in);
336 if (!file_in.is_open()) {
337 std::cerr << "Error: unable to open LColl table file. Aborting..." << std::endl;
338 return -1;
339 }
340
341 std::vector<double> LColl_p, LColl_T, LColl_f;
342
343 std::string line; double buffer;

84

DREENA-A code

344
345 while (std::getline(file_in, line))
346 {
347 if (line.at(0) == ’#’)
348 continue;
349
350 std::stringstream ss(line);
351 ss >> buffer; LColl_p.push_back(buffer);
352 ss >> buffer; LColl_T.push_back(buffer);
353 ss >> buffer; LColl_f.push_back(buffer);
354 }
355
356 file_in.close();
357
358 m_LColl.setData(LColl_p, LColl_T, LColl_f);
359
360 std::vector<std::vector<double>> domain = m_LColl.domain();
361 if (m_Grids.pCollPts(0) < domain[0][0]) {std::cerr << "Error: p grid point(s) out of

lower bound of LColl domain. Aborting..." << std::endl; return -1;}
362 if (m_Grids.pCollPts(-1) > domain[0][1]) {std::cerr << "Error: p grid point(s) out of

upper bound of LColl domain. Aborting..." << std::endl; return -1;}
363 if (m_Grids.TCollPts(0) < domain[1][0]) {std::cerr << "Error: T grid point(s) out of

lower bound of LColl domain. Aborting..." << std::endl; return -1;}
364 if (m_Grids.TCollPts(-1) > domain[1][1]) {std::cerr << "Error: T grid point(s) out of

upper bound of LColl domain. Aborting..." << std::endl; return -1;}
365
366 return 1;
367 }
368
369
370 int energyLoss::loadBinCollDensity(interpolationF<double> &binCollDensity)
371 {
372 std::string path_in = "binarycolldensities/binarycolldensity_cent=" + m_centrality + ".

dat";
373 std::ifstream file_in(path_in, std::ios_base::in);
374 if (!file_in.is_open()) {
375 std::cerr << "Error: unable to open binary collision density file." << std::endl;
376 return -1;
377 }
378
379 std::string line; double buffer;
380
381 std::vector<double> bcdX, bcdY, bcdData;
382
383 while (std::getline(file_in, line))
384 {
385 if (line.at(0) == ’#’)
386 continue;
387
388 std::stringstream ss(line);
389 ss >> buffer; bcdX.push_back(buffer);
390 ss >> buffer; bcdY.push_back(buffer);
391 ss >> buffer; bcdData.push_back(buffer);
392 }
393
394 file_in.close();
395
396 double bcdXMin = *std::min_element(bcdX.begin(), bcdX.end());
397 double bcdYMin = *std::min_element(bcdY.begin(), bcdY.end());
398
399 if ((bcdXMin >= 0.0) && (bcdYMin >= 0.0)) {// if binary collision density is defined

only in the first quadrant:
400
401 //creating full x grid:
402 std::vector<double> bcdXGrid(bcdX.begin(), bcdX.end());
403 size_t sizeX = bcdXGrid.size();
404 bcdXGrid.reserve(sizeX * 2);
405 for (size_t i=0; i<sizeX; ++i)
406 bcdXGrid.push_back(-1.0*bcdXGrid[i]);
407 sort(bcdXGrid.begin(), bcdXGrid.end());
408 bcdXGrid.erase(unique(bcdXGrid.begin(), bcdXGrid.end()), bcdXGrid.end());
409

85

Appendix

410 //creating full y grid:
411 std::vector<double> bcdYGrid(bcdY.begin(), bcdY.end());
412 size_t sizeY = bcdYGrid.size();
413 bcdYGrid.reserve(sizeY * 2);
414 for (size_t i=0; i<sizeY; ++i)
415 bcdYGrid.push_back(-1.0*bcdYGrid[i]);
416 sort(bcdYGrid.begin(), bcdYGrid.end());
417 bcdYGrid.erase(unique(bcdYGrid.begin(), bcdYGrid.end()), bcdYGrid.end());
418
419 // creating interpolated binary collision density defined in first quadrant:
420 interpolationF<double> binCollDensityFirstQuadrant(bcdX, bcdY, bcdData);
421
422 //creating full binary collision density table:
423 std::vector<double> bcdXFull, bcdYFull, bcdDataFull;
424 for (const auto &x : bcdXGrid) {
425 for (const auto &y : bcdYGrid) {
426 bcdXFull.push_back(x);
427 bcdYFull.push_back(y);
428 bcdDataFull.push_back(binCollDensityFirstQuadrant.interpolation(std::abs(x), std

::abs(y)));
429 }
430 }
431
432 binCollDensity.setData(bcdXFull, bcdYFull, bcdDataFull);
433 }
434 else { // if not, creating interpolated function with values from file:
435
436 binCollDensity.setData(bcdX, bcdY, bcdData);
437 }
438
439 return 1;
440 }
441
442 int energyLoss::loadPhiPoints(std::vector<double> &phiPoints)
443 {
444 std::string path_in = "./phiGaussPts/phiptsgauss" + std::to_string(m_phiGridN) + ".dat"

;
445 std::ifstream file_in(path_in, std::ios_base::in);
446 if (!file_in.is_open()) {
447 std::cerr << "Error: unable to open phi points file. Aborting..." << std::endl;
448 return -1;
449 }
450
451 phiPoints.resize(0);
452
453 std::string line; double buffer;
454
455 while (std::getline(file_in, line)) {
456 if (line.at(0) == ’#’)
457 continue;
458
459 std::stringstream ss(line);
460 ss >> buffer; phiPoints.push_back(buffer);
461 }
462
463 file_in.close();
464
465 return 1;
466 }
467
468 int energyLoss::loadBinCollPoints(std::vector<std::vector<double>> &bcPoints)
469 {
470 std::string path_in = "binarycollpoints/binarycollpoints_cent=" + m_centrality + ".dat"

;
471 std::ifstream file_in(path_in, std::ios_base::in);
472 if (!file_in.is_open()) {
473 std::cerr << "Error: unable to open binary collision points file." << std::endl;
474 return -1;
475 }
476
477 bcPoints.resize(0);
478

86

DREENA-A code

479 std::string line; double bufferX, bufferY;
480
481 while (std::getline(file_in, line)) {
482 std::stringstream ss(line);
483 ss >> bufferX;
484 ss >> bufferY;
485 bcPoints.push_back({bufferX, bufferY});
486 }
487
488 file_in.close();
489
490 return 1;
491 }
492
493 int energyLoss::generateInitPosPoints()
494 {
495 m_xGridPts.resize(0); m_yGridPts.resize(0); m_phiGridPts.resize(0);
496
497 if (m_yGridN == -2) {
498 //if yGridN is set to -2, MonteCarlo method is used to generate initial position

points and angles
499 //number of x-y initial position points is equal to m_xGridN
500
501 interpolationF<double> binCollDensity; if (loadBinCollDensity(binCollDensity) != 1)

return -1;
502
503 std::vector<std::vector<double>> bcDensDomain = binCollDensity.domain();
504 std::vector<double> bcDensCoDomain = binCollDensity.codomain();
505
506 //generating x and y points:
507 std::random_device rdX; std::mt19937 mtX(rdX());
508 std::uniform_real_distribution<double> distX(bcDensDomain[0][0], std::nextafter(

bcDensDomain[0][1], std::numeric_limits<double>::max()));
509 std::random_device rdY; std::mt19937 mtY(rdY());
510 std::uniform_real_distribution<double> distY(bcDensDomain[1][0], std::nextafter(

bcDensDomain[1][1], std::numeric_limits<double>::max()));
511 std::random_device rdZ; std::mt19937 mtZ(rdZ());
512 std::uniform_real_distribution<double> distZ(bcDensCoDomain[0], std::nextafter(

bcDensCoDomain[1], std::numeric_limits<double>::max()));
513
514 double x, y, z;
515
516 for (size_t iXY=0; iXY<m_xGridN; iXY++) {
517 do {
518 x = distX(mtX);
519 y = distY(mtY);
520 z = distZ(mtZ);
521 }
522 while (z > binCollDensity.interpolation(x, y));
523
524 m_xGridPts.push_back(x); m_yGridPts.push_back(y);
525 }
526
527 std::random_device rdPhi; std::mt19937 mtPhi(rdPhi());
528 std::uniform_real_distribution<double> distPhi(0.0, std::nextafter(2.0*M_PI, std

::numeric_limits<double>::max()));
529
530 double phi;
531
532 // artificially adding 0 and 2Pi to the list:
533 phi = 0.0; m_phiGridPts.push_back(phi); std::sort(m_phiGridPts.begin(),

m_phiGridPts.end());
534 phi = 2.0*M_PI; m_phiGridPts.push_back(phi); std::sort(m_phiGridPts.begin(),

m_phiGridPts.end());
535
536 //generating other points:
537 for (size_t iPhi=2; iPhi<m_phiGridN; iPhi++) {
538 do {
539 phi = distPhi(mtPhi);
540 }
541 while (std::binary_search(m_phiGridPts.begin(), m_phiGridPts.end(), phi));
542 m_phiGridPts.push_back(phi); std::sort(m_phiGridPts.begin(), m_phiGridPts.end());

87

Appendix

543 }
544
545 //generating binary collision density with function values 1:
546 std::vector<double> bcdX, bcdY, bcdData;
547 for (size_t iX=0; iX<=10; iX++){
548 for (size_t iY=0; iY<=10; iY++){
549 bcdX.push_back(bcDensDomain[0][0] + (bcDensDomain[0][1]-bcDensDomain[0][0])*

static_cast<double>(iX)/10.0);
550 bcdY.push_back(bcDensDomain[1][0] + (bcDensDomain[1][1]-bcDensDomain[1][0])*

static_cast<double>(iY)/10.0);
551 bcdData.push_back(1.0);
552 }
553 }
554 m_binCollDensity.setData(bcdX, bcdY, bcdData);
555
556 }
557 else if (m_yGridN == -1) {
558 //if yGridN is set to -1, MonteCarlo method is used to generate initial position

points, while angles are on equidistant grid
559 //number of x-y initial position points is equal to xGridN
560
561 interpolationF<double> binCollDensity; if (loadBinCollDensity(binCollDensity) != 1)

return -1;
562
563 std::vector<std::vector<double>> bcDensDomain = binCollDensity.domain();
564 std::vector<double> bcDensCoDomain = binCollDensity.codomain();
565
566 //generating x and y points:
567 std::random_device rdX; std::mt19937 mtX(rdX());
568 std::uniform_real_distribution<double> distX(bcDensDomain[0][0], std::nextafter(

bcDensDomain[0][1], std::numeric_limits<double>::max()));
569 std::random_device rdY; std::mt19937 mtY(rdY());
570 std::uniform_real_distribution<double> distY(bcDensDomain[1][0], std::nextafter(

bcDensDomain[1][1], std::numeric_limits<double>::max()));
571 std::random_device rdZ; std::mt19937 mtZ(rdZ());
572 std::uniform_real_distribution<double> distZ(bcDensCoDomain[0], std::nextafter(

bcDensCoDomain[1], std::numeric_limits<double>::max()));
573
574 double x, y, z;
575
576 for (size_t iXY=0; iXY<m_xGridN; iXY++) {
577 do {
578 x = distX(mtX);
579 y = distY(mtY);
580 z = distZ(mtZ);
581 }
582 while (z > binCollDensity.interpolation(x, y));
583
584 m_xGridPts.push_back(x); m_yGridPts.push_back(y);
585 }
586
587 if (loadPhiPoints(m_phiGridPts) != 1) return -3;
588
589 //generating binary collision density with function values 1:
590 std::vector<double> bcdX, bcdY, bcdData;
591 for (size_t iX=0; iX<=10; iX++){
592 for (size_t iY=0; iY<=10; iY++){
593 bcdX.push_back(bcDensDomain[0][0] + (bcDensDomain[0][1]-bcDensDomain[0][0])*

static_cast<double>(iX)/10.0);
594 bcdY.push_back(bcDensDomain[1][0] + (bcDensDomain[1][1]-bcDensDomain[1][0])*

static_cast<double>(iY)/10.0);
595 bcdData.push_back(1.0);
596 }
597 }
598 m_binCollDensity.setData(bcdX, bcdY, bcdData);
599
600 }
601 else if (m_yGridN == 0) {
602 //if yGridN is set to 0, initial position points are randomly selected from a list,

while angles are on equidistant grid
603 //number of x-y initial position points is equal to xGridN
604

88

DREENA-A code

605 std::vector<std::vector<double>> bcPoints; if (loadBinCollPoints(bcPoints) != 1)
return -4;

606
607 if ((m_xGridN == bcPoints.size()) || (m_xGridN == 0)) {// take all points if xGridN

is equal to total number of points or 0
608 for (size_t iXY=0; iXY<bcPoints.size(); iXY++) {
609 m_xGridPts.push_back(bcPoints[iXY][0]);
610 m_yGridPts.push_back(bcPoints[iXY][1]);
611 }
612 }
613 else {// randomly select from imported points
614 std::random_device rd; auto rng = std::default_random_engine{rd()};
615 std::shuffle(bcPoints.begin(), bcPoints.end(), rng);
616 for (size_t iXY=0; iXY<m_xGridN; iXY++) {
617 m_xGridPts.push_back(bcPoints[iXY][0]);
618 m_yGridPts.push_back(bcPoints[iXY][1]);
619 }
620 }
621
622 if (loadPhiPoints(m_phiGridPts) != 1) return -5;
623
624 //generating binary collision density with function values 1 in domain [-20, 20]:
625 std::vector<double> bcdX, bcdY, bcdData;
626 for (size_t iX=0; iX<=10; iX++) {
627 for (size_t iY=0; iY<=10; iY++) {
628 bcdX.push_back(-20.0 + 40.0*static_cast<double>(iX)/10.0);
629 bcdY.push_back(-20.0 + 40.0*static_cast<double>(iY)/10.0);
630 bcdData.push_back(1.0);
631 }
632 }
633
634 m_binCollDensity.setData(bcdX, bcdY, bcdData);
635
636 }
637 else {
638 //if yGridN is larger than 0, initial position points and angles are generated on

equidistant grid
639 //number of x-y initial position points is equal to (xGridN+1)*(yGridN+1)
640
641 if (loadBinCollDensity(m_binCollDensity) != 1) return -6; //loading binary collision

density
642
643 std::vector<std::vector<double>> bcDensDomain = m_binCollDensity.domain();
644
645 double initGridRange = 0.0;
646 if (std::abs(bcDensDomain[0][0]) > bcDensDomain[0][1])
647 initGridRange = std::abs(bcDensDomain[0][0]) - 0.5;
648 else
649 initGridRange = std::abs(bcDensDomain[0][1]) - 0.5;
650
651 for (size_t iX=0; iX<=m_xGridN; iX++) {
652 for (long iY=0; iY<=m_yGridN; iY++) {
653 m_xGridPts.push_back(-1.0*initGridRange + 2.0*iX*initGridRange/

static_cast<double>(m_xGridN));
654 m_yGridPts.push_back(-1.0*initGridRange + 2.0*iY*initGridRange/

static_cast<double>(m_yGridN));
655 }
656 }
657
658 if (loadPhiPoints(m_phiGridPts) != 1) return -7;
659 }
660
661 return 1;
662 }
663
664 int energyLoss::loadTempEvol()
665 {
666 std::string path_in = "./evols/tempevol_cent=" + m_centrality + ".dat";
667 std::ifstream file_in(path_in, std::ios_base::in);
668 if (!file_in.is_open()) {
669 std::cerr << "Error: unable to open temperature evolution file. Aborting..." << std::

endl;

89

Appendix

670 return -1;
671 }
672
673 std::string line; double buffer;
674
675 while (std::getline(file_in, line)) { // skiping header lines that start with ’#’
676 if (line.at(0) == ’#’)
677 continue;
678 break;
679 }
680
681 //checking how many columns evolution file has:
682 size_t columnCnt = 0;
683 std::stringstream lineSStr(line); while (lineSStr >> buffer) columnCnt++;
684
685 file_in.clear(); file_in.seekg(0); //return to the begining of file
686
687 std::vector<double> tempTau, tempX, tempY, tempDataA, tempDataB, tempT;
688
689 if (columnCnt == 4) { //evolution file has 4 columns (just temperature)
690
691 while (std::getline(file_in, line)) {
692 if (line.at(0) == ’#’)
693 continue;
694
695 std::stringstream ss(line);
696 ss >> buffer; tempTau.push_back(buffer);
697 ss >> buffer; tempX.push_back(buffer);
698 ss >> buffer; tempY.push_back(buffer);
699 ss >> buffer; tempT.push_back(buffer);
700 }
701 }
702 else if (columnCnt == 5) { //evolution file has 5 columns (energy density and

temperature)
703
704 while (std::getline(file_in, line)) {
705 if (line.at(0) == ’#’)
706 continue;
707
708 std::stringstream ss(line);
709 ss >> buffer; tempTau.push_back(buffer);
710 ss >> buffer; tempX.push_back(buffer);
711 ss >> buffer; tempY.push_back(buffer);
712 ss >> buffer; tempDataA.push_back(buffer);
713 ss >> buffer; tempDataB.push_back(buffer);
714 }
715
716 double tempDataAMax = *std::max_element(tempDataA.begin(), tempDataA.end());
717 double tempDataBMax = *std::max_element(tempDataB.begin(), tempDataB.end());
718
719 if (tempDataAMax < tempDataBMax) {
720 tempT.assign(tempDataA.begin(), tempDataA.end()); // 4th column is

temperature
721 } else {
722 tempT.assign(tempDataB.begin(), tempDataB.end()); // 5th column is

temperature
723 }
724
725 }
726 else { //evolution file is not suitable for interpolation
727
728 std::cerr << "Error: number of columns is not appropriate for temperature evolution

interpolation. Aborting..." << std::endl;
729 return -2;
730 }
731
732 file_in.close();
733
734 double tempXMin = *std::min_element(tempX.begin(), tempX.end());
735 double tempYMin = *std::min_element(tempY.begin(), tempY.end());
736
737 if ((tempXMin >= 0.0) && (tempYMin >= 0.0)) {// if temperature evolution is defined

90

DREENA-A code

only in the first quadrant
738
739 //creating tau grid:
740 std::vector<double> tempTauGrid(tempTau.begin(), tempTau.end());
741 std::sort(tempTauGrid.begin(), tempTauGrid.end());
742 tempTauGrid.erase(unique(tempTauGrid.begin(), tempTauGrid.end()), tempTauGrid.end());
743
744 //creating full x grid:
745 std::vector<double> tempXGrid(tempX.begin(), tempX.end());
746 size_t sizeX = tempXGrid.size();
747 tempXGrid.reserve(sizeX * 2);
748 for (size_t i=0; i<sizeX; ++i)
749 tempXGrid.push_back(-1.0*tempXGrid[i]);
750 sort(tempXGrid.begin(), tempXGrid.end());
751 tempXGrid.erase(unique(tempXGrid.begin(), tempXGrid.end()), tempXGrid.end());
752
753 //creating full y grid:
754 std::vector<double> tempYGrid(tempY.begin(), tempY.end());
755 size_t sizeY = tempYGrid.size();
756 tempYGrid.reserve(sizeY * 2);
757 for (size_t i=0; i<sizeY; ++i)
758 tempYGrid.push_back(-1.0*tempYGrid[i]);
759 sort(tempYGrid.begin(), tempYGrid.end());
760 tempYGrid.erase(unique(tempYGrid.begin(), tempYGrid.end()), tempYGrid.end());
761
762 // temperature volution interpolated function in first quadtrant:
763 interpolationF<double> tempEvolFirstQuadrant(tempTau, tempX, tempY, tempT);
764
765 //creating full temperature evolution table:
766 std::vector<double> tempTauFull, tempXFull, tempYFull, tempTFull;
767 for (const auto &tau : tempTauGrid) {
768 for (const auto &x : tempXGrid) {
769 for (const auto &y : tempYGrid) {
770 tempTauFull.push_back(tau);
771 tempXFull.push_back(x);
772 tempYFull.push_back(y);
773 tempTFull.push_back(tempEvolFirstQuadrant.interpolation(tau, std::abs(x), std

::abs(y)));
774 }
775 }
776 }
777
778 m_tempEvol.setData(tempTauFull, tempXFull, tempYFull, tempTFull);
779 }
780 else {// if not, creating interpolated function with values from file:
781 m_tempEvol.setData(tempTau, tempX, tempY, tempT);
782 }
783
784 m_tau0 = m_tempEvol.domain()[0][0];
785
786 return 1;
787 }
788
789
790 void energyLoss::radCollEnergyLoss(double x, double y, double phi, std::vector<double> &

radRAA1, std::vector<std::vector<double>> &radRAA2, std::vector<double> &collEL,
double &pathLength, double &temperature) const

791 //function that calculates radiative and collisional EL for particles created in (X0, Y0)
with direction phi0 (modefied pT integration algorithm)

792 //x, y, phi - inital position and angle <- input
793 //radiativeRAA1 - radiative RAA for single trajectory (dA410) <- output
794 //radiativeRAA2 - radiative RAA for single trajectory (rest of dA integrals) <- output
795 //collisionalEL - collisional energy loss for single trajectory <- output
796 //pathLength - path-length for single trajectory <- output
797 //temperature - temperature for single trajectory <- output
798 {
799 std::vector<double> currLTTabL, currLTTabT; //defining arrays that will store current

path-lengths and temperatures
800
801 double t = m_tau0, currTemp; // defining current path-length (time) and temperature
802
803 while ((currTemp = m_tempEvol.interpolation(t, x + t*std::cos(phi), y + t*std::sin(phi)

91

Appendix

)) > m_TCRIT) {// calculating current path-length and temp table
804 currLTTabL.push_back(t);
805 currLTTabT.push_back(currTemp);
806 t += m_TIMESTEP;
807 }
808
809 if (currLTTabL.size() > 1) {// calculating energy loss if path-length is longer than

thermalization time
810
811 //Radiative EnergyLoss calculation:
812
813 std::vector<double> currNormTabTau(currLTTabL.size()), currNormTabVal(currLTTabL.size

()); // LNorm table to be integrated over tau
814 std::vector<double> NormSparseP, NormSparseV; // table for

currNormInterp
815
816 std::vector<double> currDndxTabTau(currLTTabL.size()), currDndxTabVal(currLTTabL.size

()); // Ldndx table to be integrated over tau
817 std::vector<double> dndxSparseP, dndxSparseX, dndxSparseV; //

table for currDndxInterp
818
819 for (const auto &p : m_Grids.pPts()) //loop over ppts
820 {
821 for (size_t l=0; l<currLTTabL.size(); l++) {// loop over current path-length and

temperature table
822 currNormTabTau[l] = currLTTabL[l]; //setting path-lengths
823 currNormTabVal[l] = m_LNorm.interpolation(currLTTabL[l], p, currLTTabT[l]); //

setting current norm values by integrating over time
824 }
825
826 NormSparseP.push_back(p); //setting p of current norm

table
827 NormSparseV.push_back(poly::linearIntegrate(currNormTabTau, currNormTabVal)); //

setting value of current norm table
828
829 for (const auto &x : m_Grids.xPts()) {// loop over xpts
830 for (size_t l=0; l<currLTTabL.size(); l++) {// loop over current path-length and

temperature table
831 currDndxTabTau[l] = currLTTabL[l]; //setting path-

lengths
832 currDndxTabVal[l] = m_Ldndx.interpolation(currLTTabL[l], p, currLTTabT[l], x);

//setting Ldndx values
833 }
834
835 dndxSparseP.push_back(p); //setting p of current dndx

table
836 dndxSparseX.push_back(x); //setting x of current dndx

table
837 dndxSparseV.push_back(poly::linearIntegrate(currDndxTabTau, currDndxTabVal)); //

setting curernt dndx values by integrating over time
838 }
839 }
840
841 interpolationF<double> currNorm(NormSparseP, NormSparseV); //constructing

interpolated current norm
842 interpolationF<double> currDndx(dndxSparseP, dndxSparseX, dndxSparseV); //

constructing interpolated current dndx
843
844
845 for (const auto &ph : m_Grids.RadPts()) {// loop over Radpts
846 radRAA1.push_back(dAp410(ph, currNorm));
847
848 radRAA2.push_back(std::vector<double>());
849 for (const auto &Fdp : m_Grids.FdpPts())
850 radRAA2.back().push_back(FdA(ph, Fdp, currNorm, currDndx));
851
852 }
853
854 //Collisional EnergyLoss calculation:
855
856 std::vector<double> currCollTabTau(currLTTabL.size()), currCollTabVal(currLTTabL.size

()); //collisional table to be integrated over tau

92

DREENA-A code

857
858 for (const auto &p : m_Grids.pCollPts()) {// loop over pCollPts
859 for (size_t l=0; l<currLTTabL.size(); l++) {// loop over current path-length and

temperature table
860 currCollTabTau[l] = currLTTabL[l]; //setting path-lengths
861 currCollTabVal[l] = m_LColl.interpolation(p, currLTTabT[l]); //setting LColl

values
862 }
863
864 collEL.push_back(poly::linearIntegrate(currCollTabTau, currCollTabVal)); //

calculating collisional energy loss by integrating over time
865 }
866
867 pathLength = currLTTabL.back(); //setting value of path-length for single trajectory
868
869 //calculating mean temperature along path
870 temperature = 0.0;
871 for (size_t l=0; l<currLTTabL.size(); l++) temperature += currLTTabT[l];
872 temperature /= static_cast<double>(currLTTabL.size());
873 }
874 else { //if path-length is smaller than thermalization time:
875
876 pathLength = 0.0; //setting path-length and temperature
877 temperature = 0.0;
878 }
879 }
880
881 void energyLoss::radCollEnergyLoss(double x, double y, double phi, std::vector<double> &

radRAA, std::vector<double> &collEL, double &pathLenght, double &temperature) const
882 //function that calculates radiative and collisional EL for particles created in (X0, Y0)

with direction phi0 (standard algorithm)
883 //x, y, phi - inital position and angle <- input
884 //radRAA - radiative RAA for single trajectory <- output
885 //collEL - collisional energy loss for single trajectory <- output
886 //pathLenght - path-length for single trajectory <- output
887 //temperature - temperature for single trajectory <- output
888 {
889 std::vector<double> currLTTabL, currLTTabT; //defining arrays that will store current

path-lengths and temperatures
890
891 double t = m_tau0, currTemp; //defining current path-length (time) and temperature
892
893 while ((currTemp = m_tempEvol.interpolation(t, x + t*std::cos(phi), y + t*std::sin(phi)

)) > m_TCRIT) { //calculating current path-length and temp table
894 currLTTabL.push_back(t);
895 currLTTabT.push_back(currTemp);
896 t += m_TIMESTEP;
897 }
898
899 if (currLTTabL.size() > 1) { //calculating energy loss if path-length is longer than

thermalization time
900
901 //Radiative EnergyLoss calculation:
902
903 std::vector<double> currNormTabTau(currLTTabL.size()), currNormTabVal(currLTTabL.size

()); //LNorm table to be integrated over tau
904 std::vector<double> NormSparseP, NormSparseV; //table for

currNormInterp
905
906 std::vector<double> currDndxTabTau(currLTTabL.size()), currDndxTabVal(currLTTabL.size

()); //Ldndx table to be integrated over tau
907 std::vector<double> dndxSparseP, dndxSparseX, dndxSparseV; //table

for currDndxInterp
908
909 for (const auto &p : m_Grids.pPts()) //loop over ppts
910 {
911 for (size_t iL=0; iL<currLTTabL.size(); iL++) //loop over current path-length and

temperature table
912 {
913 currNormTabTau[iL] = currLTTabL[iL]; //setting path-lengths
914 currNormTabVal[iL] = m_LNorm.interpolation(currLTTabL[iL], p, currLTTabT[iL]); //

setting current norm values by integrating over time

93

Appendix

915 }
916
917 NormSparseP.push_back(p); //setting p of current norm

table
918 NormSparseV.push_back(poly::linearIntegrate(currNormTabTau, currNormTabVal)); //

setting value of current norm table
919
920 for (const auto &x : m_Grids.xPts()) //loop over xpts
921 {
922 for (size_t iL=0; iL<currLTTabL.size(); iL++) //loop over current path-length and

temperature table
923 {
924 currDndxTabTau[iL] = currLTTabL[iL]; //setting path-

lengths
925 currDndxTabVal[iL] = m_Ldndx.interpolation(currLTTabL[iL], p, currLTTabT[iL], x

); //setting Ldndx values
926 }
927
928 dndxSparseP.push_back(p); //setting p of current dndx

table
929 dndxSparseX.push_back(x); //setting x of current dndx

table
930 dndxSparseV.push_back(poly::linearIntegrate(currDndxTabTau, currDndxTabVal)); //

setting curernt dndx values by integrating over time
931 }
932 }
933
934 interpolationF<double> currNorm(NormSparseP, NormSparseV); //constructing

interpolated current norm
935 interpolationF<double> currDndx(dndxSparseP, dndxSparseX, dndxSparseV); //

constructing interpolated current dndx
936
937 for (const auto &p : m_Grids.RadPts())
938 radRAA.push_back(dA41(p, currNorm, currDndx)/m_dsdpti2.interpolation(p)); //

calculating radiative RAA
939
940 //Collisional EnergyLoss calculation:
941
942 std::vector<double> currCollTabTau(currLTTabL.size()), currCollTabVal(currLTTabL.size

()); //collisional table to be integrated over tau
943
944 for (const auto &p : m_Grids.pCollPts()) //loop over pCollPts
945 {
946 for (size_t iL=0; iL<currLTTabL.size(); iL++) //loop over current path-length and

temperature table
947 {
948 currCollTabTau[iL] = currLTTabL[iL]; //setting path-lengths
949 currCollTabVal[iL] = m_LColl.interpolation(p, currLTTabT[iL]); //setting LColl

values
950 }
951
952 collEL.push_back(poly::linearIntegrate(currCollTabTau, currCollTabVal)); //

calculating collisional energy loss by integrating over time
953 }
954
955 pathLenght = currLTTabL.back(); //setting value of path-length for single trajectory
956
957 //calculating mean temperature along path
958 temperature = 0.0;
959 for (size_t iL=0; iL<currLTTabL.size(); iL++) temperature += currLTTabT[iL];
960 temperature /= static_cast<double>(currLTTabL.size());
961 }
962 else { //if path-length is smaller than thermalization time:
963
964 pathLenght = 0.0; //setting path-length and temperature
965 temperature = 0.0;
966 }
967 }
968
969
970 void energyLoss::generateGaussTab(std::vector<double> &qGTab, std::vector<double> &fGTab)

const

94

DREENA-A code

971 //function that generates sampling points for Gaussian integration
972 //qGTab, fGTab - vectors that store sampling point <- output
973 {
974 double sigmaNum = 3.5; //setting sigma
975 double sigmaStep = 0.25; //setting step
976 size_t GTabLen = 2 * static_cast<size_t>(sigmaNum / sigmaStep) + 1; //setting length of

sampling points
977
978 double GaussTabSum = 0.0; //setting normalization sum to zero
979
980 for (size_t iG=0; iG<GTabLen; iG++) //calculating sampling points
981 {
982 qGTab.push_back(-1.0*sigmaNum + static_cast<double>(iG)*sigmaStep); //setting

qGaussTab values
983 fGTab.push_back(std::exp(-qGTab.back()*qGTab.back()/2.0)); //setting

fGaussTab values
984 GaussTabSum += fGTab.back(); //adding to

normalization sum
985 }
986
987 for (size_t iG=0; iG<GTabLen; iG++) //normalizing
988 {
989 fGTab[iG] /= GaussTabSum; //dividing fGaussTab values with total sum
990 }
991 }
992
993 void energyLoss::gaussFilterIntegrate(const std::vector<double> &radiativeRAA1, const std

::vector<std::vector<double>> &radiativeRAA2, const std::vector<double> &
collisionalEL, std::vector<double> &singRAA1, std::vector<std::vector<double>> &
singRAA2) const

994 //function that performs Gauss filter integration - modefied pT integration algorithm
995 //radiativeRAA1 - raditive RAA (dA410) <- input
996 //radiativeRAA2 - raditive RAA (rest of dA integrals) <- input
997 //collisionalEL - collisional energy loss <- input
998 //singRAA1 - RAA array after Gauss filter integration (dA410) <- output
999 //singRAA2 - RAA array after Gauss filter integration (rest of dA integrals) <- output

1000 {
1001 interpolationF<double> muCollInt(m_Grids.pCollPts(), collisionalEL); //creating

collisional energy loss interpolated function
1002
1003 std::vector<double> qGaussTabOG, fGaussTabOG; //defining vectors that will store

original Gauss filter sampling points
1004 generateGaussTab(qGaussTabOG, fGaussTabOG); //generating sampling points and settin

number of sampling poins
1005
1006 std::vector<double> qGaussTab, fGaussTab; //defining vectors that will store Gauss

filter sampling points
1007
1008 //
1009 //Gauss integration of dAp410:
1010 {
1011 interpolationF<double> RadRelInt(m_Grids.RadPts(), radiativeRAA1); //creating

radiative RAA1 interpolated function
1012
1013 double GFSum; //defining sum variable for Gauss filter
1014 double dppT; //defining integration variable
1015
1016 double muCollCurrVal; //defining variable that stores value of interpolated muColl

for specific pT, ie current value
1017 double sigmaColl; //defining variable for collisional sigma
1018
1019 for (const auto &pT : m_Grids.finPts())
1020 {
1021 GFSum = 0.0;
1022
1023 muCollCurrVal = muCollInt.interpolation(pT);
1024
1025 sigmaColl = std::sqrt(2.0*m_TCollConst*muCollCurrVal);
1026
1027 qGaussTab = qGaussTabOG; fGaussTab = fGaussTabOG; //setting Gauss filter
1028
1029 if ((muCollCurrVal + sigmaColl * qGaussTab.front()) < -3.0) {

95

Appendix

//checking if Gauss is out of bound on lower bound
1030 double resfac = ((-3.0 + 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.front();

//setting rescaling factor
1031 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1032 }
1033
1034 if ((muCollCurrVal + sigmaColl * qGaussTab.back()) > 20.0) { //

checking if Gauss is out of bound on upper bound
1035 double resfac = ((20.0 - 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.back();

//setting rescaling factor
1036 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1037 }
1038
1039 //calculating Gauss filter
1040 for (size_t iG=0; iG<qGaussTab.size(); iG++)
1041 {
1042 dppT = muCollCurrVal + sigmaColl * qGaussTab[iG];
1043 GFSum += (m_dsdpti2.interpolation(pT + dppT)*RadRelInt.interpolation(pT + dppT)*(

pT + dppT) / pT * fGaussTab[iG]);
1044 }
1045
1046 singRAA1.push_back(1.0 / m_dsdpti2.interpolation(pT) * GFSum);
1047 }
1048 }
1049
1050 //
1051 //Gauss integration of FdA:
1052 {
1053 interpolationF<double> RadRelInt(m_Grids.RadPts(), m_Grids.FdpPts(), radiativeRAA2);
1054
1055 double GFSum; //defining sum variable for Gauss filter
1056 double dppT; //defining integration variable
1057
1058 double muCollCurrVal; //defining variable that stores value of interpolated muColl

for specific pT, ie current value
1059 double sigmaColl; //defining variable for collisional sigma
1060
1061 for (const auto &pT : m_Grids.finPts())
1062 {
1063 singRAA2.push_back(std::vector<double>()); //resizing single RAA vector
1064
1065 muCollCurrVal = muCollInt.interpolation(pT);
1066
1067 sigmaColl = std::sqrt(2.0*m_TCollConst*muCollCurrVal);
1068
1069 qGaussTab = qGaussTabOG; fGaussTab = fGaussTabOG; //setting Gauss filter
1070
1071 if ((muCollCurrVal + sigmaColl * qGaussTab.front()) < -3.0) {

//checking if Gauss is out of bound on lower bound
1072 double resfac = ((-3.0 + 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.front();

//setting rescaling factor
1073 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1074 }
1075
1076 if ((muCollCurrVal + sigmaColl * qGaussTab.back()) > 20.0) { //

checking if Gauss is out of bound on upper bound
1077 double resfac = ((20.0 - 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.back();

//setting rescaling factor
1078 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1079 }
1080
1081 for (const auto &dpT : m_Grids.FdpPts()) //loop over FdpPts
1082 {
1083 GFSum = 0.0; //setting sum to 0
1084
1085 //calculating Gauss filter
1086 for (size_t iG=0; iG<qGaussTab.size(); iG++)
1087 {

96

DREENA-A code

1088 dppT = muCollCurrVal + sigmaColl * qGaussTab[iG];
1089 GFSum += (m_dsdpti2.interpolation(pT + dpT + dppT)*RadRelInt.interpolation(pT +

dppT, dpT)*(pT + dppT)/(pT+ dpT + dppT)*fGaussTab[iG]);
1090 }
1091
1092 singRAA2.back().push_back(1.0 / m_dsdpti2.interpolation(pT) * GFSum);
1093 }
1094 }
1095 }
1096 }
1097
1098 void energyLoss::gaussFilterIntegrate(const interpolationF<double> &dsdpti2lquark, const

std::vector<double> &radiativeRAA1, const std::vector<std::vector<double>> &
radiativeRAA2, const std::vector<double> &collisionalEL, std::vector<double> &
singRAA1, std::vector<std::vector<double>> &singRAA2) const

1099 //function that performs Gauss filter integration - modefied pT integration algorithm
used in all lquarks algorithm

1100 //dsdpti2lquark - light quark initial pT distribution <- input
1101 //radiativeRAA1 - raditive RAA (dA410) <- input
1102 //radiativeRAA2 - raditive RAA (rest of dA integrals) <- input
1103 //collisionalEL - collisional energy loss <- input
1104 //singRAA1 - RAA array after Gauss filter integration (dA410) <- output
1105 //singRAA2 - RAA array after Gauss filter integration (rest of dA integrals) <- output
1106 {
1107 interpolationF<double> muCollInt(m_Grids.pCollPts(), collisionalEL); //creating

collisional energy loss interpolated function
1108
1109 std::vector<double> qGaussTabOG, fGaussTabOG; //defining vectors that will store

original Gauss filter sampling points
1110 generateGaussTab(qGaussTabOG, fGaussTabOG); //generating sampling points and settin

number of sampling poins
1111
1112 std::vector<double> qGaussTab, fGaussTab; //defining vectors that will store Gauss

filter sampling points
1113
1114 //
1115 //Gauss integration of dAp410:
1116 {
1117 interpolationF<double> RadRelInt(m_Grids.RadPts(), radiativeRAA1); //creating

radiative RAA1 interpolated function
1118
1119 double GFSum; //defining sum variable for Gauss filter
1120 double dppT; //defining integration variable
1121
1122 double muCollCurrVal; //defining variable that stores value of interpolated muColl

for specific pT, ie current value
1123 double sigmaColl; //defining variable for collisional sigma
1124
1125 for (const auto &pT : m_Grids.finPts())
1126 {
1127 GFSum = 0.0;
1128
1129 muCollCurrVal = muCollInt.interpolation(pT);
1130
1131 sigmaColl = std::sqrt(2.0*m_TCollConst*muCollCurrVal);
1132
1133 qGaussTab = qGaussTabOG; fGaussTab = fGaussTabOG; //setting Gauss filter
1134
1135 if ((muCollCurrVal + sigmaColl * qGaussTab.front()) < -3.0) {

//checking if Gauss is out of bound on lower bound
1136 double resfac = ((-3.0 + 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.front();

//setting rescaling factor
1137 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1138 }
1139
1140 if ((muCollCurrVal + sigmaColl * qGaussTab.back()) > 20.0) { //

checking if Gauss is out of bound on upper bound
1141 double resfac = ((20.0 - 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.back();

//setting rescaling factor
1142 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds

97

Appendix

1143 }
1144
1145 //calculating Gauss filter
1146 for (size_t iG=0; iG<qGaussTab.size(); iG++)
1147 {
1148 dppT = muCollCurrVal + sigmaColl * qGaussTab[iG];
1149 GFSum += (dsdpti2lquark.interpolation(pT + dppT)*RadRelInt.interpolation(pT +

dppT)*(pT + dppT) / pT * fGaussTab[iG]);
1150 }
1151
1152 singRAA1.push_back(1.0 / dsdpti2lquark.interpolation(pT) * GFSum);
1153 }
1154 }
1155
1156 //
1157 //Gauss integration of FdA:
1158 {
1159 interpolationF<double> RadRelInt(m_Grids.RadPts(), m_Grids.FdpPts(), radiativeRAA2);
1160
1161 double GFSum; //defining sum variable for Gauss filter
1162 double dppT; //defining integration variable
1163
1164 double muCollCurrVal; //defining variable that stores value of interpolated muColl

for specific pT, ie current value
1165 double sigmaColl; //defining variable for collisional sigma
1166
1167 for (const auto &pT : m_Grids.finPts())
1168 {
1169 singRAA2.push_back(std::vector<double>()); //resizing single RAA vector
1170
1171 muCollCurrVal = muCollInt.interpolation(pT);
1172
1173 sigmaColl = std::sqrt(2.0*m_TCollConst*muCollCurrVal);
1174
1175 qGaussTab = qGaussTabOG; fGaussTab = fGaussTabOG; //setting Gauss filter
1176
1177 if ((muCollCurrVal + sigmaColl * qGaussTab.front()) < -3.0) {

//checking if Gauss is out of bound on lower bound
1178 double resfac = ((-3.0 + 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.front();

//setting rescaling factor
1179 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1180 }
1181
1182 if ((muCollCurrVal + sigmaColl * qGaussTab.back()) > 20.0) { //

checking if Gauss is out of bound on upper bound
1183 double resfac = ((20.0 - 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.back();

//setting rescaling factor
1184 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *=

resfac; }); //rescaling sampling points if they are out of bounds
1185 }
1186
1187 for (const auto &dpT : m_Grids.FdpPts()) //loop over FdpPts
1188 {
1189 GFSum = 0.0; //setting sum to 0
1190
1191 //calculating Gauss filter
1192 for (size_t iG=0; iG<qGaussTab.size(); iG++)
1193 {
1194 dppT = muCollCurrVal + sigmaColl * qGaussTab[iG];
1195 GFSum += (dsdpti2lquark.interpolation(pT + dpT + dppT)*RadRelInt.interpolation(

pT + dppT, dpT)*(pT + dppT)/(pT+ dpT + dppT)*fGaussTab[iG]);
1196 }
1197
1198 singRAA2.back().push_back(1.0 / dsdpti2lquark.interpolation(pT) * GFSum);
1199 }
1200 }
1201 }
1202 }
1203
1204 void energyLoss::gaussFilterIntegrate(const std::vector<double> &radiativeRAA, const std

::vector<double> &collisionalEL, std::vector<double> &singRAA) const

98

DREENA-A code

1205 //function that performs Gauss filter integration - default algorithm
1206 //radiativeRAA - raditive RAA <- input
1207 //collisionalEL - collisional energy loss <- input
1208 //singRAA - RAA array after Gauss filter integration <- output
1209 {
1210 interpolationF<double> RadRelInt(m_Grids.RadPts(), radiativeRAA); //creating

radiative RAA interpolated function
1211 interpolationF<double> muCollInt(m_Grids.pCollPts(), collisionalEL); //creating

collisional energy loss interpolated function
1212
1213 std::vector<double> qGaussTabOG, fGaussTabOG; //defining vectors that will store

original Gauss filter sampling points
1214 generateGaussTab(qGaussTabOG, fGaussTabOG); //generating sampling points and settin

number of sampling poins
1215
1216 std::vector<double> qGaussTab, fGaussTab; //defining vectors that will store Gauss

filter sampling points
1217
1218 double GFSum; //defining sum variable for Gauss filter
1219
1220 double dpT; //defining pT and dpT variables
1221
1222 double muCollCurrVal; //defining variable that stores value of interpolated muColl for

specific pT, ie current value
1223
1224 double sigmaColl; //defining variable for collisional sigma
1225
1226 //Gauss filter
1227 for (const auto &pT : m_Grids.finPts())
1228 {
1229 GFSum = 0.0L;
1230
1231 muCollCurrVal = muCollInt.interpolation(pT);
1232
1233 sigmaColl = std::sqrt(2.0*m_TCollConst*muCollCurrVal);
1234
1235 qGaussTab = qGaussTabOG; fGaussTab = fGaussTabOG; //setting Gauss filter
1236
1237 if ((muCollCurrVal + sigmaColl * qGaussTab.front()) < -3.0) { //

checking if Gauss is out of bound on lower bound
1238 double resfac = ((-3.0 + 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.front();

//setting rescaling factor
1239 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *= resfac;

}); //rescaling sampling points if they are out of bounds
1240 }
1241
1242 if ((muCollCurrVal + sigmaColl * qGaussTab.back()) > 20.0) { //

checking if Gauss is out of bound on upper bound
1243 double resfac = ((20.0 - 1e-12) - muCollCurrVal)/sigmaColl/qGaussTab.back();

//setting rescaling factor
1244 std::for_each(qGaussTab.begin(), qGaussTab.end(), [resfac](double &c){ c *= resfac;

}); //rescaling sampling points if they are out of bounds
1245 }
1246
1247 //calculating Gauss filter
1248 for (size_t iG=0; iG<qGaussTab.size(); iG++)
1249 {
1250 dpT = muCollCurrVal + sigmaColl * qGaussTab[iG];
1251 GFSum += (m_dsdpti2.interpolation(pT + dpT)*RadRelInt.interpolation(pT + dpT)*(pT +

dpT) / pT * fGaussTab[iG]);
1252 }
1253
1254 singRAA.push_back(1.0 / m_dsdpti2.interpolation(pT) * GFSum);
1255 }
1256 }
1257
1258
1259 void energyLoss::calculateAvgPathlenTemps(const std::vector<double> &pathLenghDist, const

std::vector<double> &temperatureDist, std::vector<double> &avgPathLength, std::
vector<double> &avgTemp) const

1260 {
1261 interpolationF<double> pathLenghDistInt(m_phiGridPts, pathLenghDist);

99

Appendix

1262 avgPathLength[0] = poly::cubicIntegrate(m_phiGridPts, pathLenghDist)/2.0/M_PI;
1263 avgPathLength[1] = (pathLenghDistInt.interpolation(m_phiGridPts.front()) +

pathLenghDistInt.interpolation(m_phiGridPts.back()))/2.0;
1264 avgPathLength[2] = (pathLenghDistInt.interpolation(M_PI/2.0) +

pathLenghDistInt.interpolation(3.0*M_PI/2.0)) /2.0;
1265
1266 interpolationF<double> temperatureDistInt(m_phiGridPts, temperatureDist);
1267 avgTemp[0] = poly::cubicIntegrate(m_phiGridPts, temperatureDist)/2.0/M_PI;
1268 avgTemp[1] = (temperatureDistInt.interpolation(m_phiGridPts.front()) +

temperatureDistInt.interpolation(m_phiGridPts.back()))/2.0;
1269 avgTemp[2] = (temperatureDistInt.interpolation(M_PI/2.0) +

temperatureDistInt.interpolation(3.0*M_PI/2.0)) /2.0;
1270 }
1271
1272 int energyLoss::exportResults(const std::string &pName, const std::vector<std::vector<

double>> &RAADist, const std::vector<double> avgPathLength, const std::vector<double>
avgTemp)

1273 {
1274 std::vector<std::string> header;
1275 header.push_back("#collision_system: " + m_collsys);
1276 header.push_back("#collision_energy: " + m_sNN);
1277 header.push_back("#particle_type: " + pName);
1278 header.push_back("#centrality: " + m_centrality);
1279
1280 std::stringstream xbSStr; xbSStr << std::fixed << std::setprecision(1) << m_xB;
1281 header.push_back("#xB = " + xbSStr.str());
1282
1283 std::stringstream avgPathLengthSStr[3];
1284 for (size_t i=0; i<3; i++) avgPathLengthSStr[i] << std::fixed << std::setprecision(6)

<< avgPathLength[i];
1285 header.push_back("#average_path-lengths: " + avgPathLengthSStr[0].str() + ", " +

avgPathLengthSStr[1].str() + ", " + avgPathLengthSStr[2].str());
1286
1287 std::stringstream avgTempSStr[3];
1288 for (size_t i=0; i<3; i++) avgTempSStr[i] << std::fixed << std::setprecision(6) <<

avgTemp[i];
1289 header.push_back("#average_temperatures: " + avgTempSStr[0].str() + ", " + avgTempSStr

[1].str() + ", " + avgTempSStr[2].str());
1290
1291 if (m_yGridN <= 0) {
1292 header.push_back("#number_of_angles: " + std::to_string(m_phiGridN));
1293 header.push_back("#number_of_xy_points: " + std::to_string(m_xGridN));
1294 }
1295 else {
1296 header.push_back("#number_of_angles: " + std::to_string(m_phiGridN));
1297 header.push_back("#number_of_grid_points: " + std::to_string(m_xGridN) + ", " + std::

to_string(m_yGridN));
1298 }
1299
1300 header.push_back("#---");
1301 header.push_back("# pT [GeV] phi R_AA ");
1302
1303 const std::string path_out = "./results/results" + pName + "/" + pName + "_" +

m_collsys + "_sNN=" + m_sNN + "_cent=" + m_centrality + "_xB=" + xbSStr.str() + "
_dist.dat";

1304
1305 std::ofstream file_out(path_out, std::ios_base::out);
1306 if (!file_out.is_open()) {
1307 std::cerr << "Error: unable to open RAA(pT,phi) distribution file. Aborting..." <<

std::endl;
1308 return -1;
1309 }
1310
1311 for (const auto &h : header) file_out << h << "\n";
1312
1313 for (size_t ipT= 0; ipT<m_Grids.finPtsLength(); ipT++)
1314 for (size_t iPhi=0; iPhi<m_phiGridN; iPhi++) {
1315 file_out << std::fixed << std::setw(14) << std::setprecision(10) << m_Grids.

finPts(ipT) << " ";
1316 file_out << std::fixed << std::setw(12) << std::setprecision(10) << m_phiGridPts

[iPhi] << " ";
1317 file_out << std::fixed << std::setw(12) << std::setprecision(10) << RAADist[ipT][

100

DREENA-A code

iPhi] << "\n";
1318 }
1319
1320 file_out.close();
1321
1322 return 1;
1323 }
1324
1325
1326 void energyLoss::runELossHeavyFlavour()
1327 {
1328 if (loaddsdpti2(m_pName, m_dsdpti2) != 1) return;
1329
1330 FdAHaltonSeqInit(150);
1331
1332 std::vector<std::vector<double>> RAADist(m_Grids.finPtsLength(), std::vector<double>(

m_phiGridN, 0.0));
1333
1334 std::vector<double> pathLengthDist(m_phiGridN, 0.0), temperatureDist(m_phiGridN, 0.0);
1335
1336 #pragma omp declare reduction(vectorDoublePlus : std::vector<double> : \
1337 std::transform(omp_out.begin(), omp_out.end(), omp_in.

begin(), omp_out.begin(), std::plus<double>())) \
1338 initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
1339
1340 #pragma omp parallel for reduction(vectorDoublePlus : pathLengthDist, temperatureDist)

schedule(dynamic)
1341 for (size_t iPhi=0; iPhi<m_phiGridN; iPhi++) {
1342 double phi = m_phiGridPts[iPhi];
1343
1344 std::vector<double> sumRAA1(m_Grids.finPtsLength(), 0.0);
1345
1346 std::vector<std::vector<double>> sumRAA2(m_Grids.finPtsLength(), std::vector<double>(

m_Grids.FdpPtsLength(), 0.0));
1347
1348 double weightsumEL = 0.0, weightsumPLT = 0.0; //energy and path-length and

temperature loss weightsum
1349
1350 for (size_t iXY=0; iXY<m_xGridPts.size(); iXY++) {
1351 double x = m_xGridPts[iXY], y = m_yGridPts[iXY];
1352 double binCollDensity = m_binCollDensity.interpolation(x, y);
1353
1354 if (binCollDensity > 0) {
1355 weightsumEL += binCollDensity;
1356
1357 std::vector<double> radRAA1; std::vector<std::vector<double>> radRAA2; std::

vector<double> collEL;
1358 double pathLength, temperature;
1359 radCollEnergyLoss(x, y, phi, radRAA1, radRAA2, collEL, pathLength, temperature);
1360
1361 if (pathLength > m_tau0) { //checking if path-length is larger than

thermalization time
1362
1363 for (auto &cEL : collEL) cEL += 1e-12; //modifying collEL to prevent division

by 0
1364
1365 weightsumPLT += binCollDensity;
1366 pathLengthDist[iPhi] += (pathLength*binCollDensity);
1367 temperatureDist[iPhi] += (temperature*binCollDensity);
1368
1369 std::vector<double> singleRAA1; std::vector<std::vector<double>> singleRAA2;
1370 gaussFilterIntegrate(radRAA1, radRAA2, collEL, singleRAA1, singleRAA2);
1371
1372 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1373 sumRAA1[iFinPts] += singleRAA1[iFinPts]*binCollDensity;
1374 for (size_t iFdp=0; iFdp<m_Grids.FdpPtsLength(); iFdp++) {
1375 sumRAA2[iFinPts][iFdp] += singleRAA2[iFinPts][iFdp]*binCollDensity;
1376 }
1377 }
1378 }
1379 else {// if path length is smaller than tau0:
1380 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {//

101

Appendix

multiplying RAA1 (which is 1) with binary collision function as weigth and adding to
RAA sum; RAA2 is 0 in this case

1381 sumRAA1[iFinPts] += binCollDensity;
1382 }
1383 }
1384 }
1385 }
1386
1387 std::for_each(sumRAA1.begin(), sumRAA1.end(), [weightsumEL](double &c){c/=weightsumEL

;});
1388 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1389 std::for_each(sumRAA2[iFinPts].begin(), sumRAA2[iFinPts].end(), [weightsumEL](

double &c){c/=weightsumEL;});
1390 }
1391 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1392 RAADist[iFinPts][iPhi] = sumRAA1[iFinPts] + poly::cubicIntegrate(m_Grids.FdpPts(),

sumRAA2[iFinPts])/m_Grids.finPts(iFinPts);
1393 }
1394 pathLengthDist[iPhi] /= weightsumPLT; temperatureDist[iPhi] /= weightsumPLT;
1395 }
1396
1397 std::vector<double> avgPathLength(3, 0.0), avgTemp(3, 0.0);
1398 calculateAvgPathlenTemps(pathLengthDist, temperatureDist, avgPathLength, avgTemp);
1399
1400 if (exportResults(m_pName, RAADist, avgPathLength, avgTemp) != 1) return;
1401 }
1402
1403 void energyLoss::runELossLightQuarks()
1404 {
1405 const std::vector<std::string> lightQuarksList{"Down", "DownBar", "Strange", "Up", "

UpBar"};
1406
1407 std::vector<interpolationF<double>> dsdpti2LightQuarks(lightQuarksList.size());
1408 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++)
1409 if (loaddsdpti2(lightQuarksList[iLQ], dsdpti2LightQuarks[iLQ]) != 1) return;
1410
1411 FdAHaltonSeqInit(100);
1412
1413 std::vector<std::vector<std::vector<double>>> RAADist(lightQuarksList.size(), std::

vector<std::vector<double>>(m_Grids.finPtsLength(), std::vector<double>(m_phiGridN)))
;

1414
1415 std::vector<double> pathLengthDist(m_phiGridN, 0.0), temperatureDist(m_phiGridN, 0.0);
1416
1417 #pragma omp declare reduction(vectorDoublePlus : std::vector<double> : \
1418 std::transform(omp_out.begin(), omp_out.end(), omp_in.

begin(), omp_out.begin(), std::plus<double>())) \
1419 initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
1420
1421 #pragma omp parallel for reduction(vectorDoublePlus : pathLengthDist, temperatureDist)

schedule(dynamic)
1422 for (size_t iPhi=0; iPhi<m_phiGridN; iPhi++) {
1423 double phi = m_phiGridPts[iPhi];
1424
1425 std::vector<std::vector<double>> sumRAA1(lightQuarksList.size(), std::vector<double>(

m_Grids.finPtsLength(), 0.0));
1426 std::vector<std::vector<std::vector<double>>> sumRAA2(lightQuarksList.size(), std::

vector<std::vector<double>>(m_Grids.finPtsLength(), std::vector<double>(m_Grids.
FdpPtsLength(), 0.0)));

1427
1428 double weightsumEL = 0.0, weightsumPLT = 0.0; //energy and path-length and

temperature loss weightsum
1429
1430 for (size_t iXY=0; iXY<m_xGridPts.size(); iXY++) {
1431 double x = m_xGridPts[iXY], y = m_yGridPts[iXY];
1432 double binCollDensity = m_binCollDensity.interpolation(x, y);
1433
1434 if (binCollDensity > 0) {
1435 weightsumEL += binCollDensity;
1436
1437 std::vector<double> radRAA1; std::vector<std::vector<double>> radRAA2; std::

vector<double> collEL;

102

DREENA-A code

1438 double pathLength, temperature;
1439 radCollEnergyLoss(x, y, phi, radRAA1, radRAA2, collEL, pathLength, temperature);
1440
1441 if (pathLength > m_tau0) { //checking if path-length is larger than

thermalization time
1442
1443 for (auto &cEL : collEL) cEL += 1e-12; //modifying collEL to prevent division

by 0
1444
1445 weightsumPLT += binCollDensity;
1446 pathLengthDist[iPhi] += (pathLength*binCollDensity);
1447 temperatureDist[iPhi] += (temperature*binCollDensity);
1448
1449 std::vector<std::vector<double>> singleRAA1(lightQuarksList.size());
1450 std::vector<std::vector<std::vector<double>>> singleRAA2(lightQuarksList.size()

);
1451 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++)
1452 gaussFilterIntegrate(dsdpti2LightQuarks[iLQ], radRAA1, radRAA2, collEL,

singleRAA1[iLQ], singleRAA2[iLQ]);
1453
1454 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++) {
1455 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1456 sumRAA1[iLQ][iFinPts] += singleRAA1[iLQ][iFinPts]*binCollDensity;
1457 for (size_t iFdp=0; iFdp<m_Grids.FdpPtsLength(); iFdp++)
1458 sumRAA2[iLQ][iFinPts][iFdp] += singleRAA2[iLQ][iFinPts][iFdp]*

binCollDensity;
1459 }
1460 }
1461 }
1462 else {
1463 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++)
1464 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++)
1465 sumRAA1[iLQ][iFinPts] += binCollDensity;
1466 }
1467 }
1468 }
1469
1470 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++) {
1471 std::for_each(sumRAA1[iLQ].begin(), sumRAA1[iLQ].end(), [weightsumEL](double &c){ c

/=weightsumEL; });
1472 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1473 std::for_each(sumRAA2[iLQ][iFinPts].begin(), sumRAA2[iLQ][iFinPts].end(), [

weightsumEL](double &c){ c/=weightsumEL; });
1474 }
1475 }
1476
1477 //setting RAA(pT,phi) value by integrating over p:
1478 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++) {
1479 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1480 RAADist[iLQ][iFinPts][iPhi] = sumRAA1[iLQ][iFinPts] + poly::cubicIntegrate(

m_Grids.FdpPts(), sumRAA2[iLQ][iFinPts])/m_Grids.finPts(iFinPts);
1481 }
1482 }
1483
1484 pathLengthDist[iPhi] /= weightsumPLT; temperatureDist[iPhi] /= weightsumPLT;
1485 }
1486
1487 std::vector<double> avgPathLength(3, 0.0), avgTemp(3, 0.0);
1488 calculateAvgPathlenTemps(pathLengthDist, temperatureDist, avgPathLength, avgTemp);
1489
1490 for (size_t iLQ=0; iLQ<lightQuarksList.size(); iLQ++) {
1491 if (exportResults(lightQuarksList[iLQ], RAADist[iLQ], avgPathLength, avgTemp) != 1)

return;
1492 }
1493 }
1494
1495 void energyLoss::runELossLightFlavour()
1496 {
1497 if (loaddsdpti2(m_pName, m_dsdpti2) != 1) return;
1498
1499 dAHaltonSeqInit(1000);
1500

103

Appendix

1501 std::vector<std::vector<double>> RAADist(m_Grids.finPtsLength(), std::vector<double>(
m_phiGridN, 0.0));

1502
1503 std::vector<double> pathLengthDist(m_phiGridN, 0.0), temperatureDist(m_phiGridN, 0.0);
1504
1505 #pragma omp declare reduction(vectorDoublePlus : std::vector<double> : \
1506 std::transform(omp_out.begin(), omp_out.end(), omp_in.

begin(), omp_out.begin(), std::plus<double>())) \
1507 initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
1508
1509 #pragma omp parallel for reduction(vectorDoublePlus : pathLengthDist, temperatureDist)

schedule(dynamic)
1510 for (size_t iPhi=0; iPhi<m_phiGridN; iPhi++) {
1511 double phi = m_phiGridPts[iPhi];
1512
1513 std::vector<double> sumRAA(m_Grids.finPtsLength(), 0.0);
1514
1515 double weightsumEL = 0.0, weightsumPLT = 0.0; //energy and path-length and

temperature loss weightsum
1516
1517 for (size_t iXY=0; iXY<m_xGridPts.size(); iXY++) {
1518 double x = m_xGridPts[iXY], y = m_yGridPts[iXY];
1519 double binCollDensity = m_binCollDensity.interpolation(x, y);
1520
1521 if (binCollDensity > 0) {
1522 weightsumEL += binCollDensity;
1523
1524 std::vector<double> radRAA; std::vector<double> collEL;
1525 double pathLength, temperature;
1526 radCollEnergyLoss(x, y, phi, radRAA, collEL, pathLength, temperature);
1527
1528 if (pathLength > m_tau0) { //checking if path-length is larger than

thermalization time
1529
1530 for (auto &cEL : collEL) cEL += 1e-12; //modifying collEL to prevent division

by 0
1531
1532 weightsumPLT += binCollDensity;
1533 pathLengthDist[iPhi] += (pathLength*binCollDensity);
1534 temperatureDist[iPhi] += (temperature*binCollDensity);
1535
1536 std::vector<double> singleRAA;
1537 gaussFilterIntegrate(radRAA, collEL, singleRAA);
1538
1539 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1540 sumRAA[iFinPts] += singleRAA[iFinPts]*binCollDensity;
1541 }
1542 }
1543 else {// if path length is smaller than tau0:
1544 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {//

multiplying RAA1 (which is 1) with binary collision function as weigth and adding to
RAA sum

1545 sumRAA[iFinPts] += binCollDensity;
1546 }
1547 }
1548 }
1549 }
1550
1551 for (size_t iFinPts=0; iFinPts<m_Grids.finPtsLength(); iFinPts++) {
1552 RAADist[iFinPts][iPhi] = sumRAA[iFinPts]/weightsumEL;
1553 }
1554
1555 pathLengthDist[iPhi] /= weightsumPLT; temperatureDist[iPhi] /= weightsumPLT;
1556 }
1557
1558 std::vector<double> avgPathLength(3, 0.0), avgTemp(3, 0.0);
1559 calculateAvgPathlenTemps(pathLengthDist, temperatureDist, avgPathLength, avgTemp);
1560
1561 if (exportResults(m_pName, RAADist, avgPathLength, avgTemp) != 1) return;
1562 }

Content of the source file that contains integrals in the Poisson expansion of the radiative energy

104

DREENA-A code

loss, daintegrals.cpp, follows:
1 #include "energyloss.hpp"
2 #include "linearinterpolation.hpp"
3
4 #include <vector>
5 #include <cmath>
6
7 double energyLoss::haltonSequence(int index, int base) const
8 {
9 double f = 1.0;

10 double res = 0.0;
11
12 while (index > 0) {
13 f = f / static_cast<double>(base);
14 res += f * static_cast<double>(index % base);
15 index = index / base; // integer division
16 }
17
18 return res;
19 }
20
21
22 void energyLoss::FdAHaltonSeqInit(size_t FdAMaxPts)
23 {
24 m_FdAMaxPoints2 = FdAMaxPts; //setting values of dAMaxPoints
25 m_FdAMaxPoints3 = FdAMaxPts-25;
26 m_FdAMaxPoints4 = FdAMaxPts-50;
27 m_FdAMaxPoints5 = FdAMaxPts-75;
28
29 for (size_t i=0; i<FdAMaxPts; i++) //generating Halton sequences
30 {
31 m_FdAHS2.push_back(haltonSequence((i+1)*409, 2));
32 m_FdAHS3.push_back(haltonSequence((i+1)*409, 3));
33 m_FdAHS4.push_back(haltonSequence((i+1)*409, 5));
34 m_FdAHS5.push_back(haltonSequence((i+1)*409, 7));
35 }
36 }
37
38 double energyLoss::dAp410(double ph, const interpolationF<double> &norm) const {
39 return (1.0 / std::exp(norm.interpolation(ph)));
40 }
41
42 double energyLoss::FdA411(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
43 return (1.0 / std::exp(norm.interpolation(ph + dp))*dndx.interpolation(ph + dp, 1.0 -

ph/(ph + dp)));
44 }
45
46 double energyLoss::FdA412(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const{
47 if (dp < 2.0*m_mgC / 2.0) return 0.0;
48 double p = ph + dp;
49 double yl, yh, yq, y;
50 double sum = 0.0;
51 for (size_t i=0; i<m_FdAMaxPoints2; i++) {
52 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
53 yh = 1.0 - ph/p - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
54 yq = yh - yl;
55 y = yl + m_FdAHS2[i]*yq;
56
57 sum += 1.0 / std::exp(norm.interpolation(p))*(1.0 / 2.0)*dndx.interpolation(p, 1.0 -

ph/p - y)*
58 dndx.interpolation(p, y)*(yh - yl);
59 }
60
61 return (sum/static_cast<double>(m_FdAMaxPoints2));
62 }
63
64 double energyLoss::FdA413(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
65 if (dp < 3.0*m_mgC / 2.0) return 0.0;
66 double p = ph + dp;

105

Appendix

67 double yl, yh, yq, y;
68 double zl, zh, zq, z;
69 double sum = 0.0;
70 for (size_t i=0; i<m_FdAMaxPoints3; i++) {
71 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
72 yh = 1.0 - ph/p - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
73 yq = yh - yl;
74 y = yl + m_FdAHS2[i]*yq;
75
76 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
77 zh = 1.0 - ph/p - y - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
78 zq = zh - zl;
79 z = zl + m_FdAHS3[i]*zq;
80
81 sum += 1.0 / std::exp(norm.interpolation(p))*(1.0 / 2.0 / 3.0)*dndx.interpolation(p,

1.0 - ph/p - y - z)*
82 dndx.interpolation(p, y)*dndx.interpolation(p, z)*(yh - yl)*(zh - zl);
83 }
84
85 return (sum/static_cast<double>(m_FdAMaxPoints3));
86 }
87
88 double energyLoss::FdA414(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
89 if (dp < 4.0*m_mgC / 2.0) return 0.0;
90 double p = ph + dp;
91 double yl, yh, yq, y;
92 double zl, zh, zq, z;
93 double zzl, zzh, zzq, zz;
94 double sum = 0.0;
95 for (size_t i=0; i<m_FdAMaxPoints4; i++) {
96 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
97 yh = 1.0 - ph/p - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
98 yq = yh - yl;
99 y = yl + m_FdAHS2[i]*yq;

100
101 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
102 zh = 1.0 - ph/p - y - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
103 zq = zh - zl;
104 z = zl + m_FdAHS3[i]*zq;
105
106 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
107 zzh = 1.0 - ph/p - y - z - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
108 zzq = zzh - zzl;
109 zz = zzl + m_FdAHS4[i]*zzq;
110
111 sum += 1.0 / std::exp(norm.interpolation(p))*(1.0 / 2.0 / 3.0 / 4.0)*dndx.

interpolation(p, 1.0 - ph/p - y - z - zz)*
112 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*(yh -

yl)*(zh - zl)*(zzh - zzl);
113 }
114
115 return (sum/static_cast<double>(m_FdAMaxPoints4));
116 }
117
118 double energyLoss::FdA415(double ph, double dp, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
119 if (dp < 5.0*m_mgC / 2.0) return 0.0;
120 double p = ph + dp;
121 double yl, yh, yq, y;
122 double zl, zh, zq, z;
123 double zzl, zzh, zzq, zz;
124 double zzzl, zzzh, zzzq, zzz;
125 double sum = 0.0;
126 for (size_t i=0; i<m_FdAMaxPoints5; i++) {
127 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
128 yh = 1.0 - ph/p - 4.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
129 yq = yh - yl;
130 y = yl + m_FdAHS2[i]*yq;
131
132 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
133 zh = 1.0 - ph/p - y - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));

106

DREENA-A code

134 zq = zh - zl;
135 z = zl + m_FdAHS3[i]*zq;
136
137 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
138 zzh = 1.0 - ph/p - y - z - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
139 zzq = zzh - zzl;
140 zz = zzl + m_FdAHS4[i]*zzq;
141
142 zzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
143 zzzh = 1.0 - ph/p - y - z - zz - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
144 zzzq = zzzh - zzzl;
145 zzz = zzzl + m_FdAHS5[i]*zzzq;
146
147 sum += 1.0 / std::exp(norm.interpolation(p))*(1.0 / 2.0 / 3.0 / 4.0 / 5.0)*dndx.

interpolation(p, 1.0 - ph/p - y - z - zz - zzz)*
148 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*dndx.

interpolation(p, zzz)*(yh - yl)*(zh - zl)*(zzh - zzl)*(zzzh - zzzl);
149
150 }
151
152 return (sum/static_cast<double>(m_FdAMaxPoints5));
153 }
154
155 double energyLoss::FdA(double ph, double dp, const interpolationF<double> &currnorm,

const interpolationF<double> &currdndx) const {
156 return (FdA411(ph, dp, currnorm, currdndx) + FdA412(ph, dp, currnorm, currdndx) +

FdA413(ph, dp, currnorm, currdndx) +
157 FdA414(ph, dp, currnorm, currdndx) + FdA415(ph, dp, currnorm, currdndx));
158 }
159
160
161 void energyLoss::dAHaltonSeqInit(size_t dAMaxPts)
162 {
163 m_dAMaxPoints1 = dAMaxPts; //setting values of dAMaxPoints
164 m_dAMaxPoints2 = dAMaxPts-100;
165 m_dAMaxPoints3 = dAMaxPts-200;
166 m_dAMaxPoints4 = dAMaxPts-300;
167 m_dAMaxPoints5 = dAMaxPts-400;
168 m_dAMaxPoints6 = dAMaxPts-500;
169 m_dAMaxPoints7 = dAMaxPts-600;
170
171 for (size_t i=0; i<dAMaxPts; i++) //generating Halton sequences
172 {
173 m_dAHS1.push_back(haltonSequence((i+1)*409, 2));
174 m_dAHS2.push_back(haltonSequence((i+1)*409, 3));
175 m_dAHS3.push_back(haltonSequence((i+1)*409, 5));
176 m_dAHS4.push_back(haltonSequence((i+1)*409, 7));
177 m_dAHS5.push_back(haltonSequence((i+1)*409, 11));
178 m_dAHS6.push_back(haltonSequence((i+1)*409, 13));
179 m_dAHS7.push_back(haltonSequence((i+1)*409, 17));
180 }
181 }
182
183 double energyLoss::dA410(double ph, const interpolationF<double> &norm) const {
184 return (m_dsdpti2.interpolation(ph)/exp(norm.interpolation(ph)));
185 }
186
187 double energyLoss::dA411(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
188 double p1 = ph + m_mgC / 2.0;
189 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
190 double pq = p2 - p1;
191 double p;
192 double sum = 0.0;
193 for (size_t i=0; i<m_dAMaxPoints1; i++) {
194 p = p1 + m_dAHS1[i]*pq;
195
196 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*dndx.

interpolation(p, 1.0 - ph/p);
197 }
198
199 return (sum*pq/static_cast<double>(m_dAMaxPoints1));

107

Appendix

200 }
201
202 double energyLoss::dA412(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
203 double p1 = ph + 2.0*m_mgC / 2.0;
204 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
205 double pq = p2 - p1;
206 double p;
207 double yl, yh, yq, y;
208 double sum = 0.0;
209 for (size_t i=0; i<m_dAMaxPoints2; i++) {
210 p = p1 + m_dAHS1[i]*pq;
211
212 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
213 yh = 1.0 - ph/p - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
214 yq = yh - yl;
215 y = yl + m_dAHS2[i]*yq;
216
217 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0)*

dndx.interpolation(p, 1.0 - ph / p - y)*
218 dndx.interpolation(p, y)*(yh - yl);
219 }
220
221 return (sum*pq/static_cast<double>(m_dAMaxPoints2));
222 }
223
224 double energyLoss::dA413(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
225 double p1 = ph + 3.0*m_mgC / 2.0;
226 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
227 double pq = p2 - p1;
228 double p;
229 double yl, yh, yq, y;
230 double zl, zh, zq, z;
231 double sum = 0.0;
232 for (size_t i=0; i<m_dAMaxPoints3; i++) {
233 p = p1 + m_dAHS1[i]*pq;
234
235 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
236 yh = 1.0 - ph/p - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
237 yq = yh - yl;
238 y = yl + m_dAHS2[i]*yq;
239
240 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
241 zh = 1.0 - ph/p - y - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
242 zq = zh - zl;
243 z = zl + m_dAHS3[i]*zq;
244
245 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0 /

3.0)*dndx.interpolation(p, 1.0 - ph/p - y - z)*
246 dndx.interpolation(p, y)*dndx.interpolation(p, z)*(yh - yl)*(zh - zl);
247 }
248
249 return (sum*pq/static_cast<double>(m_dAMaxPoints3));
250 }
251
252 double energyLoss::dA414(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
253 double p1 = ph + 4.0*m_mgC / 2.0;
254 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
255 double pq = p2 - p1;
256 double p;
257 double yl, yh, yq, y;
258 double zl, zh, zq, z;
259 double zzl, zzh, zzq, zz;
260 double sum = 0.0;
261 for (size_t i=0; i<m_dAMaxPoints4; i++) {
262 p = p1 + m_dAHS1[i]*pq;
263
264 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
265 yh = 1.0 - ph/p - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
266 yq = yh - yl;

108

DREENA-A code

267 y = yl + m_dAHS2[i]*yq;
268
269 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
270 zh = 1.0 - ph/p - y - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
271 zq = zh - zl;
272 z = zl + m_dAHS3[i]*zq;
273
274 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
275 zzh = 1.0 - ph/p - y - z - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
276 zzq = zzh - zzl;
277 zz = zzl + m_dAHS4[i]*zzq;
278
279 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0 /

3.0 / 4.0)*dndx.interpolation(p, 1.0 - ph/p - y - z - zz)*
280 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*(yh -

yl)*(zh - zl)*(zzh - zzl);
281 }
282
283 return (sum*pq/static_cast<double>(m_dAMaxPoints4));
284 }
285
286 double energyLoss::dA415(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
287 double p1 = ph + 5.0*m_mgC / 2.0;
288 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
289 double pq = p2 - p1;
290 double p;
291 double yl, yh, yq, y;
292 double zl, zh, zq, z;
293 double zzl, zzh, zzq, zz;
294 double zzzl, zzzh, zzzq, zzz;
295 double sum = 0.0;
296 for (size_t i=0; i<m_dAMaxPoints5; i++) {
297 p = p1 + m_dAHS1[i]*pq;
298
299 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
300 yh = 1.0 - ph/p - 4.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
301 yq = yh - yl;
302 y = yl + m_dAHS2[i]*yq;
303
304 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
305 zh = 1.0 - ph/p - y - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
306 zq = zh - zl;
307 z = zl + m_dAHS3[i]*zq;
308
309 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
310 zzh = 1.0 - ph/p - y - z - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
311 zzq = zzh - zzl;
312 zz = zzl + m_dAHS4[i]*zzq;
313
314 zzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
315 zzzh = 1.0 - ph/p - y - z - zz - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
316 zzzq = zzzh - zzzl;
317 zzz = zzzl + m_dAHS5[i]*zzzq;
318
319 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0 /

3.0 / 4.0 / 5.0)*dndx.interpolation(p, 1.0 - ph/p - y - z - zz - zzz)*
320 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*dndx.

interpolation(p, zzz)*(yh - yl)*(zh - zl)*(zzh - zzl)*(zzzh - zzzl);
321 }
322
323 return (sum*pq/static_cast<double>(m_dAMaxPoints5));
324 }
325
326 double energyLoss::dA416(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
327 double p1 = ph + 6.0*m_mgC / 2.0;
328 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
329 double pq = p2 - p1;
330 double p;
331 double yl, yh, yq, y;
332 double zl, zh, zq, z;

109

Appendix

333 double zzl, zzh, zzq, zz;
334 double zzzl, zzzh, zzzq, zzz;
335 double zzzzl, zzzzh, zzzzq, zzzz;
336 double sum = 0.0;
337 for (size_t i=0; i<m_dAMaxPoints6; i++) {
338 p = p1 + m_dAHS1[i]*pq;
339
340 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
341 yh = 1.0 - ph/p - 5.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
342 yq = yh - yl;
343 y = yl + m_dAHS2[i]*yq;
344
345 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
346 zh = 1.0 - ph/p - y - 4.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
347 zq = zh - zl;
348 z = zl + m_dAHS3[i]*zq;
349
350 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
351 zzh = 1.0 - ph/p - y - z - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
352 zzq = zzh - zzl;
353 zz = zzl + m_dAHS4[i]*zzq;
354
355 zzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
356 zzzh = 1.0 - ph/p - y - z - zz - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
357 zzzq = zzzh - zzzl;
358 zzz = zzzl + m_dAHS5[i]*zzzq;
359
360 zzzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
361 zzzzh = 1.0 - ph/p - y - z - zz - zzz - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
362 zzzzq = zzzzh - zzzzl;
363 zzzz = zzzzl + m_dAHS6[i]*zzzzq;
364
365 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0 /

3.0 / 4.0 / 5.0 / 6.0)*dndx.interpolation(p, 1.0 - ph/p - y - z - zz - zzz - zzzz)*
366 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*dndx.

interpolation(p, zzz)*dndx.interpolation(p, zzzz)*(yh - yl)*(zh - zl)*
367 (zzh - zzl)*(zzzh - zzzl)*(zzzzh - zzzzl);
368 }
369
370 return (sum*pq/static_cast<double>(m_dAMaxPoints6));
371 }
372
373 double energyLoss::dA417(double ph, const interpolationF<double> &norm, const

interpolationF<double> &dndx) const {
374 double p1 = ph + 7.0*m_mgC / 2.0;
375 double p2 = (((2.0*ph) < (ph + 30.0)) ? (2.0*ph) : (ph + 30.0));
376 double pq = p2 - p1;
377 double p;
378 double yl, yh, yq, y;
379 double zl, zh, zq, z;
380 double zzl, zzh, zzq, zz;
381 double zzzl, zzzh, zzzq, zzz;
382 double zzzzl, zzzzh, zzzzq, zzzz;
383 double zzzzzl, zzzzzh, zzzzzq, zzzzz;
384 double sum = 0.0;
385 for (size_t i=0; i<m_dAMaxPoints7; i++) {
386 p = p1 + m_dAHS1[i]*pq;
387
388 yl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
389 yh = 1.0 - ph/p - 6.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
390 yq = yh - yl;
391 y = yl + m_dAHS2[i]*yq;
392
393 zl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
394 zh = 1.0 - ph/p - y - 5.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
395 zq = zh - zl;
396 z = zl + m_dAHS3[i]*zq;
397
398 zzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
399 zzh = 1.0 - ph/p - y - z - 4.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
400 zzq = zzh - zzl;
401 zz = zzl + m_dAHS4[i]*zzq;

110

DREENA-A code

402
403 zzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
404 zzzh = 1.0 - ph/p - y - z - zz - 3.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
405 zzzq = zzzh - zzzl;
406 zzz = zzzl + m_dAHS5[i]*zzzq;
407
408 zzzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
409 zzzzh = 1.0 - ph/p - y - z - zz - zzz - 2.0*m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
410 zzzzq = zzzzh - zzzzl;
411 zzzz = zzzzl + m_dAHS6[i]*zzzzq;
412
413 zzzzzl = m_mgC/(p + std::sqrt(m_MC*m_MC + p*p));
414 zzzzzh = 1.0 - ph/p - y - z - zz - zzz - zzzz - m_mgC/(p + std::sqrt(m_MC*m_MC + p*p)

);
415 zzzzzq = zzzzzh - zzzzzl;
416 zzzzz = zzzzzl + m_dAHS7[i]*zzzzzq;
417
418 sum += m_dsdpti2.interpolation(p) / p / std::exp(norm.interpolation(p))*(1.0 / 2.0 /

3.0 / 4.0 / 5.0 / 6.0 / 7.0)*dndx.interpolation(p, 1.0 - ph/p - y - z - zz - zzz -
zzzz - zzzzz)*

419 dndx.interpolation(p, y)*dndx.interpolation(p, z)*dndx.interpolation(p, zz)*dndx.
interpolation(p, zzz)*dndx.interpolation(p, zzzz)*dndx.interpolation(p, zzzzz)*

420 (yh - yl)*(zh - zl)*(zzh - zzl)*(zzzh - zzzl)*(zzzzh - zzzzl)*(zzzzzh - zzzzzl);
421 }
422
423 return (sum*pq/static_cast<double>(m_dAMaxPoints7));
424 }
425
426 double energyLoss::dA41(double ph, interpolationF<double> &currnorm, interpolationF<

double> &currdndx) const {
427 if (m_pName == "Gluon") { //gluon needs 7 dA integrals
428 return (dA410(ph, currnorm) + dA411(ph, currnorm, currdndx) + dA412(ph, currnorm,

currdndx) +dA413(ph, currnorm, currdndx) +
429 dA414(ph, currnorm, currdndx) + dA415(ph, currnorm, currdndx) + dA416(ph,

currnorm, currdndx) +
430 dA417(ph, currnorm, currdndx));
431 }
432 else { //light quarks need 5 dA integrals
433 return (dA410(ph, currnorm) + dA411(ph, currnorm, currdndx) + dA412(ph, currnorm,

currdndx) + dA413(ph, currnorm, currdndx) +
434 dA414(ph, currnorm, currdndx) + dA415(ph, currnorm, currdndx));
435 }
436 }

lTables class’ header file, ltables.hpp is:
1 #ifndef HEADERFILE_LTABLESHEADER
2 #define HEADERFILE_LTABLESHEADER
3
4 #include "grids.hpp"
5
6 #include <string>
7 #include <vector>
8 #include <complex>
9

10 class lTables {
11
12 public:
13 lTables(int argc, const char *argv[]);
14 ~lTables();
15 void runLTables();
16
17 private:
18 bool m_error; //flag that checks if previous calculation is done properly
19
20 std::string m_sNN; //collision energy
21 std::string m_pName; //particle name
22 double m_xB; //xB value
23 size_t m_LdndxMaxPoints; //maximal number of points for Ldndx integration
24 size_t m_LCollMaxPoints; //maximal number of points for collisional integration
25 double m_TCRIT; //critical temperature
26
27 double m_nf; //effective number of flavours

111

Appendix

28 const double m_Ng = 3.0; //effective number of gluons
29 const double m_lambda = 0.2; //QCD scale
30 const double m_kmaxColl = 5.0; //kMaxColl value
31 double m_CR; //Casimir (3 for gluons, 4/3 for quakrs)
32
33 gridPoints m_Grids; //grids
34
35 double productLog(double x) const;
36 double unitStep(double x) const;
37 long double unitStep(long double x) const;
38
39 std::vector<double> m_LdndxHSeq1, m_LdndxHSeq2, m_LdndxHSeq3;
40 double haltonSequence(int index, int base) const;
41 void LdndxHSeqInit();
42
43 std::vector<std::vector<std::vector<std::vector<double>>>> m_LdndxTbl;
44 std::vector<std::vector<std::vector<double>>> m_LNormTbl;
45 double dElossDYN(double tau, double p, double x, double k, double q, double varphi,

double T) const;
46 double Ldndx(double tau, double p, double T, double x) const;
47 void RadLTables();
48
49 std::vector<double> m_LCollHSeq1, m_LCollHSeq2, m_LCollHSeq3;
50 void LCollHSeqInit();
51
52 std::vector<std::vector<double>> m_LCollTbl;
53 std::complex<double> deltaL2(double q, double w, double T) const;
54 std::complex<double> deltaT2(double q, double w, double T) const;
55 double ENumFinite(double p, double T) const;
56 void CollLTables();
57
58 int exportLTables() const;
59
60 };
61
62 #endif

lTables class’ source file, ltables.cpp is:
1 #include "ltables.hpp"
2 #include "grids.hpp"
3 #include "polyintegration.hpp"
4
5 #include <iostream>
6 #include <string>
7 #include <sstream>
8 #include <fstream>
9 #include <vector>

10 #include <map>
11 #include <cmath>
12 #include <complex>
13 #include <iomanip>
14
15 lTables::lTables(int argc, const char *argv[])
16 {
17 m_error = false;
18
19 std::vector<std::string> inputs; for (int i=2; i<argc; i++) inputs.push_back(argv[i]);
20
21 if ((inputs.size() == 1) && (inputs[0] == "-h")) {
22 std::cout << "default values: --sNN=5020GeV --pName=Charm --xB=0.6 --LdndxMaxPoints

=500000 --LCollMaxPoints=10000 --TCRIT=0.155" << std::endl;
23 m_error = true;
24 }
25
26 std::map<std::string, std::string> inputparams;
27 for (const auto &in : inputs)
28 {
29 std::string key = in.substr(0, in.find("="));
30 std::string::size_type n = 0; while ((n = key.find("-", n)) != std::string::npos) {

key.replace(n, 1, ""); n += 0;} //replacing all ’-’
31 std::string val = in.substr(in.find("=")+1, in.length());
32 inputparams[key] = val;

112

DREENA-A code

33 }
34
35 //checking if configuration file is provided:
36 std::map<std::string, std::string> inputparams_f;
37 if (inputparams.count("c") > 0) {
38 std::ifstream file_in(inputparams["c"]);
39 if (!file_in.is_open()) {
40 std::cerr << "Error: unable to open configuration file. Aborting..." << std::endl;
41 m_error = true;
42 }
43 std::string line, key, sep, val;
44 while (std::getline(file_in, line))
45 {
46 std::stringstream ss(line);
47 ss >> key; ss >>sep; ss >> val;
48 inputparams_f[key] = val;
49 }
50 file_in.close();
51 }
52
53 //setting parameter values based on config file values and overwriting with command

line values:
54 //
55 m_sNN = "5020GeV"; if (inputparams_f.count("sNN") > 0) m_sNN = inputparams_f["sNN"];
56 if (inputparams.count("sNN") > 0) m_sNN = inputparams["sNN"];
57
58 m_pName = "Charm"; if (inputparams_f.count("pName") > 0) m_pName = inputparams_f["pName

"];
59 if (inputparams.count("pName") > 0) m_pName = inputparams["pName"];
60
61 m_xB = 0.6; if (inputparams_f.count("xB") > 0) m_xB = stod(inputparams_f["xB"]);
62 if (inputparams.count("xB") > 0) m_xB = stod(inputparams["xB"]);
63
64 m_LdndxMaxPoints = 500000; if (inputparams_f.count("LdndxMaxPoints") > 0)

m_LdndxMaxPoints = stoi(inputparams_f["LdndxMaxPoints"]);
65 if (inputparams.count("LdndxMaxPoints") > 0) m_LdndxMaxPoints = stoi

(inputparams["LdndxMaxPoints"]);
66
67 m_LCollMaxPoints = 10000; if (inputparams_f.count("LCollMaxPoints") > 0)

m_LCollMaxPoints = stoi(inputparams_f["LCollMaxPoints"]);
68 if (inputparams.count("LCollMaxPoints") > 0) m_LCollMaxPoints = stoi(

inputparams["LCollMaxPoints"]);
69
70 m_TCRIT = 0.155; if (inputparams_f.count("TCRIT") > 0) m_TCRIT = stod(inputparams_f["

TCRIT"]);
71 if (inputparams.count("TCRIT") > 0) m_TCRIT = stod(inputparams["TCRIT"]);
72
73 //checking if provided value of sNN is an option:
74 if ((m_sNN != "5440GeV") && (m_sNN != "5020GeV") && (m_sNN != "2760GeV") && (m_sNN != "

200GeV")) {
75 std::cerr << "Error: provided sNN parameter not an option, please try 5440GeV, 5020

GeV, 2760GeV or 200GeV. Aborting..." << std::endl;
76 m_error = true;
77 }
78
79 m_nf = m_sNN == "200GeV" ? 2.5 : 3.0;
80 m_CR = m_pName == "Gluon" ? 3.0 : 4.0/3.0;
81 }
82
83 lTables::~lTables() {}
84
85 void lTables::runLTables()
86 {
87 if (m_error) return;
88
89 m_Grids.setGridPoints(m_sNN, m_pName, m_TCRIT);
90
91 RadLTables();
92
93 CollLTables();
94
95 if (exportLTables() != 1) return;

113

Appendix

96 }
97
98 double lTables::haltonSequence(int index, int base) const
99 {

100 double f = 1.0;
101 double res = 0.0;
102
103 while (index > 0) {
104 f = f / static_cast<double>(base);
105 res += f * static_cast<double>(index % base);
106 index = index / base; // integer division
107 }
108
109 return res;
110 }
111
112 void lTables::LdndxHSeqInit()
113 {
114 for (size_t i=0; i<m_LdndxMaxPoints; i++) {
115 m_LdndxHSeq1.push_back(haltonSequence((i+1)*409, 2));
116 m_LdndxHSeq2.push_back(haltonSequence((i+1)*409, 3));
117 m_LdndxHSeq3.push_back(haltonSequence((i+1)*409, 5));
118 }
119 }
120
121 double lTables::productLog(double x) const
122 {
123 if (x == 0.0) {
124 return 0.0;
125 }
126
127 double w0, w1;
128 if (x > 0.0) {
129 w0 = std::log(1.2 * x / std::log(2.4 * x / std::log1p(2.4 * x)));
130 }
131 else {
132 double v = 1.4142135623730950488 * std::sqrt(1.0 + 2.7182818284590452354 * x);
133 double N2 = 10.242640687119285146 + 1.9797586132081854940 * v;
134 double N1 = 0.29289321881345247560 * (1.4142135623730950488 + N2);
135 w0 = -1 + v * (N2 + v) / (N2 + v + N1 * v);
136 }
137
138 while (true) {
139 double e = std::exp(w0);
140 double f = w0 * e - x;
141 w1 = w0 - f / ((e * (w0 + 1.0) - (w0 + 2.0) * f / (w0 + w0 + 2.0)));
142 if (std::abs(w0 / w1 - 1.0) < 1.4901161193847656e-8) {
143 break;
144 }
145 w0 = w1;
146 }
147 return w1;
148 }
149
150 double lTables::unitStep(double x) const {
151 return (x < 0.0) ? 0.0 : 1.0;
152 }
153
154 long double lTables::unitStep(long double x) const {
155 return (x < 0.0L) ? 0.0L : 1.0L;
156 }
157
158 double lTables::dElossDYN(double tau, double p, double x, double k, double q, double

varphi, double T) const
159 {
160 double mu = 0.197*std::sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0 + m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/
m_lambda));

161 double mg = mu / std::sqrt(2.0);
162 double M = 0.0;
163 if (m_pName == "Bottom") M = 4.75;
164 else if (m_pName == "Charm") M = 1.2;

114

DREENA-A code

165 else if (m_pName == "Gluon") M = mu/std::sqrt(2.0);
166 else M = mu/std::sqrt(6.0);
167
168 double b = std::sqrt(mg*mg + M * M*x*x);
169 double e = std::sqrt(p*p + M * M);
170 double alpha = 4.0*M_PI/(11.0 - 2.0*m_nf/3.0)/std::log((k*k + mg*mg + M*M*x*x)/x/

m_lambda/m_lambda);
171 double alpha1 = 4.0*M_PI/(11.0 - 2.0*m_nf/3.0)/std::log(e*T/0.2/0.2);
172
173 double fn = 1.0;
174 fn *= 1.0 / 0.197*m_CR*alpha/M_PI*3.0*alpha1*T*2.0*k*q/M_PI;
175 fn *= (mu*mu - mu*mu*m_xB*m_xB)/(q*q + mu*mu*m_xB*m_xB)/(q*q + mu*mu);
176
177 double psi = (k*k + q*q + 2.0*k*q*std::cos(varphi) + b*b)/2.0/x/e*tau/0.197;
178
179 fn *= (1 - std::cos(psi));
180 fn *= 2.0/(k*k + b*b)/(k*k + q*q + 2.0*k*q*cos(varphi) + b*b)/(k*k + q*q + 2.0*k*q*std

::cos(varphi) + b*b);
181 fn *= (-1.0*k*q*std::cos(varphi)*(k*k + q*q + 2.0*k*q*std::cos(varphi)) + b*b*(k*q*std

::cos(varphi) + q*q));
182
183 return fn;
184 }
185
186 double lTables::Ldndx(double tau, double p, double T, double x) const
187 {
188 double mu = 0.197*std::sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

189 double mg = mu / std::sqrt(2.0);
190 double M = 0.0;
191 if (m_pName == "Bottom") M = 4.75;
192 else if (m_pName == "Charm") M = 1.2;
193 else if (m_pName == "Gluon") M = mg;
194 else M = mu/sqrt(6.0);
195 double e = sqrt(p*p + M * M);
196
197 double kl = 0.00000001;
198 double kh = 2.0*x*(1 - x)*e;
199 double kq = (kh - kl);
200 double ql = 0.000001;
201 double qh = sqrt(4.0*e*T);
202 double qq = qh - ql;
203 double phil = 0.0;
204 double phih = M_PI;
205 double phiq = (phih - phil);
206 double sum = 0.0; //integration sum
207 double k, q, phi; //integration variables
208
209 #pragma omp parallel for reduction(+:sum) private(k,q,phi)
210 for (size_t i = 0; i<m_LdndxMaxPoints; i++) {
211 k = kl + m_LdndxHSeq1[i]*kq;
212 q = ql + m_LdndxHSeq2[i]*qq;
213 phi = phil + m_LdndxHSeq3[i]*phiq;
214 sum += 2*dElossDYN(tau, p, x, k, q, phi, T)/x;
215 }
216
217 return (sum*kq*qq*phiq/static_cast<double>(m_LdndxMaxPoints));
218 }
219
220 void lTables::RadLTables()
221 {
222 LdndxHSeqInit();
223
224 m_LdndxTbl.resize(m_Grids.tauPtsLength(), std::vector<std::vector<std::vector<double

>>>(m_Grids.pPtsLength(), std::vector<std::vector<double>>(m_Grids.TPtsLength(), std
::vector<double>(m_Grids.xPtsLength(), 0.0))));;

225 m_LNormTbl.resize(m_Grids.tauPtsLength(), std::vector<std::vector<double>>(m_Grids.
pPtsLength(), std::vector<double>(m_Grids.TPtsLength(), 0.0)));

226
227 double tau, p, T, x, mu, M, xIntegLimitLow, xIntegLimitHigh;
228

115

Appendix

229 for (size_t itau=0; itau<m_Grids.tauPtsLength(); itau++) {
230 tau = m_Grids.tauPts(itau);
231
232 for (size_t ip=0; ip<m_Grids.pPtsLength(); ip++) {
233 p = m_Grids.pPts(ip);
234
235 for (size_t iT=0; iT<m_Grids.TPtsLength(); iT++) {
236 T = m_Grids.TPts(iT);
237
238 for (size_t ix=0; ix<m_Grids.xPtsLength(); ix++) {
239 x = m_Grids.xPts(ix);
240 m_LdndxTbl[itau][ip][iT][ix] = Ldndx(tau, p, T, x);
241 }
242
243 mu = 0.197*std::sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

244 if (m_pName == "Bottom") M = 4.75;
245 else if (m_pName == "Charm") M = 1.2;
246 else if (m_pName == "Gluon") M = mu/sqrt(2.0);
247 else M = mu/sqrt(6.0);
248
249 xIntegLimitLow = mu/std::sqrt(2.0)/(p + std::sqrt(p*p + M*M));
250 if (m_pName == "Gluon") xIntegLimitHigh = 0.5;
251 else xIntegLimitHigh = 1.0 - M/(std::sqrt(p*p + M*M) + p);
252
253 m_LNormTbl[itau][ip][iT] = poly::cubicIntegrate(m_Grids.xPts(), m_LdndxTbl[itau][

ip][iT], xIntegLimitLow, xIntegLimitHigh);
254 }
255 }
256 }
257 }
258
259 void lTables::LCollHSeqInit()
260 {
261 for (size_t i=0; i<m_LCollMaxPoints; i++) {
262 m_LCollHSeq1.push_back(haltonSequence((i+1)*409, 2));
263 m_LCollHSeq2.push_back(haltonSequence((i+1)*409, 3));
264 m_LCollHSeq3.push_back(haltonSequence((i+1)*409, 5));
265 }
266 }
267
268 std::complex<double> lTables::deltaL2(double q, double w, double T) const
269 {
270 double mu = 0.197*sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

271
272 std::complex<double> q_c = q, w_c = w;
273 std::complex<double> log_c = std::log((q_c + w_c)/(q_c - w_c));
274
275 std::complex<double> fn = q*q + mu*mu*(1.0 - w/2.0/q*log_c);
276 fn = fn*fn;
277 fn += (M_PI*M_PI*mu*mu*mu*mu/4.0*w*w/q/q);
278
279 return (1.0/fn);
280 }
281
282 std::complex<double> lTables::deltaT2(double q, double w, double T) const
283 {
284 double mu = 0.197*sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

285
286 std::complex<double> q_c = q, w_c = w;
287 std::complex<double> log_c = std::log((q_c + w_c)/(q_c - w_c));
288
289 std::complex<double> fn = w*w/q/q + w*(q*q - w*w)/2.0/q/q/q*log_c;
290 fn *= (mu*mu/2.0);
291 fn += (q*q - w*w);
292 fn = fn*fn;
293 fn += (M_PI*M_PI*mu*mu*mu*mu/4.0*w*w/q/q*(q*q - w*w)*(q*q - w*w)/4.0/q/q/q/q);

116

DREENA-A code

294
295 return (1.0/fn);
296 }
297
298 double lTables::ENumFinite(double p, double T) const
299 {
300 double mu = 0.197*sqrt((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0+m_nf)*M_PI*M_PI*T*T)/(2.0*m_nf-33.0)/m_lambda/m_lambda
));

301 double M = 1.0;
302 if (m_pName == "Bottom") M = 4.75;
303 else if (m_pName == "Charm") M = 1.2;
304 else if (m_pName == "Gluon") M = mu/std::sqrt(2.0);
305 else M = mu/std::sqrt(6.0);
306 double e = std::sqrt(p*p + M * M);
307 double v = p/e;
308 double alpha1 = 4.0*M_PI/(11.0 - 2.0/3.0*m_nf)/std::log(e*T/0.2/0.2);
309 double alpha2 = 2.0*M_PI/(11.0 - 2.0/m_nf*3.0)/std::log(mu/0.2);
310
311 //ENumFinite1 integral:
312 double ENumFiniteSum1 = 0.0;
313
314 double nfCol;
315
316 double k;
317 double kl = 0.0001;
318 double kh = m_kmaxColl;
319 double kq = kh - kl;
320
321 double ql = 0.0001;
322 double qh, qq, q, qmaxCol, qh1, qh2;
323
324 double wl, wh, wq, w;
325
326 #pragma omp parallel for reduction(+:ENumFiniteSum1) private(k,nfCol, qh,qq,q,qmaxCol,

wl,wh,wq,w)
327 for (size_t i=0; i<m_LCollMaxPoints; i++) {
328 std::complex<double> fn_comp;
329
330 k = kl + m_LCollHSeq1[i]*kq;
331 nfCol = m_Ng/(std::exp(k/T) - 1.0) + m_nf/(std::exp(k/T) + 1.0);
332
333 qmaxCol = std::sqrt(6.0*e*T);
334 qh = ((qmaxCol < k) ? qmaxCol : k);
335 qq = qh - ql;
336 q = ql + m_LCollHSeq2[i]*qq;
337
338 wl = -q;
339 wh = q;
340 wq = wh - wl;
341 w = wl + m_LCollHSeq3[i]*wq;
342
343 fn_comp = 2.0/0.197*m_CR*alpha1*alpha2/M_PI/v/v*nfCol*w*unitStep(v*v*q*q - w*w);
344 fn_comp *= (deltaL2(q, w, T)*((2.0*k + w)*(2.0*k + w) - q*q)/2.0 + deltaT2(q, w, T)*(

q*q - w*w)/4.0/q/q/q/q*((2.0*k + w)*(2.0*k + w) + q*q)*(v*v*q*q - w*w));
345
346 ENumFiniteSum1 += fn_comp.real()*qq*wq;
347 }
348
349 ENumFiniteSum1 = ENumFiniteSum1*kq/static_cast<double>(m_LCollMaxPoints);
350
351 //ENumFinite2 integral:
352 double ENumFiniteSum2 = 0.0;
353
354 #pragma omp parallel for reduction(+:ENumFiniteSum2) private(k,nfCol, ql,qh,qh1,qh2,qq,

q,qmaxCol, wl,wh,wq,w)
355 for (size_t i=0; i<m_LCollMaxPoints; i++) {
356 std::complex<double> fn_comp;
357
358 k = kl + m_LCollHSeq1[i]*kq;
359 nfCol = m_Ng/(std::exp(k/T) - 1.0) + m_nf/(std::exp(k/T) + 1.0);
360

117

Appendix

361 qmaxCol = std::sqrt(6.0*e*T);
362 ql = ((qmaxCol < k) ? qmaxCol : k);
363 qh1 = 2.0*k*(1.0 - k/e)/(1.0 - v + 2.0*k/e);
364 qh2 = ((k > qh1) ? k : qh1);
365 qh = ((qmaxCol < qh2) ? qmaxCol : qh2);
366 qq = qh - ql;
367 q = ql + m_LCollHSeq2[i]*qq;
368
369 wl = q - 2.0*k;
370 wh = q;
371 wq = wh - wl;
372 w = wl + m_LCollHSeq3[i] * wq;
373
374 fn_comp = 2.0/0.197*m_CR*alpha1*alpha2/M_PI/v/v*nfCol*w*unitStep(v*v*q*q - w*w);
375 fn_comp *= (deltaL2(q, w, T)*((2.0*k + w)*(2.0*k + w) - q*q)/2.0 + deltaT2(q, w, T)*(

q*q - w*w)/4.0/q/q/q/q*((2.0*k + w)*(2.0*k + w) + q*q)*(v*v*q*q - w*w));
376
377 ENumFiniteSum2 += fn_comp.real()*qq*wq;
378 }
379
380 ENumFiniteSum2 = ENumFiniteSum2*kq/static_cast<double>(m_LCollMaxPoints);
381
382 return (ENumFiniteSum1 + ENumFiniteSum2);
383 }
384
385 void lTables::CollLTables()
386 {
387 LCollHSeqInit();
388
389 m_LCollTbl.resize(m_Grids.pCollPtsLength(), std::vector<double>(m_Grids.TCollPtsLength

(), 0.0));
390
391 for (size_t ip=0; ip<m_Grids.pCollPtsLength(); ip++) {
392 for (size_t iT=0; iT<m_Grids.TCollPtsLength(); iT++) {
393 m_LCollTbl[ip][iT] = ENumFinite(m_Grids.pCollPts(ip), m_Grids.TCollPts(iT));
394 }
395 }
396 }
397
398 int lTables::exportLTables() const
399 {
400 std::stringstream xBss; xBss << std::fixed << std::setprecision(1) << m_xB;
401 std::stringstream nfss; nfss << std::fixed << std::setprecision(1) << m_nf;
402
403 {//exporting Ldndx table
404 const std::string path_out = "./ltables/ldndx_nf=" + nfss.str() + "_" + m_pName + "

_xB=" + xBss.str() + ".dat";
405 std::ofstream file_out(path_out, std::ios_base::out);
406 if (!file_out.is_open()) {
407 std::cerr << "Error: unable to open Ldndx table export file." << std::endl;
408 return -1;
409 }
410
411 file_out << "#";
412 file_out << std::fixed << std::setw(12) << "tau" << " ";
413 file_out << std::fixed << std::setw(14) << "p" << " ";
414 file_out << std::fixed << std::setw(12) << "T" << " ";
415 file_out << std::fixed << std::setw(12) << "x" << " ";
416 file_out << std::fixed << std::setw(17) << "Ldndx" << "\n";
417
418 for (size_t itau=0; itau<m_Grids.tauPtsLength(); itau++) {
419 for (size_t ip=0; ip<m_Grids.pPtsLength(); ip++) {
420 for (size_t iT=0; iT<m_Grids.TPtsLength(); iT++) {
421 for (size_t ix=0; ix<m_Grids.xPtsLength(); ix++) {
422 file_out << std::fixed << std::setw(13) << std::setprecision(10) <<

m_Grids.tauPts(itau) << " ";
423 file_out << std::fixed << std::setw(14) << std::setprecision(10) <<

m_Grids.pPts(ip) << " ";
424 file_out << std::fixed << std::setw(12) << std::setprecision(10) <<

m_Grids.TPts(iT) << " ";
425 file_out << std::fixed << std::setw(12) << std::setprecision(10) <<

m_Grids.xPts(ix) << " ";

118

DREENA-A code

426 file_out << std::scientific << std::setw(17) << std::setprecision(10) <<
m_LdndxTbl[itau][ip][iT][ix] << "\n";

427 }
428 }
429 }
430 }
431
432 file_out.close();
433 }
434
435 {//exporting LNorm table
436 const std::string path_out = "./ltables/lnorm_nf=" + nfss.str() + "_" + m_pName + "

_xB=" + xBss.str() + ".dat";
437 std::ofstream file_out(path_out, std::ios_base::out);
438 if (!file_out.is_open()) {
439 std::cerr << "Error: unable to open LNorm table export file." << std::endl;
440 return -2;
441 }
442
443 file_out << "#";
444 file_out << std::fixed << std::setw(12) << "tau" << " ";
445 file_out << std::fixed << std::setw(14) << "p" << " ";
446 file_out << std::fixed << std::setw(12) << "T" << " ";
447 file_out << std::fixed << std::setw(17) << "LNorm" << "\n";
448
449 for (size_t itau=0; itau<m_Grids.tauPtsLength(); itau++) {
450 for (size_t ip=0; ip<m_Grids.pPtsLength(); ip++) {
451 for (size_t iT=0; iT<m_Grids.TPtsLength(); iT++) {
452 file_out << std::fixed << std::setw(13) << std::setprecision(10) << m_Grids.

tauPts(itau) << " ";
453 file_out << std::fixed << std::setw(14) << std::setprecision(10) << m_Grids.

pPts(ip) << " ";
454 file_out << std::fixed << std::setw(12) << std::setprecision(10) << m_Grids.

TPts(iT) << " ";
455 file_out << std::scientific << std::setw(17) << std::setprecision(10) <<

m_LNormTbl[itau][ip][iT] << "\n";
456 }
457 }
458 }
459
460 file_out.close();
461 }
462
463 {//exporting LColl table
464 std::string path_out = "./ltables/lcoll_nf=" + nfss.str() + "_" + m_pName + ".dat";
465 std::ofstream file_out(path_out, std::ios_base::out);
466 if (!file_out.is_open()) {
467 std::cerr << "Error: unable to open LColl table export file." << std::endl;
468 return -3;
469 }
470
471 file_out << "#";
472 file_out << std::fixed << std::setw(13) << "p" << " ";
473 file_out << std::fixed << std::setw(12) << "T" << " ";
474 file_out << std::fixed << std::setw(17) << "LColl" << "\n";
475
476 for (size_t ip=0; ip<m_Grids.pCollPtsLength(); ip++) {
477 for (size_t iT=0; iT<m_Grids.TCollPtsLength(); iT++) {
478 file_out << std::fixed << std::setw(14) << std::setprecision(10) << m_Grids.

pCollPts(ip) << " ";
479 file_out << std::fixed << std::setw(12) << std::setprecision(10) << m_Grids.

TCollPts(iT) << " ";
480 file_out << std::scientific << std::setw(17) << std::setprecision(10) <<

m_LCollTbl[ip][iT] << "\n";
481 }
482 }
483
484 file_out.close();
485 }
486
487 return 1;
488 }

119

Appendix

All the calculations in DREENA-A are done on grids - equidistant or non-uniform sequences of
points of variables sush as momentum, p, proper time, τ , temperature, T , and similar. With this in
mind, another class, grids is introduced. Its header file, grids.hpp follows:

1 #ifndef HEADERFILE_GRIDPOINTS
2 #define HEADERFILE_GRIDPOINTS
3
4 #include <vector>
5 #include <string>
6
7 class gridPoints {
8
9 //public functions:

10 public:
11
12 //CONSTRUCTORS:
13 gridPoints();
14 gridPoints(const std::string &sNN, const std::string &particleName, double tcrit);
15 void setGridPoints(const std::string &sNN, const std::string &particleName, double

tcrit);
16
17 //DESTRUCTOR:
18 ~gridPoints();
19
20 //GRID FUNCTIONS:
21 const std::vector<double> & tauPts() const;
22 double tauPts(int i) const;
23 size_t tauPtsLength() const;
24
25 const std::vector<double> & pPts() const;
26 double pPts(int i) const;
27 size_t pPtsLength() const;
28
29 const std::vector<double> & xPts() const;
30 double xPts(int i) const;
31 size_t xPtsLength() const;
32
33 const std::vector<double> & TPts() const;
34 double TPts(int i) const;
35 size_t TPtsLength() const;
36
37 const std::vector<double> & FdpPts() const;
38 double FdpPts(int i) const;
39 size_t FdpPtsLength() const;
40
41 const std::vector<double> & RadPts() const;
42 double RadPts(int i) const;
43 size_t RadPtsLength() const;
44
45 const std::vector<double> & pCollPts() const;
46 double pCollPts(int i) const;
47 size_t pCollPtsLength() const;
48
49 const std::vector<double> & TCollPts() const;
50 double TCollPts(int i) const;
51 size_t TCollPtsLength() const;
52
53 const std::vector<double> & finPts() const;
54 double finPts(int i) const;
55 size_t finPtsLength() const;
56
57 //private variables and functions:
58 private:
59
60 double m_nf = 3.0;
61 double m_lambda = 0.2;
62 double m_TCRIT = 0.155;
63 double productLog(double x);
64 double muF(double temp);
65 std::vector<double> m_tauPts, m_pPts, m_TPts, m_xPts, m_RadPts, m_FdpPts;
66 std::vector<double> m_pCollPts, m_TCollPts, m_finPts;
67 double linearIntegrate(const std::vector<double> &dataX, const std::vector<double> &

120

DREENA-A code

dataF, double xH) const;
68 void generateGrids(const std::vector<std::vector<double>> &density, size_t numpts, std

::vector<double> &gridpoints);
69 };
70
71 #endif

grids class source file is:
1 #include "grids.hpp"
2 #include "linearinterpolation.hpp"
3
4 #include <iostream>
5 #include <vector>
6 #include <string>
7 #include <cmath>
8
9 gridPoints::gridPoints() {}

10
11 gridPoints::gridPoints(const std::string &sNN, const std::string &particleName, double

tcrit)
12 {
13 setGridPoints(sNN, particleName, tcrit);
14 }
15
16 void gridPoints::setGridPoints(const std::string &sNN, const std::string &particleName,

double tcrit)
17 {
18 //setting nf value based on sNN (default value is 3.0 <-> LHC):
19 if (sNN == "200GeV") m_nf = 2.5;
20 //setting the value of critical temperature:
21 m_TCRIT = tcrit;
22
23 if (particleName == "Bottom") {
24
25 //tauPts:
26 size_t taugridn = 21;
27 std::vector<std::vector<double>> tauden{{0.0, 10.0}, {20.0, 10.0}};
28 generateGrids(tauden, taugridn, m_tauPts);
29
30 //pPts:
31 size_t pgridn = 25;
32 double pgridmax = sNN == "200GeV" ? 100.0 : 200.0;
33 std::vector<std::vector<double>> pden{{1.0, 8.0}, {20.0, 7.0}, {30.0, 3.0}, {60.0,

5.0}, {pgridmax, 1.0}};
34 generateGrids(pden, pgridn, m_pPts);
35
36 //TPts:
37 size_t Tgridn = 40;
38 std::vector<std::vector<double>> Tden{{0.01, 10.0}, {2.0, 10.0}};
39 generateGrids(Tden, Tgridn, m_TPts);
40
41 //xPts:
42 double mg = muF(m_TPts[0])/std::sqrt(2.0);
43 double M = 4.75;
44 double MAXP = sNN == "200GeV" ? 100.0 : 200.0;
45 size_t xgridn = 30;
46 double xmin = mg/(MAXP + std::sqrt(MAXP*MAXP + M*M));
47 for (size_t i=0; i<xgridn; i++)
48 m_xPts.push_back(std::exp(std::log(xmin) - std::log(xmin)/static_cast<double>(

xgridn-1)*static_cast<double>(i)));
49
50 //RadPts:
51 size_t Radgridn = 20;
52 double Radgridmax = sNN == "200GeV" ? 70.0 : 170.0;
53 std::vector<std::vector<double>> Radden{{2.0, 10.0}, {21.8, 10.0}, {44.5, 1.050001},

{Radgridmax, 1.0}};
54 generateGrids(Radden, Radgridn, m_RadPts);
55
56 //FdpPts:
57 double mgC = muF(3.0/2.0*m_TCRIT)/std::sqrt(2.0);
58 size_t Fdpgridn = 16;

121

Appendix

59 std::vector<std::vector<double>> Fdpden = {{5.0*mgC/2.0, 10.0}, {12.0, 5.0}, {30.0,
0.0}};

60 generateGrids(Fdpden, Fdpgridn-4, m_FdpPts);
61 m_FdpPts.insert(m_FdpPts.begin(), 4.0*mgC/2.0);
62 m_FdpPts.insert(m_FdpPts.begin(), 3.0*mgC/2.0);
63 m_FdpPts.insert(m_FdpPts.begin(), 2.0*mgC/2.0);
64 m_FdpPts.insert(m_FdpPts.begin(), 1.0*mgC/2.0);
65
66 //pCollPts:
67 size_t pCollgridn = 20;
68 double pCollgridmax = sNN == "200GeV" ? 70.0 : 170.0;
69 std::vector<std::vector<double>> pCollden{{1.0, 10.0}, {4.0, 10.0}, {9.0, 2.5},

{30.0, 0.6}, {60.0, 0.5}, {pCollgridmax, 0.3}};
70 generateGrids(pCollden, pCollgridn, m_pCollPts);
71
72 //TCollPts:
73 size_t TCollgridn = 40;
74 std::vector<std::vector<double>> TCollden{{0.01, 10.0}, {2.0, 10.0}};
75 generateGrids(TCollden, TCollgridn, m_TCollPts);
76
77 //finpts:
78 size_t fingridn = 30;
79 double fingridmax = sNN == "200GeV" ? 50.0 : 150.0;
80 std::vector<std::vector<double>> finden{{5.0, 10.0}, {50.0, 10.0}, {70.0, 5.0}, {

fingridmax, 3.0}};
81 generateGrids(finden, fingridn, m_finPts);
82 }
83 else if (particleName == "Charm") {
84
85 //tauPts:
86 size_t taugridn = 21;
87 std::vector<std::vector<double>> tauden{{0.0, 10.0}, {5.0, 10.0}, {10.0, 10.0},

{15.0, 10.0}, {20.0, 10.0}};
88 generateGrids(tauden, taugridn, m_tauPts);
89
90 //pPts:
91 size_t pgridn = 25;
92 double pgridmax = sNN == "200GeV" ? 100.0 : 200.0;
93 std::vector<std::vector<double>> pden{{1.0, 8.0}, {20.0, 7.0}, {30.0, 3.0}, {60.0,

5.0}, {pgridmax, 1.0}};
94 generateGrids(pden, pgridn, m_pPts);
95
96 //TPts:
97 size_t Tgridn = 40;
98 std::vector<std::vector<double>> Tden{{0.01, 10.0}, {2.0, 10.0}};
99 generateGrids(Tden, Tgridn, m_TPts);

100
101 //xPts:
102 double mg = muF(m_TPts[0])/std::sqrt(2.0);
103 double M = 1.2;
104 double MAXP = sNN == "200GeV" ? 100.0 : 200.0;
105 size_t xgridn = 30;
106 double xmin = mg/(MAXP + std::sqrt(MAXP*MAXP + M*M));
107 for (size_t i=0; i<xgridn; i++)
108 m_xPts.push_back(std::exp(std::log(xmin) - std::log(xmin)/static_cast<double

>(xgridn-1)*static_cast<double>(i)));
109
110 //RadPts:
111 size_t Radgridn = 20;
112 double Radgridmax = sNN == "200GeV" ? 70.0 : 170.0;
113 std::vector<std::vector<double>> Radden{{2.0, 10.0}, {21.8, 10.0}, {44.5, 1.05}, {

Radgridmax, 1.0}};
114 generateGrids(Radden, Radgridn, m_RadPts);
115
116 //FdpPts:
117 double mgC = muF(3.0/2.0*m_TCRIT)/std::sqrt(2.0);
118 size_t Fdpgridn = 16;
119 std::vector<std::vector<double>> Fdpden = {{5.0*mgC/2.0, 10.0}, {12.0, 5.0}, {30.0,

0.0}};
120 generateGrids(Fdpden, Fdpgridn-4, m_FdpPts);
121 m_FdpPts.insert(m_FdpPts.begin(), 4.0*mgC/2.0);
122 m_FdpPts.insert(m_FdpPts.begin(), 3.0*mgC/2.0);

122

DREENA-A code

123 m_FdpPts.insert(m_FdpPts.begin(), 2.0*mgC/2.0);
124 m_FdpPts.insert(m_FdpPts.begin(), 1.0*mgC/2.0);
125
126 //pCollPts:
127 size_t pCollgridn = 20;
128 double pCollgridmax = sNN == "200GeV" ? 70.0 : 170.0;
129 std::vector<std::vector<double>> pCollden{{1.0, 10.0}, {4.0, 10.0}, {9.0, 2.5},

{30.0, 0.6}, {60.0, 0.5}, {pCollgridmax, 0.3}};
130 generateGrids(pCollden, pCollgridn, m_pCollPts);
131
132 //TCollPts:
133 size_t TCollgridn = 40;
134 std::vector<std::vector<double>> TCollden{{0.01, 10.0}, {2.0, 10.0}};
135 generateGrids(TCollden, TCollgridn, m_TCollPts);
136
137 //finpts:
138 size_t fingridn = 30;
139 double fingridmax = sNN == "200GeV" ? 50.0 : 150.0;
140 std::vector<std::vector<double>> finden{{5.0, 10.0}, {50.0, 10.0}, {70.0, 5.0}, {

fingridmax, 3.0}};
141 generateGrids(finden, fingridn, m_finPts);
142
143 }
144 else if (particleName == "Gluon") {
145
146 //tauPts:
147 size_t taugridn = 21;
148 std::vector<std::vector<double>> tauden{{0.0, 10.0}, {20.0, 10.0}};
149 generateGrids(tauden, taugridn, m_tauPts);
150
151 //pPts:
152 size_t pgridn = sNN == "200GeV" ? 35 : 50;
153 double pgridmax = sNN == "200GeV" ? 150.0 : 450.0;
154 double pgridmaxw = sNN == "200GeV" ? 0.5 : 1.0;
155 std::vector<std::vector<double>> pden{{1.0, 8.0}, {20.0, 7.0}, {40.0, 3.0}, {100.0,

5.0}, {pgridmax, pgridmaxw}};
156 generateGrids(pden, pgridn, m_pPts);
157
158 //TPts:
159 size_t Tgridn = 40;
160 std::vector<std::vector<double>> Tden{{0.01, 10.0}, {2.0, 10.0}};
161 generateGrids(Tden, Tgridn, m_TPts);
162
163 //xPts:
164 double mg = muF(m_TPts[0])/std::sqrt(2.0);
165 double M = muF(m_TPts[0])/std::sqrt(2.0);
166 double MAXP = sNN == "200GeV" ? 150.0 : 450.0;
167 size_t xgridn = 50;
168 double xmin = mg/(MAXP + std::sqrt(MAXP*MAXP + M*M));
169 for (size_t i=0; i<xgridn; i++)
170 m_xPts.push_back(std::exp(std::log(xmin) - std::log(xmin)/static_cast<double

>(xgridn-1)*static_cast<double>(i)));
171
172
173 //RadPts:
174 size_t Radgridn = sNN == "200GeV" ? 30 : 40;
175 double Radgridmax = sNN == "200GeV" ? 120.0 : 420.0;
176 std::vector<std::vector<double>> Radden{{2.0, 10.0}, {50.0, 10.0}, {70.0, 1.0}, {

Radgridmax, 1.0}};
177 generateGrids(Radden, Radgridn, m_RadPts);
178
179 //FdpPts:
180 double mgC = muF(3.0/2.0*m_TCRIT)/std::sqrt(2.0);
181 size_t Fdpgridn = 22;
182 std::vector<std::vector<double>> Fdpden = {{5.0*mgC/2.0, 10.0}, {12.0, 5.0}, {30.0,

0.0}};
183 generateGrids(Fdpden, Fdpgridn-4, m_FdpPts);
184 m_FdpPts.insert(m_FdpPts.begin(), 4.0*mgC/2.0);
185 m_FdpPts.insert(m_FdpPts.begin(), 3.0*mgC/2.0);
186 m_FdpPts.insert(m_FdpPts.begin(), 2.0*mgC/2.0);
187 m_FdpPts.insert(m_FdpPts.begin(), 1.0*mgC/2.0);
188

123

Appendix

189 //pCollPts:
190 size_t pCollgridn = sNN == "200GeV" ? 30 : 40;
191 double pCollgridmax = sNN == "200GeV" ? 120.0 : 420.0;
192 std::vector<std::vector<double>> pCollden{{1.0, 10.0}, {4.0, 10.0}, {9.0, 2.5},

{30.0, 0.6}, {60.0, 0.5}, {pCollgridmax, 0.3}};
193 generateGrids(pCollden, pCollgridn, m_pCollPts);
194
195 //TCollPts:
196 size_t TCollgridn = 40;
197 std::vector<std::vector<double>> TCollden{{0.01, 10.0}, {2.0, 10.0}};
198 generateGrids(TCollden, TCollgridn, m_TCollPts);
199
200 //finpts:
201 size_t fingridn = sNN == "200GeV" ? 35 : 50;
202 double fingridmax = sNN == "200GeV" ? 100.0 : 400.0;
203 std::vector<std::vector<double>> finden{{5.0, 10.0}, {50.0, 10.0}, {70.0, 5.0}, {

fingridmax, 3.0}};
204 generateGrids(finden, fingridn, m_finPts);
205 }
206 else {
207
208 //tauPts:
209 size_t taugridn = 21;
210 std::vector<std::vector<double>> tauden{{0.0, 10.0}, {20.0, 10.0}};
211 generateGrids(tauden, taugridn, m_tauPts);
212
213 //pPts:
214 size_t pgridn = sNN == "200GeV" ? 35 : 50;
215 double pgridmax = sNN == "200GeV" ? 150.0 : 450.0;
216 double pgridmaxw = sNN == "200GeV" ? 0.5 : 1.0;
217 std::vector<std::vector<double>> pden{{1.0, 8.0}, {20.0, 7.0}, {40.0, 3.0}, {100.0,

5.0}, {pgridmax, pgridmaxw}};
218 generateGrids(pden, pgridn, m_pPts);
219
220 //TPts:
221 size_t Tgridn = 40;
222 std::vector<std::vector<double>> Tden{{0.01, 10.0}, {2.0, 10.0}};
223 generateGrids(Tden, Tgridn, m_TPts);
224
225 //xPts:
226 double mg = muF(m_TPts[0])/std::sqrt(2.0);
227 double M = muF(m_TPts[0])/std::sqrt(6.0);
228 double MAXP = sNN == "200GeV" ? 150.0 : 450.0;
229 size_t xgridn = 50;
230 double xmin = mg/(MAXP + std::sqrt(MAXP*MAXP + M*M));
231 for (size_t i=0; i<xgridn; i++)
232 m_xPts.push_back(std::exp(std::log(xmin) - std::log(xmin)/static_cast<double

>(xgridn-1)*static_cast<double>(i)));
233
234 //RadPts:
235 size_t Radgridn = sNN == "200GeV" ? 30 : 40;
236 double Radgridmax = sNN == "200GeV" ? 120.0 : 420.0;
237 std::vector<std::vector<double>> Radden{{2.0, 10.0}, {50.0, 10.0}, {70.0, 1.0}, {

Radgridmax, 1.0}};
238 generateGrids(Radden, Radgridn, m_RadPts);
239
240 //FdpPts:
241 double mgC = muF(3.0/2.0*m_TCRIT)/std::sqrt(2.0);
242 size_t Fdpgridn = 22;
243 std::vector<std::vector<double>> Fdpden = {{5.0*mgC/2.0, 10.0}, {12.0, 5.0}, {30,

0.0}};
244 generateGrids(Fdpden, Fdpgridn-4, m_FdpPts);
245 m_FdpPts.insert(m_FdpPts.begin(), 4.0*mgC/2.0);
246 m_FdpPts.insert(m_FdpPts.begin(), 3.0*mgC/2.0);
247 m_FdpPts.insert(m_FdpPts.begin(), 2.0*mgC/2.0);
248 m_FdpPts.insert(m_FdpPts.begin(), 1.0*mgC/2.0);
249
250 //pCollPts:
251 size_t pCollgridn = sNN == "200GeV" ? 30 : 40;
252 double pCollgridmax = sNN == "200GeV" ? 120.0 : 420.0;
253 std::vector<std::vector<double>> pCollden{{1.0, 10.0}, {4.0, 10.0}, {9.0, 2.5},

{30.0, 0.6}, {60.0, 0.5}, {pCollgridmax, 0.3}};

124

DREENA-A code

254 generateGrids(pCollden, pCollgridn, m_pCollPts);
255
256 //TCollPts:
257 size_t TCollgridn = 40;
258 std::vector<std::vector<double>> TCollden{{0.01, 10.0}, {2.0, 10.0}};
259 generateGrids(TCollden, TCollgridn, m_TCollPts);
260
261 //finpts:
262 size_t fingridn = sNN == "200GeV" ? 35 : 50;
263 double fingridmax = sNN == "200GeV" ? 100.0 : 400.0;
264 std::vector<std::vector<double>> finden{{5.0, 10.0}, {50.0, 10.0}, {70.0, 5.0}, {

fingridmax, 3.0}};
265 generateGrids(finden, fingridn, m_finPts);
266 }
267
268 //rounding grids to 10 decimal points:
269 for (size_t i=0; i<m_tauPts.size(); i++) m_tauPts[i] = std::round(m_tauPts[i]*1e10)/1

e10;
270 for (size_t i=0; i<m_pPts.size(); i++) m_pPts[i] = std::round(m_pPts[i]*1e10)/1e10;
271 for (size_t i=0; i<m_TPts.size(); i++) m_TPts[i] = std::round(m_TPts[i]*1e10)/1e10;
272 for (size_t i=0; i<m_xPts.size(); i++) m_xPts[i] = std::round(m_xPts[i]*1e10)/1e10;
273 for (size_t i=0; i<m_RadPts.size(); i++) m_RadPts[i] = std::round(m_RadPts[i]*1e10)/1

e10;
274 for (size_t i=0; i<m_FdpPts.size(); i++) m_FdpPts[i] = std::round(m_FdpPts[i]*1e10)/1

e10;
275
276 for (size_t i=0; i<m_pCollPts.size(); i++) m_pCollPts[i] = std::round(m_pCollPts[i]*1

e10)/1e10;
277 for (size_t i=0; i<m_TCollPts.size(); i++) m_TCollPts[i] = std::round(m_TCollPts[i]*1

e10)/1e10;
278
279 for (size_t i=0; i<m_finPts.size(); i++) m_finPts[i] = std::round(m_finPts[i]*1e10)/1

e10;
280 }
281
282 gridPoints::~gridPoints() {}
283
284 const std::vector<double> & gridPoints::tauPts() const {
285 return m_tauPts;
286 }
287 double gridPoints::tauPts(int i) const {
288 if (i < 0)
289 return m_tauPts.at(m_tauPts.size() + i);
290 return m_tauPts.at(i);
291 }
292 size_t gridPoints::tauPtsLength() const {
293 return m_tauPts.size();
294 }
295
296 const std::vector<double> & gridPoints::pPts() const {
297 return m_pPts;
298 }
299 double gridPoints::pPts(int i) const {
300 if (i < 0) return m_pPts.at(m_pPts.size() + i);
301 return m_pPts.at(i);
302 }
303 size_t gridPoints::pPtsLength() const {
304 return m_pPts.size();
305 }
306
307 const std::vector<double> & gridPoints::TPts() const {
308 return m_TPts;
309 }
310 double gridPoints::TPts(int i) const {
311 if (i < 0)
312 return m_TPts.at(m_TPts.size() + i);
313 return m_TPts.at(i);
314 }
315 size_t gridPoints::TPtsLength() const {
316 return m_TPts.size();
317 }
318

125

Appendix

319 const std::vector<double> & gridPoints::xPts() const {
320 return m_xPts;
321 }
322 double gridPoints::xPts(int i) const {
323 if (i < 0)
324 return m_xPts.at(m_xPts.size() + i);
325 return m_xPts.at(i);
326 }
327 size_t gridPoints::xPtsLength() const {
328 return m_xPts.size();
329 }
330
331 const std::vector<double> & gridPoints::RadPts() const {
332 return m_RadPts;
333 }
334 double gridPoints::RadPts(int i) const {
335 if (i < 0)
336 return m_RadPts.at(m_RadPts.size() + i);
337 return m_RadPts.at(i);
338 }
339 size_t gridPoints::RadPtsLength() const {
340 return m_RadPts.size();
341 }
342
343 const std::vector<double> & gridPoints::FdpPts() const {
344 return m_FdpPts;
345 }
346 double gridPoints::FdpPts(int i) const {
347 if (i < 0)
348 return m_FdpPts.at(m_FdpPts.size() + i);
349 return m_FdpPts.at(i);
350 }
351 size_t gridPoints::FdpPtsLength() const {
352 return m_FdpPts.size();
353 }
354
355 const std::vector<double> & gridPoints::pCollPts() const {
356 return m_pCollPts;
357 }
358 double gridPoints::pCollPts(int i) const {
359 if (i < 0)
360 return m_pCollPts.at(m_pCollPts.size() + i);
361 return m_pCollPts.at(i);
362 }
363 size_t gridPoints::pCollPtsLength() const {
364 return m_pCollPts.size();
365 }
366
367 const std::vector<double> & gridPoints::TCollPts() const {
368 return m_TCollPts;
369 }
370 double gridPoints::TCollPts(int i) const {
371 if (i < 0)
372 return m_TCollPts.at(m_TCollPts.size() + i);
373 return m_TCollPts.at(i);
374 }
375 size_t gridPoints::TCollPtsLength() const {
376 return m_TCollPts.size();
377 }
378
379 const std::vector<double> & gridPoints::finPts() const {
380 return m_finPts;
381 }
382 double gridPoints::finPts(int i) const {
383 if (i < 0)
384 return m_finPts.at(m_finPts.size() + i);
385 return m_finPts.at(i);
386 }
387 size_t gridPoints::finPtsLength() const {
388 return m_finPts.size();
389 }
390

126

DREENA-A code

391 double gridPoints::productLog(double x)
392 {
393 if (x == 0.0) {
394 return 0.0;
395 }
396
397 double w0, w1;
398 if (x > 0.0) {
399 w0 = std::log(1.2 * x / std::log(2.4 * x / std::log1p(2.4 * x)));
400 }
401 else {
402 double v = 1.4142135623730950488 * std::sqrt(1.0 + 2.7182818284590452354 * x);
403 double N2 = 10.242640687119285146 + 1.9797586132081854940 * v;
404 double N1 = 0.29289321881345247560 * (1.4142135623730950488 + N2);
405 w0 = -1 + v * (N2 + v) / (N2 + v + N1 * v);
406 }
407
408 while (true) {
409 double e = std::exp(w0);
410 double f = w0 * e - x;
411 w1 = w0 - f / ((e * (w0 + 1.0) - (w0 + 2.0) * f / (w0 + w0 + 2.0)));
412 if (std::abs(w0 / w1 - 1.0) < 1.4901161193847656e-8) {
413 break;
414 }
415 w0 = w1;
416 }
417 return w1;
418 }
419
420 double gridPoints::muF(double temp)
421 {
422 return (0.197*sqrt((-8.0*(6.0 + m_nf)*M_PI*M_PI*temp*temp)/(2.0*m_nf - 33.0)/m_lambda/

m_lambda/productLog((-8.0*(6.0 + m_nf)*M_PI*M_PI*temp*temp)/(2.0*m_nf - 33.0)/
m_lambda/m_lambda)));

423 }
424
425 double gridPoints::linearIntegrate(const std::vector<double> &dataX, const std::vector<

double> &dataF, double xH) const
426 {
427 std::vector<double> k, c;
428 for (size_t i=0; i<(dataX.size()-1); i++)
429 {
430 k.push_back((dataF[i+1]-dataF[i])/(dataX[i+1]-dataX[i]));
431 c.push_back(dataF[i]-k.back()*dataX[i]);
432 }
433
434 int xHi = 0; while (xH > dataX[xHi]) xHi++; xHi--;
435
436 double sum = 0.0;
437
438 for (int i=0; i<xHi; i++)
439 {
440 sum += 0.5*k[i]*(dataX[i+1]*dataX[i+1] - dataX[i]*dataX[i]) + c[i]*(dataX[i+1] -

dataX[i]);
441 }
442
443 sum += 0.5*k[xHi]*(xH*xH - dataX[xHi]*dataX[xHi]) + c[xHi]*(xH - dataX[xHi]);
444
445 return sum;
446 }
447
448 void gridPoints::generateGrids(const std::vector<std::vector<double>> &density, size_t

numpts, std::vector<double> &gridpoints)
449 {
450 std::vector<double> densityX, densityF;
451 for (size_t i=0; i<density.size(); i++) {densityX.push_back(density[i][0]); densityF.

push_back(density[i][1]);}
452
453 std::vector<double> inttabX, inttabF;
454
455 double xxx = densityX.front();
456 inttabX.push_back(0.0);

127

Appendix

457 inttabF.push_back(xxx);
458
459 for (size_t i=1; i<19; i++)
460 {
461 xxx = densityX.front() + (densityX.back()-densityX.front())/static_cast<double>(19)*

static_cast<double>(i);
462 inttabX.push_back(linearIntegrate(densityX, densityF, xxx));
463 inttabF.push_back(xxx);
464 }
465
466 xxx = densityX.back();
467 inttabX.push_back(linearIntegrate(densityX, densityF, xxx));
468 inttabF.push_back(xxx);
469
470 interpolationF<double> inttabInt(inttabX, inttabF);
471
472 gridpoints.resize(0);
473
474 gridpoints.push_back(densityX.front());
475
476 for (size_t i=1; i<numpts-1; i++)
477 {
478 double a = inttabX.front() + (inttabX.back()-inttabX.front())*static_cast<double>(i)/

static_cast<double>(numpts-1);
479 gridpoints.push_back(inttabInt.interpolation(a));
480 }
481
482 gridpoints.push_back(densityX.back());
483 }

Used throughout the code is stand-alone linear interpolation class, interpolationF. This class per-
forms linear interpolation of tabular functions given on the ordered grid and is templated for floar,
double and long double types. It’s header file, linearinterpolation.hpp is:

1 #ifndef HEADERFILE_LINEARINTERPOLATION
2 #define HEADERFILE_LINEARINTERPOLATION
3
4 #include <vector>
5
6 template<typename T>
7 class interpolationF {
8 public:
9 //CONSTRUCTORS:

10 interpolationF();
11
12 //input is 2 1D arrays:
13 interpolationF(const T *xData, const T *fData, size_t NofElements);
14 void setData(const T *xData, const T *fData, size_t NofElements);
15
16 //input is 2 1D vectors:
17 interpolationF(const std::vector<T> &xData, const std::vector<T> &fData);
18 void setData(const std::vector<T> &xData, const std::vector<T> &fData);
19
20 //input is 3 1D arrays:
21 interpolationF(const T *x1Data, const T *x2Data, const T *fData, size_t NofElements);
22 void setData(const T *x1Data, const T *x2Data, const T *fData, size_t NofElements);
23
24 //input is 3 1D vectors:
25 interpolationF(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &fData);
26 void setData(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &fData);
27
28 //input is 2 1D vectors (grids) and 1 2d vector (function values):
29 interpolationF(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<std::vector<T>> &fData);
30 void setData(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<std::vector<T>> &fData);
31
32 //input is 4 1D arrays:
33 interpolationF(const T *x1Data, const T *x2Data, const T *x3Data, const T *fData,

size_t NofElements);

128

DREENA-A code

34 void setData(const T *x1Data, const T *x2Data, const T *x3Data, const T *fData, size_t
NofElements);

35
36 //input is 4 1D vectors:
37 interpolationF(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &x3Data, const std::vector<T> &fData);
38 void setData(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &x3Data, const std::vector<T> &fData);
39
40 //input is 5 1D arrays:
41 interpolationF(const T *x1Data, const T *x2Data, const T *x3Data, const T *x4Data,

const T *fData, size_t NofElements);
42 void setData(const T *x1Data, const T *x2Data, const T *x3Data, const T *x4Data, const

T *fData, size_t NofElements);
43
44 //input is 5 1D vectors:
45 interpolationF(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &x3Data, const std::vector<T> &x4Data, const std::vector<T> &fData);
46 void setData(const std::vector<T> &x1Data, const std::vector<T> &x2Data, const std::

vector<T> &x3Data, const std::vector<T> &x4Data, const std::vector<T> &fData);
47
48 //DESTRUCTOR:
49 ~interpolationF();
50
51 //INTERPOLATION FUNCTIONS:
52 //1D interpolation
53 T interpolation(T pointValue) const;
54
55 //2D interpolation
56 T interpolation(T pointValue1, T pointValue2) const;
57
58 //3D interpolation
59 T interpolation(T pointValue1, T pointValue2, T pointValue3) const;
60
61 //4D interpolation
62 T interpolation(T pointValue1, T pointValue2, T pointValue3, T pointValue4) const;
63
64 //miscellaneous FUNCTIONS:
65 //function that returns domains:
66 const std::vector<std::vector<T>> & domain() const;
67
68 //function that returns codomain:
69 const std::vector<T> & codomain() const;
70
71 private:
72 size_t m_dataLength;
73 std::vector<std::vector<T>> m_data;
74 size_t m_variableN;
75 std::vector<size_t> m_gridLengths;
76 std::vector<size_t> m_relPosition;
77 std::vector<std::vector<T>> m_domain;
78 std::vector<T> m_codomain;
79
80 void createGrids();
81
82 //function that locates points
83 void locatePointF(const std::vector<T> &points, std::vector<size_t> &positions) const;
84
85 T lin1DInterpolation(const T x[2], const T f[2], T xx) const;
86
87 //1D interpolation (full function)
88 T interpolation1D(T pointValue) const;
89
90 //2D interpolation
91 T interpolation2D(T pt1, T pt2) const;
92
93 //3D interpolation
94 T interpolation3D(T pt1, T pt2, T pt3) const;
95
96 //4D interpolation
97 T interpolation4D(T pt1, T pt2, T pt3, T pt4) const;
98 };

129

Appendix

99
100 #endif

Content of interpolationF class’ source file, linearinterpolation.cpp follows:
1 #include "linearinterpolation.hpp"
2
3 #include <iostream>
4 #include <vector>
5 #include <algorithm>
6 #include <limits>
7
8 //CONSTRUCTORS:
9 template <typename T>

10 interpolationF<T>::interpolationF() {}
11
12 //input is 2 1D arrays:
13 template <typename T>
14 interpolationF<T>::interpolationF(const T *xData, const T *fData, size_t NofElements)
15 {
16 setData(xData, fData, NofElements);
17 }
18
19 template <typename T>
20 void interpolationF<T>::setData(const T *xData, const T *fData, size_t NofElements)
21 {
22 m_variableN = 1;
23 m_dataLength = NofElements;
24
25 m_data.resize(m_variableN+1);
26
27 m_data[0] = std::vector<T>(xData, xData + m_dataLength);
28 m_data[1] = std::vector<T>(fData, fData + m_dataLength);
29
30 createGrids();
31
32 for (size_t iv=0; iv<m_variableN; iv++)
33 if (m_data[iv].size() < 2)
34 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
35 }
36
37 //input is 2 1D vectors:
38 template <typename T>
39 interpolationF<T>::interpolationF(const std::vector<T> &xData, const std::vector<T> &

fData)
40 {
41 setData(xData, fData);
42 }
43
44 template <typename T>
45 void interpolationF<T>::setData(const std::vector<T> &xData, const std::vector<T> &fData)
46 {
47 m_variableN = 1;
48 m_dataLength = fData.size();
49
50 m_data.resize(m_variableN+1);
51
52 m_data[0] = std::vector<T>(xData.begin(), xData.begin() + m_dataLength);
53 m_data[1] = std::vector<T>(fData.begin(), fData.begin() + m_dataLength);
54
55 createGrids();
56
57 for (size_t iv=0; iv<m_variableN; iv++)
58 if (m_data[iv].size() < 2)
59 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
60 }
61
62 //input is 3 1D arrays:
63 template <typename T>
64 interpolationF<T>::interpolationF(const T *x1Data, const T *x2Data, const T *fData,

size_t NofElements)

130

DREENA-A code

65 {
66 setData(x1Data, x2Data, fData, NofElements);
67 }
68
69 template <typename T>
70 void interpolationF<T>::setData(const T *x1Data, const T *x2Data, const T *fData, size_t

NofElements)
71 {
72 m_variableN = 2;
73 m_dataLength = NofElements;
74
75 m_data.resize(m_variableN+1);
76
77 m_data[0] = std::vector<T>(x1Data, x1Data + m_dataLength);
78 m_data[1] = std::vector<T>(x2Data, x2Data + m_dataLength);
79 m_data[2] = std::vector<T>(fData, fData + m_dataLength);
80
81 createGrids();
82
83 for (size_t iv=0; iv<m_variableN; iv++)
84 if (m_data[iv].size() < 2)
85 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
86 }
87
88 //input is 3 1D vectors:
89 template <typename T>
90 interpolationF<T>::interpolationF(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &fData)
91 {
92 setData(x1Data, x2Data, fData);
93 }
94
95 template <typename T>
96 void interpolationF<T>::setData(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &fData)
97 {
98 m_variableN = 2;
99 m_dataLength = fData.size();

100
101 m_data.resize(m_variableN+1);
102
103 m_data[0] = std::vector<T>(x1Data.begin(), x1Data.begin() + m_dataLength);
104 m_data[1] = std::vector<T>(x2Data.begin(), x2Data.begin() + m_dataLength);
105 m_data[2] = std::vector<T>(fData.begin(), fData.begin() + m_dataLength);
106
107 createGrids();
108
109 for (size_t iv=0; iv<m_variableN; iv++)
110 if (m_data[iv].size() < 2)
111 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
112 }
113
114 //input is 2 1D vectors (grids) and 1 2d vector (function values):
115 template <typename T>
116 interpolationF<T>::interpolationF(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<std::vector<T>> &fData)
117 {
118 setData(x1Data, x2Data, fData);
119 }
120
121 template <typename T>
122 void interpolationF<T>::setData(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<std::vector<T>> &fData)
123 {
124 m_variableN = 2;
125 m_dataLength = fData.size();
126
127 m_data.resize(m_variableN+1);
128
129 m_data[0] = std::vector<T>(x1Data.begin(), x1Data.end());

131

Appendix

130 m_data[1] = std::vector<T>(x2Data.begin(), x2Data.end());
131 for (const auto &row : fData)
132 for (const auto &elem : row)
133 m_data[2].push_back(elem);
134
135 createGrids();
136
137 for (size_t iv=0; iv<m_variableN; iv++)
138 if (m_data[iv].size() < 2)
139 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
140 }
141
142 //input is 4 1D arrays:
143 template <typename T>
144 interpolationF<T>::interpolationF(const T *x1Data, const T *x2Data, const T *x3Data,

const T *fData, size_t NofElements)
145 {
146 setData(x1Data, x2Data, x3Data, fData, NofElements);
147 }
148
149 template <typename T>
150 void interpolationF<T>::setData(const T *x1Data, const T *x2Data, const T *x3Data, const

T *fData, size_t NofElements)
151 {
152 m_variableN = 3;
153 m_dataLength = NofElements;
154
155 m_data.resize(m_variableN+1);
156
157 m_data[0] = std::vector<T>(x1Data, x1Data + m_dataLength);
158 m_data[1] = std::vector<T>(x2Data, x2Data + m_dataLength);
159 m_data[2] = std::vector<T>(x3Data, x3Data + m_dataLength);
160 m_data[3] = std::vector<T>(fData, fData + m_dataLength);
161
162 createGrids();
163
164 for (size_t iv=0; iv<m_variableN; iv++)
165 if (m_data[iv].size() < 2)
166 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
167 }
168
169 //input is 4 1D vectors:
170 template <typename T>
171 interpolationF<T>::interpolationF(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &x3Data, const std::vector<T> &fData)
172 {
173 setData(x1Data, x2Data, x3Data, fData);
174 }
175
176 template <typename T>
177 void interpolationF<T>::setData(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &x3Data, const std::vector<T> &fData)
178 {
179 m_variableN = 3;
180 m_dataLength = fData.size();
181
182 m_data.resize(m_variableN+1);
183
184 m_data[0] = std::vector<T>(x1Data.begin(), x1Data.begin() + m_dataLength);
185 m_data[1] = std::vector<T>(x2Data.begin(), x2Data.begin() + m_dataLength);
186 m_data[2] = std::vector<T>(x3Data.begin(), x3Data.begin() + m_dataLength);
187 m_data[3] = std::vector<T>(fData.begin(), fData.begin() + m_dataLength);
188
189 createGrids();
190
191 for (size_t iv=0; iv<m_variableN; iv++)
192 if (m_data[iv].size() < 2)
193 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
194 }

132

DREENA-A code

195
196 //input is 5 1D arrays:
197 template <typename T>
198 interpolationF<T>::interpolationF(const T *x1Data, const T *x2Data, const T *x3Data,

const T *x4Data, const T *fData, size_t NofElements)
199 {
200 setData(x1Data, x2Data, x3Data, x4Data, fData, NofElements);
201 }
202
203 template <typename T>
204 void interpolationF<T>::setData(const T *x1Data, const T *x2Data, const T *x3Data, const

T *x4Data, const T *fData, size_t NofElements)
205 {
206 m_variableN = 4;
207 m_dataLength = NofElements;
208
209 m_data.resize(m_variableN+1);
210
211 m_data[0] = std::vector<T>(x1Data, x1Data + m_dataLength);
212 m_data[1] = std::vector<T>(x2Data, x2Data + m_dataLength);
213 m_data[2] = std::vector<T>(x3Data, x3Data + m_dataLength);
214 m_data[3] = std::vector<T>(x4Data, x4Data + m_dataLength);
215 m_data[4] = std::vector<T>(fData, fData + m_dataLength);
216
217 createGrids();
218
219 for (size_t iv=0; iv<m_variableN; iv++)
220 if (m_data[iv].size() < 2)
221 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
222 }
223
224 //input is 5 1D vectors:
225 template <typename T>
226 interpolationF<T>::interpolationF(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &x3Data, const std::vector<T> &x4Data, const std::vector
<T> &fData)

227 {
228 setData(x1Data, x2Data, x3Data, x4Data, fData);
229 }
230
231 template <typename T>
232 void interpolationF<T>::setData(const std::vector<T> &x1Data, const std::vector<T> &

x2Data, const std::vector<T> &x3Data, const std::vector<T> &x4Data, const std::vector
<T> &fData)

233 {
234 m_variableN = 4;
235 m_dataLength = fData.size();
236
237 m_data.resize(m_variableN+1);
238
239 m_data[0] = std::vector<T>(x1Data.begin(), x1Data.begin() + m_dataLength);
240 m_data[1] = std::vector<T>(x2Data.begin(), x2Data.begin() + m_dataLength);
241 m_data[2] = std::vector<T>(x3Data.begin(), x3Data.begin() + m_dataLength);
242 m_data[3] = std::vector<T>(x4Data.begin(), x4Data.begin() + m_dataLength);
243 m_data[4] = std::vector<T>(fData.begin(), fData.begin() + m_dataLength);
244
245 createGrids();
246
247 for (size_t iv=0; iv<m_variableN; iv++)
248 if (m_data[iv].size() < 2)
249 std::cerr << "Error: not enough data for interplation for variable " + std::

to_string(iv) + "." << std::endl;
250 }
251
252 //DESTRUCTORS:
253 template <typename T>
254 interpolationF<T>::~interpolationF() {}
255
256 //INTERPOLATION FUNCTIONS:
257 //1D interpolation
258 template <typename T>

133

Appendix

259 T interpolationF<T>::interpolation(T pointValue) const
260 {
261 if (m_variableN > 1) {
262 std::cerr << "Error: not enough points for interpolation." << std::endl;
263 return std::numeric_limits<T>::quiet_NaN();
264 }
265 else {
266 if (pointValue < m_domain[0][0]) {
267 std::cerr << "Error: point value in dimension 1 smaller than domain." << std::endl;
268 return std::numeric_limits<T>::quiet_NaN();
269 }
270 if (pointValue > m_domain[0][1]) {
271 std::cerr << "Error: point value in dimension 1 larger than domain." << std::endl;
272 return std::numeric_limits<T>::quiet_NaN();
273 }
274 return interpolation1D(pointValue);
275 }
276 }
277
278 //2D interpolation
279 template <typename T>
280 T interpolationF<T>::interpolation(T pointValue1, T pointValue2) const
281 {
282 if (m_variableN < 2) {
283 std::cerr << "Error: too much points for interpolation." << std::endl;
284 return std::numeric_limits<T>::quiet_NaN();
285 }
286 else if (m_variableN > 2) {
287 std::cerr << "Error: not enough points for interpolation." << std::endl;
288 return std::numeric_limits<T>::quiet_NaN();
289 }
290 else {
291 if (pointValue1 < m_domain[0][0]) {
292 std::cerr << "Error: point value in dimension 1 smaller than domain." << std::endl;
293 return std::numeric_limits<T>::quiet_NaN();
294 }
295 if (pointValue1 > m_domain[0][1]) {
296 std::cerr << "Error: point value in dimension 1 larger than domain." << std::endl;
297 return std::numeric_limits<T>::quiet_NaN();
298 }
299 if (pointValue2 < m_domain[1][0]) {
300 std::cerr << "Error: point value in dimension 2 smaller than domain." << std::endl;
301 return std::numeric_limits<T>::quiet_NaN();
302 }
303 if (pointValue2 > m_domain[1][1]) {
304 std::cerr << "Error: point value in dimension 2 larger than domain." << std::endl;
305 return std::numeric_limits<T>::quiet_NaN();
306 }
307 return interpolation2D(pointValue1, pointValue2);
308 }
309 }
310
311 //3D interpolation
312 template <typename T>
313 T interpolationF<T>::interpolation(T pointValue1, T pointValue2, T pointValue3) const
314 {
315 if (m_variableN < 3) {
316 std::cerr << "Error: too much points for interpolation." << std::endl;
317 return std::numeric_limits<T>::quiet_NaN();
318 }
319 else if (m_variableN > 3) {
320 std::cerr << "Error: not enough points for interpolation." << std::endl;
321 return std::numeric_limits<T>::quiet_NaN();
322 }
323 else {
324 if (pointValue1 < m_domain[0][0]) {
325 std::cerr << "Error: point value in dimension 1 smaller than domain." << std::endl;
326 return std::numeric_limits<T>::quiet_NaN();
327 }
328 if (pointValue1 > m_domain[0][1]) {
329 std::cerr << "Error: point value in dimension 1 larger than domain." << std::endl;
330 return std::numeric_limits<T>::quiet_NaN();

134

DREENA-A code

331 }
332 if (pointValue2 < m_domain[1][0]) {
333 std::cerr << "Error: point value in dimension 2 smaller than domain." << std::endl;
334 return std::numeric_limits<T>::quiet_NaN();
335 }
336 if (pointValue2 > m_domain[1][1]) {
337 std::cerr << "Error: point value in dimension 2 larger than domain." << std::endl;
338 return std::numeric_limits<T>::quiet_NaN();
339 }
340 if (pointValue3 < m_domain[2][0]) {
341 std::cerr << "Error: point value in dimension 3 smaller than domain." << std::endl;
342 return std::numeric_limits<T>::quiet_NaN();
343 }
344 if (pointValue3 > m_domain[2][1]) {
345 std::cerr << "Error: point value in dimension 3 larger than domain." << std::endl;
346 return std::numeric_limits<T>::quiet_NaN();
347 }
348 return interpolation3D(pointValue1, pointValue2, pointValue3);
349 }
350 return 0.0;
351 }
352
353 //4D interpolation
354 template <typename T>
355 T interpolationF<T>::interpolation(T pointValue1, T pointValue2, T pointValue3, T

pointValue4) const
356 {
357 if (m_variableN < 4) {
358 std::cerr << "Error: too much points for interpolation." << std::endl;
359 return std::numeric_limits<T>::quiet_NaN();
360 }
361 else if (m_variableN > 4) {
362 std::cerr << "Error: not enough points for interpolation." << std::endl;
363 return std::numeric_limits<T>::quiet_NaN();
364 }
365 else {
366 if (pointValue1 < m_domain[0][0]) {
367 std::cerr << "Error: point value in dimension 1 smaller than domain." << std::endl;
368 return std::numeric_limits<T>::quiet_NaN();
369 }
370 if (pointValue1 > m_domain[0][1]) {
371 std::cerr << "Error: point value in dimension 1 larger than domain." << std::endl;
372 return std::numeric_limits<T>::quiet_NaN();
373 }
374 if (pointValue2 < m_domain[1][0]) {
375 std::cerr << "Error: point value in dimension 2 smaller than domain." << std::endl;
376 return std::numeric_limits<T>::quiet_NaN();
377 }
378 if (pointValue2 > m_domain[1][1]) {
379 std::cerr << "Error: point value in dimension 2 larger than domain." << std::endl;
380 return std::numeric_limits<T>::quiet_NaN();
381 }
382 if (pointValue3 < m_domain[2][0]) {
383 std::cerr << "Error: point value in dimension 3 smaller than domain." << std::endl;
384 return std::numeric_limits<T>::quiet_NaN();
385 }
386 if (pointValue3 > m_domain[2][1]) {
387 std::cerr << "Error: point value in dimension 3 larger than domain." << std::endl;
388 return std::numeric_limits<T>::quiet_NaN();
389 }
390 if (pointValue4 < m_domain[3][0]) {
391 std::cerr << "Error: point value in dimension 4 smaller than domain." << std::endl;
392 return std::numeric_limits<T>::quiet_NaN();
393 }
394 if (pointValue4 > m_domain[3][1]) {
395 std::cerr << "Error: point value in dimension 4 larger than domain." << std::endl;
396 return std::numeric_limits<T>::quiet_NaN();
397 }
398 return interpolation4D(pointValue1, pointValue2, pointValue3, pointValue4);
399 }
400 return 0.0;
401 }

135

Appendix

402
403 template <typename T>
404 const std::vector<std::vector<T>> & interpolationF<T>::domain() const
405 {
406 return m_domain;
407 }
408
409 template <typename T>
410 const std::vector<T> & interpolationF<T>::codomain() const
411 {
412 return m_codomain;
413 }
414
415 template <typename T>
416 void interpolationF<T>::createGrids()
417 {
418 for (size_t iv=0; iv<m_variableN; iv++) {
419 std::sort(m_data[iv].begin(), m_data[iv].end());
420 m_data[iv].erase(std::unique(m_data[iv].begin(), m_data[iv].end()), m_data[iv].end())

;
421 m_domain.push_back({m_data[iv].front(), m_data[iv].back()});
422 }
423 m_codomain.push_back(*std::min_element(m_data[m_variableN].begin(), m_data[m_variableN

].end()));
424 m_codomain.push_back(*std::max_element(m_data[m_variableN].begin(), m_data[m_variableN

].end()));
425 }
426
427 template <typename T>
428 void interpolationF<T>::locatePointF(const std::vector<T> &points, std::vector<size_t> &

positions) const
429 {
430 positions.resize(points.size(), 0);
431 int ju, jm, jl, mm = 1 + 1;
432 bool ascnd;
433 for (size_t iv=0; iv<m_data.size()-1; iv++)
434 {
435 jl = 0;
436 ju = m_data[iv].size() - 1;
437 ascnd = (m_data[iv].back() >= m_data[iv][0]);
438
439 while ((ju - jl) >1) {
440 jm = (ju + jl) >> 1;
441 if ((points[iv] >= m_data[iv][jm]) == ascnd) {
442 jl = jm;
443 }
444 else {
445 ju = jm;
446 }
447 }
448 int n = static_cast<int>(m_data[iv].size());
449 positions[iv] = static_cast<size_t>(std::max(0, std::min(n - mm, jl - ((mm - 2) >> 1)

)));
450 }
451 }
452
453 //1D linear interpolation
454 template <typename T>
455 T interpolationF<T>::lin1DInterpolation(const T x[2], const T f[2], T xx) const
456 {
457 return (f[0] + (xx - x[0])*(f[1] - f[0]) / (x[1] - x[0]));
458 }
459
460 //1D interpolation (full function)
461 template <typename T>
462 T interpolationF<T>::interpolation1D(T pointValue) const
463 {
464 //searching for position
465 const std::vector<T> points{pointValue};
466 std::vector<size_t> positions;
467 locatePointF(points, positions);
468

136

DREENA-A code

469 //setting x and Q values
470 T x[] = {m_data[0][positions[0]], m_data[0][positions[0] + 1]};
471 T Q[] = {m_data[1][positions[0]], m_data[1][positions[0] + 1]};
472
473 return lin1DInterpolation(x, Q, pointValue);
474 }
475
476 //2D interpolation
477 template <typename T>
478 T interpolationF<T>::interpolation2D(T pointValue1, T pointValue2) const
479 {
480 //searching for position
481 const std::vector<T> points{pointValue1, pointValue2};
482 std::vector<size_t> positions;
483 locatePointF(points, positions);
484
485 T x1[] = {m_data[0][positions[0]], m_data[0][positions[0] + 1]};
486 T x2[] = {m_data[1][positions[1]], m_data[1][positions[1] + 1]};
487
488 T Q2[2][2];
489 for (size_t i1=0; i1<2; i1++)
490 for (size_t i2=0; i2<2; i2++)
491 Q2[i1][i2] = m_data[2][(positions[0] + i1)*m_data[1].size() + (positions[1] + i2)];
492
493 T Q1[2];
494 for (int i1=0; i1<2; i1++)
495 Q1[i1] = lin1DInterpolation(x2, Q2[i1], pointValue2);
496
497 return lin1DInterpolation(x1, Q1, pointValue1);
498 }
499
500 //3D interpolation
501 template <typename T>
502 T interpolationF<T>::interpolation3D(T pointValue1, T pointValue2, T pointValue3) const
503 {
504 //searching for position
505 const std::vector<T> points{pointValue1, pointValue2, pointValue3};
506 std::vector<size_t> positions;
507 locatePointF(points, positions);
508
509 T x1[] = {m_data[0][positions[0]], m_data[0][positions[0] + 1]};
510 T x2[] = {m_data[1][positions[1]], m_data[1][positions[1] + 1]};
511 T x3[] = {m_data[2][positions[2]], m_data[2][positions[2] + 1]};
512
513 T Q3[2][2][2];
514 for (size_t i1=0; i1<2; i1++)
515 for (size_t i2=0; i2<2; i2++)
516 for (size_t i3=0; i3<2; i3++)
517 Q3[i1][i2][i3] = m_data[3][(positions[0] + i1)*m_data[2].size()*m_data[1].size()

+
518 (positions[1] + i2)*m_data[2].size() +
519 (positions[2] + i3)];
520
521 T Q2[2][2];
522 for (size_t i1=0; i1<2; i1++)
523 for (size_t i2=0; i2<2; i2++)
524 Q2[i1][i2] = lin1DInterpolation(x3, Q3[i1][i2], pointValue3);
525
526 T Q1[2];
527 for (size_t i1=0; i1<2; i1++)
528 Q1[i1] = lin1DInterpolation(x2, Q2[i1], pointValue2);
529
530 return lin1DInterpolation(x1, Q1, pointValue1);
531 }
532
533 //4D interpolation
534 template <typename T>
535 T interpolationF<T>::interpolation4D(T pointValue1, T pointValue2, T pointValue3, T

pointValue4) const
536 {
537 //searching for position
538 const std::vector<T> points{pointValue1, pointValue2, pointValue3, pointValue4};

137

Appendix

539 std::vector<size_t> positions;
540 locatePointF(points, positions);
541
542 T x1[] = {m_data[0][positions[0]], m_data[0][positions[0] + 1]};
543 T x2[] = {m_data[1][positions[1]], m_data[1][positions[1] + 1]};
544 T x3[] = {m_data[2][positions[2]], m_data[2][positions[2] + 1]};
545 T x4[] = {m_data[3][positions[3]], m_data[3][positions[3] + 1]};
546
547 T Q4[2][2][2][2];
548 for (size_t i1=0; i1<2; i1++)
549 for (size_t i2=0; i2<2; i2++)
550 for (size_t i3=0; i3<2; i3++)
551 for (size_t i4=0; i4<2; i4++)
552 Q4[i1][i2][i3][i4] = m_data[4][(positions[0] + i1)*m_data[3].size()*m_data[2].

size()*m_data[1].size() +
553 (positions[1] + i2)*m_data[3].size()*m_data[2].size() +
554 (positions[2] + i3)*m_data[3].size() +
555 (positions[3] + i4)];
556
557 T Q3[2][2][2];
558 for (size_t i1=0; i1<2; i1++)
559 for (size_t i2=0; i2<2; i2++)
560 for (size_t i3=0; i3<2; i3++)
561 Q3[i1][i2][i3] = lin1DInterpolation(x4, Q4[i1][i2][i3], pointValue4);
562
563 T Q2[2][2];
564 for (size_t i1=0; i1<2; i1++)
565 for (size_t i2=0; i2<2; i2++)
566 Q2[i1][i2] = lin1DInterpolation(x3, Q3[i1][i2], pointValue3);
567
568
569 T Q1[2];
570 for (size_t i1=0; i1<2; i1++)
571 Q1[i1] = lin1DInterpolation(x2, Q2[i1], pointValue2);
572
573 return lin1DInterpolation(x1, Q1, pointValue1);
574 }
575
576 template class interpolationF<float>;
577 template class interpolationF<double>;
578 template class interpolationF<long double>;

Also used throughout the code are functions that perform analytical integration of linearly or
cubically interpolated polynomials. These functions are templated for float, double and long double
types and are embedded in poly namespace. These functions are defined in polyintegration.hpp file:

1 #ifndef HEADERFILE_POLYINTHEADER
2 #define HEADERFILE_POLYINTHEADER
3
4 #include <vector>
5
6 namespace poly {
7 template <typename T>
8 T linearIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata);
9

10 template <typename T>
11 T linearIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata, T

lowLimit, T highLimit);
12
13 template <typename T>
14 T cubicIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata);
15
16 template <typename T>
17 T cubicIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata, T lowLimit

, T highLimit);
18 }
19
20 #endif

Source for these functions is in polyintegration.cpp file:

138

DREENA-A code

1 #include "polyintegration.hpp"
2
3 #include <vector>
4 #include <cmath>
5
6 template <typename T>
7 static size_t locatePoint(const std::vector<T> &data, T x, int interpolationOrder)
8 {
9 int ju, jm, jl;

10 int mm = interpolationOrder + 1;
11 int n = data.size();
12 bool ascnd = (data.back() >= data.front());
13 jl = 0;
14 ju = n - 1;
15 while (ju - jl > 1)
16 {
17 jm = (ju + jl) >> 1;
18 if ((x >= data[jm]) == ascnd) {
19 jl = jm;
20 }
21 else {
22 ju = jm;
23 }
24 }
25 int pointLocation = std::max(0, std::min(n - mm, jl - ((mm - 2) >> 1)));
26 return static_cast<size_t>(pointLocation);
27 }
28
29 template <typename T>
30 static void polynomialCoeff(const std::vector<T> &dataX, const std::vector<T> &dataF, std

::vector<double> &coeff)
31 {
32 size_t n = dataX.size();
33 coeff.resize(n, 0.0);
34 double phi, ff, b;
35 std::vector<double> s(n, 0.0);
36 s[n-1] = -static_cast<double>(dataX[0]);
37
38 for (size_t i=1; i<n; i++) {
39 for (size_t j=n-1-i; j<n-1; j++)
40 s[j] -= static_cast<double>(dataX[i]) * s[j+1];
41 s[n-1] -= static_cast<double>(dataX[i]);
42 }
43
44 for (size_t j=0; j<n; j++) {
45 phi = static_cast<double>(n);
46
47 for (size_t k=n-1; k>0; k--)
48 phi = static_cast<double>(k)*s[k] + static_cast<double>(dataX[j])*phi;
49
50 ff = static_cast<double>(dataF[j])/phi;
51 b = 1.0;
52
53 for (int k=n-1; k>=0; k--) {
54 coeff[k] += b * ff;
55 b = s[k] + static_cast<double>(dataX[j]) * b;
56 }
57 }
58 }
59
60 template <typename T>
61 T poly::linearIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata)
62 {
63 if (xdata.size() < 2) return 0.0;
64
65 std::vector<double> k, c;
66 for (size_t i=0; i<(xdata.size()-1); i++)
67 {
68 k.push_back(static_cast<double>(fdata[i+1]-fdata[i])/static_cast<double>(xdata[i+1]-

xdata[i]));
69 c.push_back(static_cast<double>(fdata[i])-static_cast<double>(k.back())*static_cast<

double>(xdata[i]));

139

Appendix

70 }
71
72 double res = 0.0;
73
74 for (size_t i=0; i<(xdata.size()-1); i++)
75 res += 0.5*k[i]*(static_cast<double>(xdata[i+1]*xdata[i+1]) - static_cast<double>(

xdata[i]*xdata[i])) + c[i]*static_cast<double>(xdata[i+1] - xdata[i]);
76
77 return res;
78 }
79 template float poly::linearIntegrate<float>(const std::vector<float> &xdata, const std::

vector<float> &fdata);
80 template double poly::linearIntegrate<double>(const std::vector<double> &xdata, const std

::vector<double> &fdata);
81 template long double poly::linearIntegrate<long double>(const std::vector<long double> &

xdata, const std::vector<long double> &fdata);
82
83 template <typename T>
84 T poly::linearIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata, T

lowLimit, T highLimit)
85 {
86 if (xdata.size() < 2) return 0.0;
87
88 std::vector<double> k, c;
89 for (size_t i=0; i<(xdata.size()-1); i++)
90 {
91 k.push_back(static_cast<double>(fdata[i+1]-fdata[i])/static_cast<double>(xdata[i+1]-

xdata[i]));
92 c.push_back(static_cast<double>(fdata[i]-k.back()*xdata[i]));
93 }
94
95 //calculating value of full integral (in it’s whole range):
96 double sum = 0.0L;
97
98 for (size_t i=0; i<(xdata.size()-1); i++)
99 sum += 0.5*k[i]*(static_cast<double>(xdata[i+1]*xdata[i+1]) - static_cast<double>(

xdata[i]*xdata[i])) +
100 c[i]*static_cast<double>(xdata[i+1] - xdata[i]);
101
102 //calculating value of integral from lower range to lower limit:
103 size_t lowLimitPos = locatePoint(xdata, lowLimit, 1);
104
105 double lowSum = 0.0L;
106
107 for (size_t i=0; i<lowLimitPos; i++)
108 lowSum += 0.5*k[i]*(static_cast<double>(xdata[i+1]*xdata[i+1]) - static_cast<double>(

xdata[i]*xdata[i])) +
109 c[i]*static_cast<double>(xdata[i+1] - xdata[i]);
110
111 lowSum += 0.5*k[lowLimitPos]*(static_cast<double>(lowLimit*lowLimit) - static_cast<

double>(xdata[lowLimitPos]*xdata[lowLimitPos])) +
112 c[lowLimitPos]*static_cast<double>(lowLimit - xdata[lowLimitPos]);
113
114 //calculating value of integral from higher limit to higer range:
115 size_t highLimitPos = locatePoint(xdata, highLimit, 1);
116
117 double highSum = 0.0L;
118
119 highSum += 0.5*k[highLimitPos]*(static_cast<double>(xdata[highLimitPos+1]*xdata[

highLimitPos+1]) - static_cast<double>(highLimit*highLimit)) +
120 c[highLimitPos]*static_cast<double>(xdata[highLimitPos+1] - highLimit);
121
122 for (size_t i=highLimitPos+1; i<xdata.size()-1; i++)
123 highSum += 0.5*k[i]*(static_cast<double>(xdata[i+1]*xdata[i+1]) - static_cast<double

>(xdata[i]*xdata[i])) +
124 c[i]*static_cast<double>(xdata[i+1] - xdata[i]);
125
126 //integral value is full-low-high
127 return (sum - highSum - lowSum);
128 }
129 template float poly::linearIntegrate<float>(const std::vector<float> &xdata, const std::

vector<float> &fdata, float lowLimit, float highLimit);

140

DREENA-A code

130 template double poly::linearIntegrate<double>(const std::vector<double> &xdata, const std
::vector<double> &fdata, double lowLimit, double highLimit);

131 template long double poly::linearIntegrate<long double>(const std::vector<long double> &
xdata, const std::vector<long double> &fdata, long double lowLimit, long double
highLimit);

132
133 template <typename T>
134 T poly::cubicIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata)
135 {
136 if (xdata.size() < 2) return 0;
137
138 //calculating polynomial coefficients for each segment:
139 std::vector<std::vector<double>> coefficents; coefficents.resize(xdata.size() - 1);
140 for (size_t i=0; i<coefficents.size(); i++)
141 {
142 size_t pointLocation = locatePoint(xdata, xdata[i], 3);
143 std::vector<T> xdatatemp(xdata.begin()+pointLocation, xdata.begin()+pointLocation+4);
144 std::vector<T> fdatatemp(fdata.begin()+pointLocation, fdata.begin()+pointLocation+4);
145 polynomialCoeff(xdatatemp, fdatatemp, coefficents[i]);
146 }
147
148 //calculating value of integral:
149 double sum = 0.0L;
150 for (size_t i=0; i<xdata.size()-1; i++)
151 for (size_t j=0; j<coefficents[i].size(); j++)
152 sum += 1.0/static_cast<double>(j+1)*coefficents[i][j]*(std::pow(static_cast<double

>(xdata[i+1]), static_cast<double>(j+1)) - std::pow(static_cast<double>(xdata[i]),
static_cast<double>(j+1)));

153
154 return sum;
155 }
156 template float poly::cubicIntegrate<float>(const std::vector<float> &xdata, const std::

vector<float> &fdata);
157 template double poly::cubicIntegrate<double>(const std::vector<double> &xdata, const std

::vector<double> &fdata);
158 template long double poly::cubicIntegrate<long double>(const std::vector<long double> &

xdata, const std::vector<long double> &fdata);
159
160 template <typename T>
161 T poly::cubicIntegrate(const std::vector<T> &xdata, const std::vector<T> &fdata, T

lowLimit, T highLimit)
162 {
163 if (xdata.size() < 2) return 0;
164
165 //calculating polynomial coefficients for each segment:
166 std::vector<std::vector<double>> coefficents; coefficents.resize(xdata.size() - 1);
167 for (size_t i=0; i<coefficents.size(); i++)
168 {
169 size_t pointLocation = locatePoint(xdata, xdata[i], 3);
170 std::vector<T> xdatatemp(xdata.begin()+pointLocation, xdata.begin()+pointLocation+4);
171 std::vector<T> fdatatemp(fdata.begin()+pointLocation, fdata.begin()+pointLocation+4);
172 polynomialCoeff(xdatatemp, fdatatemp, coefficents[i]);
173 }
174
175 //calculating value of full integral (in it’s whole range):
176 double sum = 0.0L;
177 for (size_t i=0; i<xdata.size()-1; i++)
178 for (size_t j=0; j<coefficents[i].size(); j++)
179 sum += 1.0L/static_cast<double>(j+1)*coefficents[i][j]*
180 (std::pow(static_cast<double>(xdata[i+1]), static_cast<double>(j

+1)) - std::pow(static_cast<double>(xdata[i]), static_cast<double>(j+1)));
181
182 //calculating value of integral from lower range to lower limit:
183 size_t lowLimitPos = locatePoint(xdata, lowLimit, 1);
184
185 double lowSum = 0.0L;
186
187 for (size_t i=0; i<lowLimitPos; i++)
188 for (size_t j=0; j<coefficents[i].size(); j++)
189 lowSum += 1.0L/static_cast<double>(j+1)*coefficents[i][j]*
190 (std::pow(static_cast<double>(xdata[i+1]), static_cast<double

>(j+1)) - std::pow(static_cast<double>(xdata[i]), static_cast<double>(j+1)));

141

Appendix

191
192 for (size_t j=0; j<coefficents[lowLimitPos].size(); j++)
193 lowSum += 1.0L/static_cast<double>(j+1)*coefficents[lowLimitPos][j]*
194 (std::pow(static_cast<double>(lowLimit), static_cast<double>(j+1)

) - std::pow(static_cast<double>(xdata[lowLimitPos]), static_cast<double>(j+1)));
195
196 //calculating value of integral from higher limit to higer range:
197 size_t highLimitPos = locatePoint(xdata, highLimit, 1);
198
199 double highSum = 0.0L;
200
201 for (size_t j=0; j<coefficents[highLimitPos].size(); j++)
202 highSum += 1.0L/static_cast<double>(j+1)*coefficents[highLimitPos][j]*
203 (std::pow(static_cast<double>(xdata[highLimitPos+1]), static_cast

<double>(j+1)) - std::pow(static_cast<double>(highLimit), static_cast<double>(j+1)));
204
205 for (size_t i=highLimitPos+1; i<xdata.size()-1; i++)
206 for (size_t j=0; j<coefficents[i].size(); j++)
207 highSum += 1.0L/static_cast<double>(j+1)*coefficents[i][j]*
208 (std::pow(static_cast<double>(xdata[i+1]), static_cast<double

>(j+1)) - std::pow(static_cast<double>(xdata[i]), static_cast<double>(j+1)));
209
210 //integral value is full-low-high
211 return (sum - highSum - lowSum);
212 }
213 template float poly::cubicIntegrate<float>(const std::vector<float> &xdata, const std::

vector<float> &fdata, float lowLimit, float highLimit);
214 template double poly::cubicIntegrate<double>(const std::vector<double> &xdata, const std

::vector<double> &fdata, double lowLimit, double highLimit);
215 template long double poly::cubicIntegrate<long double>(const std::vector<long double> &

xdata, const std::vector<long double> &fdata, long double lowLimit, long double
highLimit);

142

Bibliography

[1] Magdalena Djordjevic, Dusan Zigic, Marko Djordjevic, and Jussi Auvinen. How to test path-
length dependence in energy loss mechanisms: analysis leading to a new observable. Phys.
Rev. C, 99(6):061902, 2019.

[2] Dusan Zigic, Igor Salom, Jussi Auvinen, Marko Djordjevic, and Magdalena Djordjevic.
DREENA-B framework: first predictions of RAA and v2 within dynamical energy loss for-
malism in evolving QCD medium. Phys. Lett. B, 791:236–241, 2019.

[3] Dusan Zigic, Bojana Ilic, Marko Djordjevic, and Magdalena Djordjevic. Exploring the ini-
tial stages in heavy-ion collisions with high-p⊥ RAA and v2 theory and data. Phys. Rev. C,
101(6):064909, 2020.

[4] Dusan Zigic, Igor Salom, Jussi Auvinen, Pasi Huovinen, and Magdalena Djordjevic.
DREENA-A framework as a QGP tomography tool. Front. in Phys., 10:957019, 2022.

[5] Dusan Zigic, Jussi Auvinen, Igor Salom, Magdalena Djordjevic, and Pasi Huovinen. Impor-
tance of higher harmonics and v4 puzzle in quark-gluon plasma tomography. Phys. Rev. C,
106(4):044909, 2022.

[6] D. J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories - I. Phys. Rev. D, 8:3633–
3652, 1973.

[7] H. David Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett.,
30:1346–1349, 1973.

[8] William J. Marciano and Heinz Pagels. Quantum Chromodynamics: A Review. Phys. Rept.,
36:137, 1978.

[9] E. Eichten, K. Gottfried, T. Kinoshita, John B. Kogut, K. D. Lane, and Tung-Mow Yan. The
Spectrum of Charmonium. Phys. Rev. Lett., 34:369–372, 1975. [Erratum: Phys.Rev.Lett. 36,
1276 (1976)].

[10] Alexandre Deur, Stanley J. Brodsky, and Guy F. de Teramond. The QCD Running Coupling.
Nucl. Phys., 90:1, 2016.

[11] Quark potential. https://www2.ph.ed.ac.uk/~playfer/PPlect8.pdf.

[12] Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand. Parton Fragmentation and String
Dynamics. Phys. Rept., 97:31–145, 1983.

143

https://www2.ph.ed.ac.uk/~playfer/PPlect8.pdf

Bibliography

[13] David J. Gross and Frank Wilczek. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys.
Rev. Lett., 30:1343–1346, 1973.

[14] P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

[15] Szabolcs Borsanyi, Gergely Endrodi, Zoltan Fodor, Antal Jakovac, Sandor D. Katz, Stefan
Krieg, Claudia Ratti, and Kalman K. Szabo. The QCD equation of state with dynamical quarks.
JHEP, 11:077, 2010.

[16] Kenji Fukushima. Chiral effective model with the Polyakov loop. Phys. Lett. B, 591:277–284,
2004.

[17] Edward V. Shuryak. Quantum Chromodynamics and the Theory of Superdense Matter. Phys.
Rept., 61:71–158, 1980.

[18] Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, and Thomas Schäfer. Color supercon-
ductivity in dense quark matter. Rev. Mod. Phys., 80:1455–1515, 2008.

[19] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo. The Order of the quantum chromo-
dynamics transition predicted by the standard model of particle physics. Nature, 443:675–678,
2006.

[20] Ludwik Turko. Looking for the Phase Transition—Recent NA61/SHINE Results. Universe,
4(3):52, 2018.

[21] P. Kovtun, Dan T. Son, and Andrei O. Starinets. Viscosity in strongly interacting quantum field
theories from black hole physics. Phys. Rev. Lett., 94:111601, 2005.

[22] Mikhail A. Stephanov. QCD Phase Diagram and the Critical Point. Prog. Theor. Phys. Suppl.,
153:139–156, 2004.

[23] Zuzana Fecková, Jan Steinheimer, Boris Tomášik, and Marcus Bleicher. Net-proton number
kurtosis and skewness in nuclear collisions: Influence of deuteron formation. Phys. Rev. C,
92(6):064908, 2015.

[24] L. Adamczyk et al. Energy Dependence of Moments of Net-proton Multiplicity Distributions
at RHIC. Phys. Rev. Lett., 112:032302, 2014.

[25] G. F. Burgio, H. J. Schulze, I. Vidana, and J. B. Wei. Neutron stars and the nuclear equation of
state. Prog. Part. Nucl. Phys., 120:103879, 2021.

[26] Philippe de Forcrand. Simulating QCD at finite density. PoS, LAT2009:010, 2009.

[27] Bjoern Schenke, Prithwish Tribedy, and Raju Venugopalan. Fluctuating Glasma initial condi-
tions and flow in heavy ion collisions. Phys. Rev. Lett., 108:252301, 2012.

[28] Bjoern Schenke, Prithwish Tribedy, and Raju Venugopalan. Event-by-event gluon multiplic-
ity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions. Phys. Rev. C,
86:034908, 2012.

[29] K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and Kimmo Tuominen. Scaling of transverse en-
ergies and multiplicities with atomic number and energy in ultrarelativistic nuclear collisions.
Nucl. Phys. B, 570:379–389, 2000.

[30] R. Paatelainen, K. J. Eskola, H. Holopainen, and K. Tuominen. Multiplicities and pT spectra in
ultrarelativistic heavy ion collisions from a next-to-leading order improved perturbative QCD
+ saturation + hydrodynamics model. Phys. Rev. C, 87(4):044904, 2013.

144

Bibliography

[31] R. Paatelainen, K. J. Eskola, H. Niemi, and K. Tuominen. Fluid dynamics with saturated
minijet initial conditions in ultrarelativistic heavy-ion collisions. Phys. Lett. B, 731:126–130,
2014.

[32] Ulrich W. Heinz and Peter F. Kolb. Early thermalization at RHIC. Nucl. Phys. A, 702:269–280,
2002.

[33] Peter Braun-Munzinger and Benjamin Dönigus. Loosely-bound objects produced in nuclear
collisions at the LHC. Nucl. Phys. A, 987:144–201, 2019.

[34] Jean-Yves Ollitrault. Anisotropy as a signature of transverse collective flow. Phys. Rev. D,
46:229–245, 1992.

[35] Raimond Snellings. Elliptic Flow: A Brief Review. New J. Phys., 13:055008, 2011.

[36] Wojciech Florkowski. Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. 3 2010.

[37] B. B. Back et al. Charged particle multiplicity near mid-rapidity in central Au + Au collisions
at S(1/2) = 56-A/GeV and 130-A/GeV. Phys. Rev. Lett., 85:3100–3104, 2000.

[38] Betty Abelev et al. Centrality Dependence of Charged Particle Production at Large Transverse
Momentum in Pb–Pb Collisions at

√
sNN = 2.76 TeV. Phys. Lett. B, 720:52–62, 2013.

[39] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg. Glauber modeling
in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci., 57:205–243, 2007.

[40] C. Adler et al. Centrality dependence of high pT hadron suppression in Au+Au collisions at√
sNN = 130-GeV. Phys. Rev. Lett., 89:202301, 2002.

[41] Betty Abelev et al. Centrality determination of Pb-Pb collisions at
√
sNN = 2.76 TeV with

ALICE. Phys. Rev. C, 88(4):044909, 2013.

[42] David G. d’Enterria. Quark-Gluon Matter. J. Phys. G, 34:S53–S82, 2007.

[43] R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative energy
loss of high-energy quarks and gluons in a finite volume quark - gluon plasma. Nucl. Phys. B,
483:291–320, 1997.

[44] B. Z. Kopeliovich, J. Nemchik, A. Schafer, and A. V. Tarasov. Cronin effect in hadron produc-
tion off nuclei. Phys. Rev. Lett., 88:232303, 2002.

[45] V. Greco, C. M. Ko, and P. Levai. Parton coalescence and anti-proton / pion anomaly at RHIC.
Phys. Rev. Lett., 90:202302, 2003.

[46] S. Voloshin and Y. Zhang. Flow study in relativistic nuclear collisions by Fourier expansion of
Azimuthal particle distributions. Z. Phys. C, 70:665–672, 1996.

[47] B. Alver and G. Roland. Collision geometry fluctuations and triangular flow in heavy-ion
collisions. Phys. Rev. C, 81:054905, 2010. [Erratum: Phys.Rev.C 82, 039903 (2010)].

[48] P. Huovinen, P. F. Kolb, Ulrich W. Heinz, P. V. Ruuskanen, and S. A. Voloshin. Radial and
elliptic flow at RHIC: Further predictions. Phys. Lett. B, 503:58–64, 2001.

[49] Magdalena Djordjevic and Marko Djordjevic. LHC jet suppression of light and heavy flavor
observables. Phys. Lett. B, 734:286–289, 2014.

145

Bibliography

[50] M. Gyulassy, P. Levai, and I. Vitev. Reaction operator approach to nonAbelian energy loss.
Nucl. Phys. B, 594:371–419, 2001.

[51] Miklos Gyulassy, Peter Levai, and Ivan Vitev. Jet quenching in thin plasmas. Nucl. Phys. A,
661:637–640, 1999.

[52] Miklos Gyulassy, Peter Levai, and Ivan Vitev. Jet quenching in thin quark gluon plasmas. 1.
Formalism. Nucl. Phys. B, 571:197–233, 2000.

[53] M. Gyulassy, P. Levai, and I. Vitev. NonAbelian energy loss at finite opacity. Phys. Rev. Lett.,
85:5535–5538, 2000.

[54] M. Gyulassy, P. Levai, and I. Vitev. Jet tomography of Au+Au reactions including multigluon
fluctuations. Phys. Lett. B, 538:282–288, 2002.

[55] Magdalena Djordjevic and Miklos Gyulassy. Heavy quark radiative energy loss in QCD matter.
Nucl. Phys. A, 733:265–298, 2004.

[56] S. S. Adler et al. Nuclear modification of electron spectra and implications for heavy quark
energy loss in Au+Au collisions at s(NN)**(1/2) - 200-GeV. Phys. Rev. Lett., 96:032301,
2006.

[57] Y. Akiba. Probing the properties of dense partonic matter at RHIC. Nucl. Phys. A, 774:403–
408, 2006.

[58] Magdalena Djordjevic. Theoretical formalism of radiative jet energy loss in a finite size dy-
namical QCD medium. Phys. Rev. C, 80:064909, 2009.

[59] Magdalena Djordjevic. Collisional energy loss in a finite size QCD matter. Phys. Rev. C,
74:064907, 2006.

[60] Nestor Armesto, Carlos A. Salgado, and Urs Achim Wiedemann. Medium induced gluon
radiation off massive quarks fills the dead cone. Phys. Rev. D, 69:114003, 2004.

[61] Xin-Nian Wang and Xiao-feng Guo. Multiple parton scattering in nuclei: Parton energy loss.
Nucl. Phys. A, 696:788–832, 2001.

[62] Joseph I. Kapusta. Finite Temperature Field Theory. Cambridge Monographs on Mathematical
Physics. Cambridge University Press, Cambridge, 1989.

[63] Michel Le Bellac. Thermal Field Theory. Cambridge Monographs on Mathematical Physics.
Cambridge University Press, 1996.

[64] Magdalena Djordjevic and Ulrich W. Heinz. Radiative energy loss in a finite dynamical QCD
medium. Phys. Rev. Lett., 101:022302, 2008.

[65] Magdalena Djordjevic and Miklos Gyulassy. The Ter-Mikayelian effect on QCD radiative
energy loss. Phys. Rev. C, 68:034914, 2003.

[66] Magdalena Djordjevic and Marko Djordjevic. Generalization of radiative jet energy loss to
non-zero magnetic mass. Phys. Lett. B, 709:229–233, 2012.

[67] Bojana Blagojevic, Magdalena Djordjevic, and Marko Djordjevic. Calculating hard probe
radiative energy loss beyond the soft-gluon approximation: Examining the approximation va-
lidity. Phys. Rev. C, 99(2):024901, 2019.

146

Bibliography

[68] Bojana Blagojevic and Magdalena Djordjevic. Importance of different energy loss effects in
jet suppression at the RHIC and the LHC. J. Phys. G, 42(7):075105, 2015.

[69] Eric Braaten and Markus H. Thoma. Energy loss of a heavy fermion in a hot plasma. Phys.
Rev. D, 44:1298–1310, 1991.

[70] J. F. Gunion and G. Bertsch. HADRONIZATION BY COLOR BREMSSTRAHLUNG. Phys.
Rev. D, 25:746, 1982.

[71] A. B. Migdal. Bremsstrahlung and pair production in condensed media at high-energies. Phys.
Rev., 103:1811–1820, 1956.

[72] L. D. Landau and I. Pomeranchuk. Limits of applicability of the theory of bremsstrahlung
electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz., 92:535–536, 1953.

[73] Y. Maezawa, S. Aoki, S. Ejiri, T. Hatsuda, N. Ishii, K. Kanaya, N. Ukita, and T. Umeda.
Electric and Magnetic Screening Masses at Finite Temperature from Generalized Polyakov-
Line Correlations in Two-flavor Lattice QCD. Phys. Rev. D, 81:091501, 2010.

[74] A. Nakamura, T. Saito, and S. Sakai. Lattice calculation of gluon screening masses. Phys. Rev.
D, 69:014506, 2004.

[75] Dusan Zigic, Igor Salom, Jussi Auvinen, Marko Djordjevic, and Magdalena Djordjevic.
DREENA-C framework: joint RAA and v2 predictions and implications to QGP tomography.
J. Phys. G, 46(8):085101, 2019.

[76] John C. Collins and M. J. Perry. Superdense Matter: Neutrons Or Asymptotically Free Quarks?
Phys. Rev. Lett., 34:1353, 1975.

[77] Miklos Gyulassy and Larry McLerran. New forms of QCD matter discovered at RHIC. Nucl.
Phys. A, 750:30–63, 2005.

[78] J. D. Bjorken. Energy Loss of Energetic Partons in Quark - Gluon Plasma: Possible Extinction
of High p(t) Jets in Hadron - Hadron Collisions. 8 1982.

[79] Karen M. Burke et al. Extracting the jet transport coefficient from jet quenching in high-energy
heavy-ion collisions. Phys. Rev. C, 90(1):014909, 2014.

[80] Yingru Xu et al. Resolving discrepancies in the estimation of heavy quark transport coefficients
in relativistic heavy-ion collisions. Phys. Rev. C, 99(1):014902, 2019.

[81] Markus H. Thoma and Miklos Gyulassy. Quark Damping and Energy Loss in the High Tem-
perature QCD. Nucl. Phys. B, 351:491–506, 1991.

[82] Eric Braaten and Markus H. Thoma. Energy loss of a heavy quark in the quark - gluon plasma.
Phys. Rev. D, 44(9):R2625, 1991.

[83] B. G. Zakharov. Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED
and QCD. JETP Lett., 63:952–957, 1996.

[84] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Photon emission from ultra-
relativistic plasmas. JHEP, 11:057, 2001.

[85] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Effective kinetic theory for
high temperature gauge theories. JHEP, 01:030, 2003.

147

Bibliography

[86] A. Majumder and M. Van Leeuwen. The Theory and Phenomenology of Perturbative QCD
Based Jet Quenching. Prog. Part. Nucl. Phys., 66:41–92, 2011.

[87] C. Marquet and T. Renk. Jet quenching in the strongly-interacting quark-gluon plasma. Phys.
Lett. B, 685:270–276, 2010.

[88] Fabio Dominguez, C. Marquet, A. H. Mueller, Bin Wu, and Bo-Wen Xiao. Comparing energy
loss and p-perpendicular - broadening in perturbative QCD with strong coupling N = 4 SYM
theory. Nucl. Phys. A, 811:197–222, 2008.

[89] Caio A. G. Prado, Jacquelyn Noronha-Hostler, Roland Katz, Alexandre A. P. Suaide, Jorge
Noronha, Marcelo G. Munhoz, and Mauro R. Cosentino. Event-by-event correlations between
soft hadrons and D0 mesons in 5.02 TeV PbPb collisions at the CERN Large Hadron Collider.
Phys. Rev. C, 96(6):064903, 2017.

[90] Marlene Nahrgang, Jörg Aichelin, Pol Bernard Gossiaux, and Klaus Werner. Toward a consis-
tent evolution of the quark-gluon plasma and heavy quarks. Phys. Rev. C, 93(4):044909, 2016.

[91] Barbara Betz and Miklos Gyulassy. Constraints on the Path-Length Dependence of Jet Quench-
ing in Nuclear Collisions at RHIC and LHC. JHEP, 08:090, 2014. [Erratum: JHEP 10, 043
(2014)].

[92] Barbara Betz, Miklos Gyulassy, Matthew Luzum, Jorge Noronha, Jacquelyn Noronha-Hostler,
Israel Portillo, and Claudia Ratti. Cumulants and nonlinear response of high pT harmonic flow
at
√
sNN = 5.02 TeV. Phys. Rev. C, 95(4):044901, 2017.

[93] Thorsten Renk. Constraining the Physics of Jet Quenching. Phys. Rev. C, 85:044903, 2012.

[94] Denes Molnar and Deke Sun. Interplay between bulk medium evolution and (D)GLV energy
loss. Nucl. Phys. A, 932:140–145, 2014.

[95] Denes Molnar and Deke Sun. Realistic medium-averaging in radiative energy loss. Nucl. Phys.
A, 910-911:486–489, 2013.

[96] Thorsten Renk, Hannu Holopainen, Jussi Auvinen, and Kari J. Eskola. Energy Loss in a
Fluctuating Hydrodynamical Background. Phys. Rev. C, 85:044915, 2012.

[97] Zhong-Bo Kang, Ivan Vitev, and Hongxi Xing. Nuclear modification of high transverse mo-
mentum particle production in p+A collisions at RHIC and LHC. Phys. Lett. B, 718:482–487,
2012.

[98] Rishi Sharma, Ivan Vitev, and Ben-Wei Zhang. Light-cone wave function approach to open
heavy flavor dynamics in QCD matter. Phys. Rev. C, 80:054902, 2009.

[99] Andrea Dainese. Perspectives for the study of charm in-medium quenching at the LHC with
ALICE. Eur. Phys. J. C, 33:495–503, 2004.

[100] Daniel de Florian, Rodolfo Sassot, and Marco Stratmann. Global analysis of fragmentation
functions for pions and kaons and their uncertainties. Phys. Rev. D, 75:114010, 2007.

[101] Matteo Cacciari and Paolo Nason. Charm cross-sections for the Tevatron Run II. JHEP,
09:006, 2003.

[102] Magdalena Djordjevic and Marko Djordjevic. Predictions of heavy-flavor suppression at 5.1
TeV Pb + Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 92(2):024918, 2015.

148

Bibliography

[103] Magdalena Djordjevic. Complex suppression patterns distinguish between major energy loss
effects in Quark–Gluon Plasma. Phys. Lett. B, 763:439–444, 2016.

[104] S. Acharya et al. Transverse momentum spectra and nuclear modification factors of charged
particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP, 11:013, 2018.

[105] Vardan Khachatryan et al. Charged-particle nuclear modification factors in PbPb and pPb
collisions at

√
sN N = 5.02 TeV. JHEP, 04:039, 2017.

[106] Jiechen Xu, Alessandro Buzzatti, and Miklos Gyulassy. Azimuthal jet flavor tomography with
CUJET2.0 of nuclear collisions at RHIC and LHC. JHEP, 08:063, 2014.

[107] Giuliano Giacalone, Jacquelyn Noronha-Hostler, Matthew Luzum, and Jean-Yves Ollitrault.
Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Phys. Rev. C, 97(3):034904, 2018.

[108] Constantin Loizides, Jason Kamin, and David d’Enterria. Improved Monte Carlo Glauber
predictions at present and future nuclear colliders. Phys. Rev. C, 97(5):054910, 2018. [Erratum:
Phys.Rev.C 99, 019901 (2019)].

[109] K. J. Eskola, H. Niemi, R. Paatelainen, and K. Tuominen. Predictions for multiplicities and
flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Phys. Rev.
C, 97(3):034911, 2018.

[110] Shreyasi Acharya et al. Centrality and pseudorapidity dependence of the charged-particle mul-
tiplicity density in Xe–Xe collisions at

√
sNN =5.44TeV. Phys. Lett. B, 790:35–48, 2019.

[111] Albert M Sirunyan et al. Charged-particle nuclear modification factors in XeXe collisions at√
sNN = 5.44 TeV. JHEP, 10:138, 2018.

[112] Magdalena Djordjevic, Stefan Stojku, Marko Djordjevic, and Pasi Huovinen. Shape of the
quark gluon plasma droplet reflected in the high-p⊥ data. Phys. Rev. C, 100(3):031901, 2019.

[113] Carlota Andres, Néstor Armesto, Harri Niemi, Risto Paatelainen, and Carlos A. Salgado. Jet
quenching as a probe of the initial stages in heavy-ion collisions. Phys. Lett. B, 803:135318,
2020.

[114] G. Baym and S. A. Chin. Can a Neutron Star Be a Giant MIT Bag? Phys. Lett. B, 62:241–244,
1976.

[115] Edward V. Shuryak. What RHIC experiments and theory tell us about properties of quark-
gluon plasma? Nucl. Phys. A, 750:64–83, 2005.

[116] Edward Shuryak. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod.
Phys., 89:035001, 2017.

[117] Barbara Jacak and Peter Steinberg. Creating the perfect liquid in heavy-ion collisions. Phys.
Today, 63N5:39–43, 2010.

[118] Berndt Muller, Jurgen Schukraft, and Boleslaw Wyslouch. First Results from Pb+Pb collisions
at the LHC. Ann. Rev. Nucl. Part. Sci., 62:361–386, 2012.

[119] Measurement of nuclear modification factor RAA in Pb+Pb collisions at
√
sNN = 5.02TeV

with the ATLAS detector at the LHC. 2 2017.

[120] Syaefudin Jaelani. Measurement of the D-meson Nuclear Modification Factor and Elliptic
Flow in Pb–Pb Collisions at

√
sNN = 5.02 TeV with ALICE at the LHC. Int. J. Mod. Phys.

Conf. Ser., 46:1860018, 2018.

149

Bibliography

[121] Betty Abelev et al. Suppression of high transverse momentum D mesons in central Pb-Pb
collisions at

√
sNN = 2.76 TeV. JHEP, 09:112, 2012.

[122] A. Adare et al. Suppression pattern of neutral pions at high transverse momentum in Au+Au
collisions at

√
sNN = 200 GeV and constraints on medium transport coefficients. Phys. Rev.

Lett., 101:232301, 2008.

[123] A. Adare et al. Neutral pion production with respect to centrality and reaction plane in Au+Au
collisions at

√
sNN=200 GeV. Phys. Rev. C, 87(3):034911, 2013.

[124] B. I. Abelev et al. Energy dependence of pi+-, p and anti-p transverse momentum spectra for
Au+Au collisions at s(NN)**(1/2) = 62.4 and 200-GeV. Phys. Lett. B, 655:104–113, 2007.

[125] S. Acharya et al. Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions
at
√
sNN = 5.02 and 2.76 TeV. JHEP, 07:103, 2018.

[126] Morad Aaboud et al. Measurement of the azimuthal anisotropy of charged particles produced
in √

sNN = 5.02 TeV Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C, 78(12):997,
2018.

[127] A. M. Sirunyan et al. Azimuthal anisotropy of charged particles with transverse momentum up
to 100 GeV/ c in PbPb collisions at

√
sNN=5.02 TeV. Phys. Lett. B, 776:195–216, 2018.

[128] Betty Bezverkhny Abelev et al. Azimuthal anisotropy of D meson production in Pb-Pb colli-
sions at

√
sNN = 2.76 TeV. Phys. Rev. C, 90(3):034904, 2014.

[129] Albert M Sirunyan et al. Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb
collisions at

√
sNN = 5.02 TeV. Phys. Rev. Lett., 120(20):202301, 2018.

[130] Shreyasi Acharya et al. D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at√
sNN = 5.02 TeV. Phys. Rev. Lett., 120(10):102301, 2018.

[131] Georges Aad et al. Measurement of the pseudorapidity and transverse momentum dependence
of the elliptic flow of charged particles in lead-lead collisions at

√
sNN = 2.76 TeV with the

ATLAS detector. Phys. Lett. B, 707:330–348, 2012.

[132] Serguei Chatrchyan et al. Azimuthal Anisotropy of Charged Particles at High Transverse Mo-
menta in PbPb Collisions at

√
sNN = 2.76 TeV. Phys. Rev. Lett., 109:022301, 2012.

[133] Magdalena Djordjevic, Marko Djordjevic, and Bojana Blagojevic. RHIC and LHC jet suppres-
sion in non-central collisions. Phys. Lett. B, 737:298–302, 2014.

[134] Magdalena Djordjevic. Heavy flavor puzzle at LHC: a serendipitous interplay of jet suppression
and fragmentation. Phys. Rev. Lett., 112(4):042302, 2014.

[135] Jacquelyn Noronha-Hostler, Barbara Betz, Jorge Noronha, and Miklos Gyulassy. Event-by-
event hydrodynamics + jet energy loss: A solution to the RAA ⊗ v2 puzzle. Phys. Rev. Lett.,
116(25):252301, 2016.

[136] Denes Molnar and Deke Sun. High-pT suppression and elliptic flow from radiative energy loss
with realistic bulk medium expansion. 5 2013.

[137] Michel Le Bellac. Thermal Field Theory. Cambridge Monographs on Mathematical Physics.
Cambridge University Press, 3 2011.

[138] J. D. Bjorken. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region.
Phys. Rev. D, 27:140–151, 1983.

150

Bibliography

[139] Eric Braaten, King-man Cheung, Sean Fleming, and Tzu Chiang Yuan. Perturbative QCD
fragmentation functions as a model for heavy quark fragmentation. Phys. Rev. D, 51:4819–
4829, 1995.

[140] V. G. Kartvelishvili, A. K. Likhoded, and V. A. Petrov. On the Fragmentation Functions of
Heavy Quarks Into Hadrons. Phys. Lett. B, 78:615–617, 1978.

[141] Simon Wicks, William Horowitz, Magdalena Djordjevic, and Miklos Gyulassy. Elastic, inelas-
tic, and path length fluctuations in jet tomography. Nucl. Phys. A, 784:426–442, 2007.

[142] Guy D. Moore and Derek Teaney. How much do heavy quarks thermalize in a heavy ion
collision? Phys. Rev. C, 71:064904, 2005.

[143] Alexei Selikhov and Miklos Gyulassy. Color diffusion and conductivity in a quark - gluon
plasma. Phys. Lett. B, 316:373–380, 1993.

[144] A. V. Selikhov and M. Gyulassy. QCD Fokker-Planck equations with color diffusion. Phys.
Rev. C, 49:1726–1729, 1994.

[145] A. Peshier. Running coupling and screening in the (s)QGP. 1 2006.

[146] Peter F. Kolb and Ulrich W. Heinz. Hydrodynamic description of ultrarelativistic heavy ion
collisions. pages 634–714, 5 2003.

[147] Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass. Characterization of the initial state
and QGP medium from a combined Bayesian analysis of LHC data at 2.76 and 5.02 TeV. Nucl.
Phys. A, 967:293–296, 2017.

[148] Magdalena Djordjevic, Miklos Gyulassy, Ramona Vogt, and Simon Wicks. Influence of bottom
quark jet quenching on single electron tomography of Au + Au. Phys. Lett. B, 632:81–86, 2006.

[149] A. Bazavov et al. Equation of state in (2+1)-flavor QCD. Phys. Rev. D, 90:094503, 2014.

[150] Martin Wilde. Measurement of Direct Photons in pp and Pb-Pb Collisions with ALICE. Nucl.
Phys. A, 904-905:573c–576c, 2013.

[151] Shreyasi Acharya et al. Transverse momentum spectra and nuclear modification factors of
charged particles in Xe-Xe collisions at

√
sNN = 5.44 TeV. Phys. Lett. B, 788:166–179, 2019.

[152] Charged hadron spectra and dijet pT correlations measured in Xe+Xe collisions at √sNN =
5.44TeV with the ATLAS detector. 5 2018.

[153] Charged-particle nuclear modification factors in XeXe collisions at
√
sNN = 5.44 TeV. 2018.

[154] Magdalena Djordjevic, Bojana Blagojevic, and Lidija Zivkovic. Mass tomography at different
momentum ranges in quark-gluon plasma. Phys. Rev. C, 94(4):044908, 2016.

[155] Mihee Jo. Suppression of open bottom at high pT via non-prompt J/ψ decays in PbPb collisions
at 2.76 TeV with CMS. Nucl. Phys. A, 904-905:657c–660c, 2013.

[156] Jiechen Xu, Jinfeng Liao, and Miklos Gyulassy. Consistency of Perfect Fluidity and Jet
Quenching in semi-Quark-Gluon Monopole Plasmas. Chin. Phys. Lett., 32(9):092501, 2015.

[157] Shuzhe Shi, Jinfeng Liao, and Miklos Gyulassy. Probing the Color Structure of the Per-
fect QCD Fluids via Soft-Hard-Event-by-Event Azimuthal Correlations. Chin. Phys. C,
42(10):104104, 2018.

151

Bibliography

[158] Jing Wang. D meson nuclear modification factor in PbPb at 5.02 TeV with CMS. Nucl. Part.
Phys. Proc., 289-290:249–252, 2017.

[159] Ta-Wei Wang. B meson nuclear modification factor in Pb-Pb at 5.02 TeV with CMS. Nucl.
Part. Phys. Proc., 289-290:229–232, 2017.

[160] Francois Gelis and Bjoern Schenke. Initial State Quantum Fluctuations in the Little Bang. Ann.
Rev. Nucl. Part. Sci., 66:73–94, 2016.

[161] Georges Aad et al. Measurement of the distributions of event-by-event flow harmonics in lead-
lead collisions at = 2.76 TeV with the ATLAS detector at the LHC. JHEP, 11:183, 2013.

[162] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen. Event-by-event distributions of
azimuthal asymmetries in ultrarelativistic heavy-ion collisions. Phys. Rev. C, 87(5):054901,
2013.

[163] Roland Katz, Caio A. G. Prado, Jacquelyn Noronha-Hostler, Jorge Noronha, and Alexandre
A. P. Suaide. Sensitivity study with a D and B mesons modular simulation code of heavy flavor
RAA and azimuthal anisotropies based on beam energy, initial conditions, hadronization, and
suppression mechanisms. Phys. Rev. C, 102(2):024906, 2020.

[164] Shuzhe Shi, Jinfeng Liao, and Miklos Gyulassy. Global constraints from RHIC and LHC
on transport properties of QCD fluids in CUJET/CIBJET framework. Chin. Phys. C,
43(4):044101, 2019.

[165] Santosh K. Das, Francesco Scardina, Salvatore Plumari, and Vincenzo Greco. Toward a solu-
tion to the RAA and v2 puzzle for heavy quarks. Phys. Lett. B, 747:260–264, 2015.

[166] R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative energy
loss and p(T) broadening of high-energy partons in nuclei. Nucl. Phys. B, 484:265–282, 1997.

[167] R. D. Field. Applications of Perturbative QCD, volume 77. 1989.

[168] Peter Christiansen, Konrad Tywoniuk, and Vytautas Vislavicius. Universal scaling dependence
of QCD energy loss from data driven studies. Phys. Rev. C, 89(3):034912, 2014.

[169] Shanshan Cao, Long-Gang Pang, Tan Luo, Yayun He, Guang-You Qin, and Xin-Nian Wang.
RAA vs. v2 of heavy and light hadrons within a linear Boltzmann transport model. Nucl. Part.
Phys. Proc., 289-290:217–220, 2017.

[170] S. Cao et al. Multistage Monte-Carlo simulation of jet modification in a static medium. Phys.
Rev. C, 96(2):024909, 2017.

[171] R. Stock. The Physics of Dense Nuclear Matter From Supernovae to Quark Gluon Plasma.
Nature, 337:319–324, 1989.

[172] Johanna Stachel. Has the quark-gluon plasma been seen? Int. J. Mod. Phys. A, 21:1750–1763,
2006.

[173] Paul Romatschke and Ulrike Romatschke. Viscosity Information from Relativistic Nuclear
Collisions: How Perfect is the Fluid Observed at RHIC? Phys. Rev. Lett., 99:172301, 2007.

[174] Ulrich Heinz and Raimond Snellings. Collective flow and viscosity in relativistic heavy-ion
collisions. Ann. Rev. Nucl. Part. Sci., 63:123–151, 2013.

152

Bibliography

[175] John Adams et al. Experimental and theoretical challenges in the search for the quark gluon
plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions.
Nucl. Phys. A, 757:102–183, 2005.

[176] K. Adcox et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at
RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A, 757:184–283,
2005.

[177] Georges Aad et al. Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead
Collisions at

√
sNN = 2.77 TeV with the ATLAS Detector at the LHC. Phys. Rev. Lett.,

105:252303, 2010.

[178] K. Aamodt et al. Suppression of Charged Particle Production at Large Transverse Momentum
in Central Pb-Pb Collisions at

√
sNN = 2.76 TeV. Phys. Lett. B, 696:30–39, 2011.

[179] Serguei Chatrchyan et al. Observation and studies of jet quenching in PbPb collisions at
nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev. C, 84:024906, 2011.

[180] James L. Nagle, Ian G. Bearden, and William A. Zajc. Quark-Gluon Plasma at RHIC and the
LHC: Perfect Fluid too Perfect? New J. Phys., 13:075004, 2011.

[181] Jussi Auvinen, Kari J. Eskola, Pasi Huovinen, Harri Niemi, Risto Paatelainen, and Peter Pe-
treczky. Temperature dependence of η/s of strongly interacting matter: Effects of the equation
of state and the parametric form of (η/s)(T). Phys. Rev. C, 102(4):044911, 2020.

[182] J. D. Orjuela Koop, A. Adare, D. McGlinchey, and J. L. Nagle. Azimuthal anisotropy relative
to the participant plane from a multiphase transport model in central p + Au , d + Au , and 3He
+ Au collisions at

√
sNN = 200 GeV. Phys. Rev. C, 92(5):054903, 2015.

[183] Jussi Auvinen, Jonah E. Bernhard, Steffen A. Bass, and Iurii Karpenko. Investigating the
collision energy dependence of η/s in the beam energy scan at the BNL Relativistic Heavy Ion
Collider using Bayesian statistics. Phys. Rev. C, 97(4):044905, 2018.

[184] Stefan Stojku, Bojana Ilic, Marko Djordjevic, and Magdalena Djordjevic. Extracting the tem-
perature dependence in high-p⊥ particle energy loss. Phys. Rev. C, 103(2):024908, 2021.

[185] Patrick. Aurenche, Francois Gelis, and Haitham Zaraket. A Simple sum rule for the thermal
gluon spectral function and applications. JHEP, 05:043, 2002.

[186] Stephane Peigne and Andre Peshier. Collisional energy loss of a fast heavy quark in a quark-
gluon plasma. Phys. Rev. D, 77:114017, 2008.

[187] Stefan Stojku, Jussi Auvinen, Marko Djordjevic, Pasi Huovinen, and Magdalena Djordje-
vic. Early evolution constrained by high-p⊥ quark-gluon plasma tomography. Phys. Rev.
C, 105(2):L021901, 2022.

[188] Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, and Magdalena Djordjevic. Jet-
perceived anisotropy revealed through high-p⊥ data. Phys. Lett. B, 835:137501, 2022.

[189] B. G. Zakharov. Radiative energy loss of high-energy quarks in finite size nuclear matter and
quark - gluon plasma. JETP Lett., 65:615–620, 1997.

[190] Peter Brockway Arnold, Guy D. Moore, and Laurence G. Yaffe. Photon emission from quark
gluon plasma: Complete leading order results. JHEP, 12:009, 2001.

[191] Dusan Zigic. DREENA-A. https://github.com/DusanZigic/DREENA-A/, 2022.

153

https://github.com/DusanZigic/DREENA-A/

Bibliography

[192] Matteo Cacciari, Stefano Frixione, Nicolas Houdeau, Michelangelo L. Mangano, Paolo Nason,
and Giovanni Ridolfi. Theoretical predictions for charm and bottom production at the LHC.
JHEP, 10:137, 2012.

[193] M. Djordjevic. Heavy quark energy loss: Collisional vs radiative. Nucl. Phys. A, 783:197–204,
2007.

[194] Michael Fickinger, Grigory Ovanesyan, and Ivan Vitev. Angular distributions of higher order
splitting functions in the vacuum and in dense QCD matter. JHEP, 07:059, 2013.

[195] Matthew Luzum and Hannah Petersen. Initial State Fluctuations and Final State Correlations
in Relativistic Heavy-Ion Collisions. J. Phys. G, 41:063102, 2014.

[196] Etele Molnar, Hannu Holopainen, Pasi Huovinen, and Harri Niemi. Influence of temperature-
dependent shear viscosity on elliptic flow at backward and forward rapidities in ultrarelativistic
heavy-ion collisions. Phys. Rev. C, 90(4):044904, 2014.

[197] Pasi Huovinen and Pter Petreczky. QCD Equation of State and Hadron Resonance Gas. Nucl.
Phys. A, 837:26–53, 2010.

[198] J. Scott Moreland, Jonah E. Bernhard, and Steffen A. Bass. Alternative ansatz to wounded
nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C,
92(1):011901, 2015.

[199] Huichao Song and Ulrich W. Heinz. Causal viscous hydrodynamics in 2+1 dimensions for
relativistic heavy-ion collisions. Phys. Rev. C, 77:064901, 2008.

[200] Jonah E. Bernhard. Bayesian parameter estimation for relativistic heavy-ion collisions. PhD
thesis, Duke U., 4 2018.

[201] Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass. Bayesian estimation of the specific
shear and bulk viscosity of quark–gluon plasma. Nature Phys., 15(11):1113–1117, 2019.

[202] D. Everett et al. Multisystem Bayesian constraints on the transport coefficients of QCD matter.
Phys. Rev. C, 103(5):054904, 2021.

[203] S. Acharya et al. Measurement of D0, D+, D∗+ and D+
s production in Pb-Pb collisions at√

sNN = 5.02 TeV. JHEP, 10:174, 2018.

[204] Xinye Peng. Beauty production in heavy-ion collisions with ALICE at the LHC. 7 2022.

[205] Yongsun Kim. Highlights from the CMS experiment. 2022.

[206] A. Adare et al. Azimuthal anisotropy of neutral pion production in Au+Au collisions at√
(sNN) = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry.

Phys. Rev. Lett., 105:142301, 2010.

[207] J. Adams et al. Transverse momentum and collision energy dependence of high p(T) hadron
suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett., 91:172302, 2003.

[208] B. I. Abelev et al. Centrality dependence of charged hadron and strange hadron elliptic flow
from s(NN)**(1/2) = 200-GeV Au + Au collisions. Phys. Rev. C, 77:054901, 2008.

[209] L. Adamczyk et al. Observation of D0 Meson Nuclear Modifications in Au+Au Collisions at√
sNN = 200 GeV. Phys. Rev. Lett., 113(14):142301, 2014. [Erratum: Phys.Rev.Lett. 121,

229901 (2018)].

154

Bibliography

[210] L. Adamczyk et al. Measurement of D0 Azimuthal Anisotropy at Midrapidity in Au+Au Col-
lisions at

√
sNN=200 GeV. Phys. Rev. Lett., 118(21):212301, 2017.

[211] Takashi Hachiya. Charm and Bottom quark energy loss and flow measurements in Au+Au
collisions by the PHENIX experiment. 2022.

[212] sPHENIX Beam Use Proposal. 2021.

[213] BUR Committee. The STAR Beam Use Request for Run-22 and data taking in 2023-25. 2021.

[214] Stephane Fartoukh et al. LHC Configuration and Operational Scenario for Run 3.

[215] Yayun He, Wei Chen, Tan Luo, Shanshan Cao, Long-Gang Pang, and Xin-Nian Wang. Event-
by-event jet anisotropy and hard-soft tomography of the quark-gluon plasma. Phys. Rev. C,
106(4):044904, 2022.

[216] O. Kaczmarek, F. Karsch, F. Zantow, and P. Petreczky. Static quark anti-quark free energy
and the running coupling at finite temperature. Phys. Rev. D, 70:074505, 2004. [Erratum:
Phys.Rev.D 72, 059903 (2005)].

[217] Olaf Kaczmarek and Felix Zantow. Static quark anti-quark interactions in zero and finite tem-
perature QCD. I. Heavy quark free energies, running coupling and quarkonium binding. Phys.
Rev. D, 71:114510, 2005.

[218] Jaroslav Adam et al. Centrality Dependence of the Charged-Particle Multiplicity Density at
Midrapidity in Pb-Pb Collisions at

√
sNN = 5.02 TeV. Phys. Rev. Lett., 116(22):222302, 2016.

[219] Jaroslav Adam et al. Anisotropic flow of charged particles in Pb-Pb collisions at
√
sNN = 5.02

TeV. Phys. Rev. Lett., 116(13):132302, 2016.

[220] Bjoern Schenke, Chun Shen, and Prithwish Tribedy. Running the gamut of high energy nuclear
collisions. Phys. Rev. C, 102(4):044905, 2020.

[221] Chun Shen. private communication. 2020.

[222] Bjoern Schenke, Sangyong Jeon, and Charles Gale. (3+1)D hydrodynamic simulation of rela-
tivistic heavy-ion collisions. Phys. Rev. C, 82:014903, 2010.

[223] Bjorn Schenke, Sangyong Jeon, and Charles Gale. Elliptic and triangular flow in event-by-
event (3+1)D viscous hydrodynamics. Phys. Rev. Lett., 106:042301, 2011.

[224] Bjorn Schenke, Sangyong Jeon, and Charles Gale. Higher flow harmonics from (3+1)D event-
by-event viscous hydrodynamics. Phys. Rev. C, 85:024901, 2012.

[225] J. Scott Moreland and Ron A. Soltz. Hydrodynamic simulations of relativistic heavy-ion col-
lisions with different lattice quantum chromodynamics calculations of the equation of state.
Phys. Rev. C, 93(4):044913, 2016.

[226] Ante Bilandzic, Raimond Snellings, and Sergei Voloshin. Flow analysis with cumulants: Direct
calculations. Phys. Rev. C, 83:044913, 2011.

[227] Jean-François Paquet, Chun Shen, Gabriel S. Denicol, Matthew Luzum, Björn Schenke, Sangy-
ong Jeon, and Charles Gale. Production of photons in relativistic heavy-ion collisions. Phys.
Rev. C, 93(4):044906, 2016.

[228] Sergei A. Voloshin, Arthur M. Poskanzer, Aihong Tang, and Gang Wang. Elliptic flow in the
Gaussian model of eccentricity fluctuations. Phys. Lett. B, 659:537–541, 2008.

155

Bibliography

[229] Jiangyong Jia and Peng Huo. A method for studying the rapidity fluctuation and decorrelation
of harmonic flow in heavy-ion collisions. Phys. Rev. C, 90(3):034905, 2014.

[230] Vardan Khachatryan et al. Evidence for transverse momentum and pseudorapidity dependent
event plane fluctuations in PbPb and pPb collisions. Phys. Rev. C, 92(3):034911, 2015.

[231] Albert M Sirunyan et al. Measurement of prompt D0 and D0 meson azimuthal anisotropy
and search for strong electric fields in PbPb collisions at

√
sNN = 5.02 TeV. Phys. Lett. B,

816:136253, 2021.

[232] Shreyasi Acharya et al. Prompt D0, D+, and D∗+ production in Pb–Pb collisions at
√
sNN =

5.02 TeV. JHEP, 01:174, 2022.

[233] Shreyasi Acharya et al. Transverse-momentum and event-shape dependence of D-meson flow
harmonics in Pb–Pb collisions at

√
sNN = 5.02 TeV. Phys. Lett. B, 813:136054, 2021.

156

Biography of the author

Dušan Žigić was born on October 19, 1991. He graduated from Mitrovačka Gimnazija in 2010 and
pursued higher education at the Faculty of Physics, University of Belgrade in 2012. He earned a
bachelor’s degree in applied and computational physics in 2017 with a GPA of 9.75/10.0.

Building on this foundation, he completed his master’s studies in theoretical and experimental
physics in 2018 with a GPA of 9.67/10.0. His master’s thesis was recognized with the prestigious
Prof. Dr. Ljubomir Ćirković Award for the best master’s thesis.

In 2018, he began PhD studies in the field of heavy-ion collisions, working under the guidance of
Dr. Magdalena Djordjević and Dr. Igor Salom. During his PhD, he delivered 14 talks, including one
invited talk, at international conferences, presented 5 postersa and he also participated in 6 specialized
schools. He authored 11 publications in heavy-ion physics and computational biology. Additionally,
he served as a journal referee for Physical Review C.

Journal articles:

A. Theoretical high energy physics

1 D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, DREENA-C framework:
joint RAA and v2 predictions and implications to QGP tomography, J. Phys. G 46, no. 8,
085101 (2019).

2 M. Djordjevic, D. Zigic, M. Djordjevic and J. Auvinen, How to test path-length depen-
dence in energy loss mechanisms: analysis leading to a new observable, Phys. Rev. C 99,
no. 6, 061902(R) (2019).

3 D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, DREENA-B framework:
first predictions of RAA and v2 within dynamical energy loss formalism in evolving QCD
medium, Phys. Lett. B 791, 236 (2019).

4 D. Zigic, B. Ilic, M. Djordjevic and M. Djordjevic, Exploring the initial stages in heavy-
ion collisions with high-p⊥ RAA and v2 theory and data, Phys. Rev. C 101, no. 6, 064909
(2020).

5 D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, DREENA-A framework as
a QGP tomography tool, Front. Phys. 10:957019 (2022).

6 D. Zigic, J. Auvinen, I. Salom, M. Djordjevic and P. Huovinen, Importance of higher
harmonics and v4 puzzle in quark-gluon plasma tomography, Phys. Rev. C 106, no.4,
044909 (2022).

157

Biography of the author

7 B. Karmakar, D. Zigic, I. Salom, J. Auvinen, P. Huovinen, M. Djordjevic and M. Djordje-
vic, Constraining η/s through high-p⊥ theory and data, Phys. Rev. C 108, no.4, 044907
(2023)

8 B. Karmakar, D. Zigic, M. Djordjevic, P. Huovinen, M. Djordjevic and J. Auvinen, Prob-
ing the shape of the quark-gluon plasma droplet via event-by-event quark-gluon plasma
tomography, Phys. Rev. C 110, no.4, 044906 (2024)

B. Computational systems biology

9 M. Djordjevic, A. Rodic, I. Salom, D. Zigic, O. Milicevic, B. Ilic, M. Djordjevic, A
systems biology approach to COVID-19 progression in population, Advances in Protein
Chemistry and Structural Biology, 127, 291 (2021).

10 I. Salom, A. Rodic, O. Milicevic, D. Zigic, M. Djordjevic, M. Djordjevic, Effects of de-
mographic and weather parameters on COVID-19 basic reproduction number, Frontiers
in Ecology and Evolution 8, 524, (2021).

11 O. Milicevic, I. Salom, M. Tumbas, A. Rodic, S. Markovic, D. Zigic, M. Djordjevic, M.
Djordjevic, PM2.5 as a major predictor of COVID-19 basic reproduction number in the
USA, Environmental Research, 201, 111526 (2021).

158

Èçjàâà î àóòîðñòâó

Èìå è ïðåçèìå àóòîðà � Äóøàí Æèãè£

Áðîj èíäåêñà � 8014/2018

Èçjàâ§ójåì

äà jå äîêòîðñêà äèñåðòàöèjà ïîä íàñëîâîì

Development of the DREENA model for quark-gluon plasma tomography

(Ðàçâîj ÄÐÅÅÍÀ ìîäåëà çà òîìîãðàôèjó êâàðê-ãëóîíñêå ïëàçìå)

• ðåçóëòàò ñîïñòâåíîã èñòðàæèâà÷êîã ðàäà;

• äà äèñåðòàöèjà ó öåëèíè íè ó äåëîâèìà íèjå áèëà ïðåäëîæåíà çà ñòèöà»å äðóãå
äèïëîìå ïðåìà ñòóäèjñêèì ïðîãðàìèìà äðóãèõ âèñîêîøêîëñêèõ óñòàíîâà;

• äà ñó ðåçóëòàòè êîðåêòíî íàâåäåíè è

• äà íèñàì êðøèëà àóòîðñêà ïðàâà è êîðèñòèëà èíòåëåêòóàëíó ñâîjèíó äðóãèõ ëèöà.

Ó Áåîãðàäó, 2024 Ïîòïèñ àóòîðà

Biography of the author

160

Èçjàâà o èñòîâåòíîñòè øòàìïàíå è åëåêòðîíñêå âåðçèjå
äîêòîðñêîã ðàäà

Èìå è ïðåçèìå àóòîðà � Äóøàí Æèãè£

Áðîj èíäåêñà � 8014/2018

Ñòóäèjñêè ïðîãðàì � Ôèçèêà âèñîêèõ åíåðãèjà è íóêëåàðíà ôèçèêà

Íàñëîâ ðàäà � Development of the DREENA model for quark-gluon plasma tomography

(Ðàçâîj ÄÐÅÅÍÀ ìîäåëà çà òîìîãðàôèjó êâàðê-ãëóîíñêå ïëàçìå)

Ìåíòîðè � äð Ìàãäàëåíà �îð¢åâè£ è äð Èãîð Ñàëîì

Èçjàâ§ójåì äà jå øòàìïàíà âåðçèjà ìîã äîêòîðñêîã ðàäà èñòîâåòíà åëåêòðîíñêîj âåðçèjè
êîjó ñàì ïðåäàî ðàäè ïîõðà»èâà»à ó Äèãèòàëíîì ðåïîçèòîðèjóìó Óíèâåðçèòåòà ó Áåî-
ãðàäó.

Äîçâî§àâàì äà ñå îájàâå ìîjè ëè÷íè ïîäàöè âåçàíè çà äîáèjà»å àêàäåìñêîã íàçèâà äîêòîðà
íàóêà, êàî øòî ñó èìå è ïðåçèìå, ãîäèíà è ìåñòî ðî¢å»à è äàòóì îäáðàíå ðàäà.

Îâè ëè÷íè ïîäàöè ìîãó ñå îájàâèòè íà ìðåæíèì ñòðàíèöàìà äèãèòàëíå áèáëèîòåêå, ó
åëåêòðîíñêîì êàòàëîãó è ó ïóáëèêàöèjàìà Óíèâåðçèòåòà ó Áåîãðàäó.

Ó Áåîãðàäó, 2024 Ïîòïèñ àóòîðà

Biography of the author

162

Èçjàâà î êîðèø£å»ó

Îâëàø£ójåì Óíèâåðçèòåòñêó áèáëèîòåêó ½Ñâåòîçàð Ìàðêîâè£� äà ó Äèãèòàëíè ðåïîçèòî-
ðèjóì Óíèâåðçèòåòà ó Áåîãðàäó óíåñå ìîjó äîêòîðñêó äèñåðòàöèjó ïîä íàñëîâîì:

Development of the DREENA model for quark-gluon plasma tomography

(Ðàçâîj ÄÐÅÅÍÀ ìîäåëà çà òîìîãðàôèjó êâàðê-ãëóîíñêå ïëàçìå)

êîjà jå ìîjå àóòîðñêî äåëî.

Äèñåðòàöèjó ñà ñâèì ïðèëîçèìà ïðåäàî ñàì ó åëåêòðîíñêîì ôîðìàòó ïîãîäíîì çà òðàjíî
àðõèâèðà»å.

Ìîjó äîêòîðñêó äèñåðòàöèjó ïîõðà»åíó ó Äèãèòàëíîì ðåïîçèòîðèjóìó Óíèâåðçèòåòà ó
Áåîãðàäó è äîñòóïíó ó îòâîðåíîì ïðèñòóïó ìîãó äà êîðèñòå ñâè êîjè ïîøòójó îäðåäáå
ñàäðæàíå ó îäàáðàíîì òèïó ëèöåíöå Êðåàòèâíå çàjåäíèöå (Creative Commons) çà êîjó ñàì
ñå îäëó÷èî.

1. Àóòîðñòâî (CC BY)

2. Àóòîðñòâî � íåêîìåðöèjàëíî (CC BY-NC)

3. Àóòîðñòâî � íåêîìåðöèjàëíî � áåç ïðåðàäà (CC BY-NC-ND)

4. Àóòîðñòâî � íåêîìåðöèjàëíî � äåëèòè ïîä èñòèì óñëîâèìà (CC BY-NC-SA)

5. Àóòîðñòâî � áåç ïðåðàäà (CC BY-ND)

6. Àóòîðñòâî � äåëèòè ïîä èñòèì óñëîâèìà (CC BY-SA)

(Ìîëèìî äà çàîêðóæèòå ñàìî jåäíó îä øåñò ïîíó¢åíèõ ëèöåíöè.
Êðàòàê îïèñ ëèöåíöè jå ñàñòàâíè äåî îâå èçjàâå).

Ó Áåîãðàäó, 2024 Ïîòïèñ àóòîðà

1. Àóòîðñòâî. Äîçâî§àâàòå óìíîæàâà»å, äèñòðèáóöèjó è jàâíî ñàîïøòàâà»å äåëà, è ïðå-
ðàäå, àêî ñå íàâåäå èìå àóòîðà íà íà÷èí îäðå¢åí îä ñòðàíå àóòîðà èëè äàâàîöà ëèöåíöå,
÷àê è ó êîìåðöèjàëíå ñâðõå. Îâî jå íàjñëîáîäíèjà îä ñâèõ ëèöåíöè.

2. Àóòîðñòâî � íåêîìåðöèjàëíî. Äîçâî§àâàòå óìíîæàâà»å, äèñòðèáóöèjó è jàâíî ñàîïøòà-
âà»å äåëà, è ïðåðàäå, àêî ñå íàâåäå èìå àóòîðà íà íà÷èí îäðå¢åí îä ñòðàíå àóòîðà èëè
äàâàîöà ëèöåíöå. Îâà ëèöåíöà íå äîçâî§àâà êîìåðöèjàëíó óïîòðåáó äåëà.

3. Àóòîðñòâî � íåêîìåðöèjàëíî � áåç ïðåðàäà. Äîçâî§àâàòå óìíîæàâà»å, äèñòðèáóöèjó è
jàâíî ñàîïøòàâà»å äåëà, áåç ïðîìåíà, ïðåîáëèêîâà»à èëè óïîòðåáå äåëà ó ñâîì äåëó,
àêî ñå íàâåäå èìå àóòîðà íà íà÷èí îäðå¢åí îä ñòðàíå àóòîðà èëè äàâàîöà ëèöåíöå. Îâà
ëèöåíöà íå äîçâî§àâà êîìåðöèjàëíó óïîòðåáó äåëà. Ó îäíîñó íà ñâå îñòàëå ëèöåíöå,
îâîì ëèöåíöîì ñå îãðàíè÷àâà íàjâå£è îáèì ïðàâà êîðèø£å»à äåëà.

4. Àóòîðñòâî � íåêîìåðöèjàëíî � äåëèòè ïîä èñòèì óñëîâèìà. Äîçâî§àâàòå óìíîæàâà»å,
äèñòðèáóöèjó è jàâíî ñàîïøòàâà»å äåëà, è ïðåðàäå, àêî ñå íàâåäå èìå àóòîðà íà íà÷èí
îäðå¢åí îä ñòðàíå àóòîðà èëè äàâàîöà ëèöåíöå è àêî ñå ïðåðàäà äèñòðèáóèðà ïîä èñ-
òîì èëè ñëè÷íîì ëèöåíöîì. Îâà ëèöåíöà íå äîçâî§àâà êîìåðöèjàëíó óïîòðåáó äåëà è
ïðåðàäà.

5. Àóòîðñòâî � áåç ïðåðàäà. Äîçâî§àâàòå óìíîæàâà»å, äèñòðèáóöèjó è jàâíî ñàîïøòàâà»å
äåëà, áåç ïðîìåíà, ïðåîáëèêîâà»à èëè óïîòðåáå äåëà ó ñâîì äåëó, àêî ñå íàâåäå èìå
àóòîðà íà íà÷èí îäðå¢åí îä ñòðàíå àóòîðà èëè äàâàîöà ëèöåíöå. Îâà ëèöåíöà äîçâî§àâà
êîìåðöèjàëíó óïîòðåáó äåëà.

6. Àóòîðñòâî � äåëèòè ïîä èñòèì óñëîâèìà. Äîçâî§àâàòå óìíîæàâà»å, äèñòðèáóöèjó è
jàâíî ñàîïøòàâà»å äåëà, è ïðåðàäå, àêî ñå íàâåäå èìå àóòîðà íà íà÷èí îäðå¢åí îä ñòðàíå
àóòîðà èëè äàâàîöà ëèöåíöå è àêî ñå ïðåðàäà äèñòðèáóèðà ïîä èñòîì èëè ñëè÷íîì
ëèöåíöîì. Îâà ëèöåíöà äîçâî§àâà êîìåðöèjàëíó óïîòðåáó äåëà è ïðåðàäà. Ñëè÷íà jå
ñîôòâåðñêèì ëèöåíöàìà, îäíîñíî ëèöåíöàìà îòâîðåíîã êîäà.

	Acknowledgements
	Abstract
	Contents
	List of figures
	List of Tables
	Introduction
	Structure of this thesis
	Theory of strong interaction and Quantum Chromodynamics
	The QCD Lagrangian
	Confinement and asymptotic freedom
	Non-perturbative techniques

	QCD phase diagram
	Phases of QCD matter
	First-Order phase transition and critical point
	Exotic phases at high density
	Challenges and future directions

	Heavy-ion collisions
	Space-time evolution of heavy-ion collisions
	Participants, spectators, and reaction plane
	Rapidity and pseudorapidity
	Particle multiplicity and centrality
	Nuclear modification factor
	Collective flow

	Methodology
	The dynamical energy loss formalism
	Software implementation
	DREENA-C
	DREENA-B
	DREENA-A

	Testing path-length dependence in energy loss mechanisms
	Appropriate observable
	Appropriate systems
	Computational framework
	Smaller systems
	Suppression ratio
	Suitable observable
	Testing robustness and reliability

	DREENA-B framework
	Computational frameworks
	Results and discussion
	Summary

	Exploring the initial stages in heavy-ion collisions
	Theoretical and computational frameworks
	Results and discussion
	Conclusion

	DREENA-A framework as a QGP tomography tool
	Methods
	Theoretical outline
	Framework outline
	Numerical optimisations of DREENA-A
	Convergence test of different DREENA methods

	Results and discussion
	Summary

	Importance of higher harmonics in quark-gluon plasma tomography
	Methods
	Outline of DREENA-A framework
	Modeling the bulk evolution
	Flow analysis

	Results and discussion
	Compatibility of analysis methods
	Event-by-event fluctuations
	Effects of initial state

	Summary

	Conclusions
	Appendix: DREENA-A code
	Bibliography
	Biography of the author
	Izjava o autorstvu
	Izjava o istovetnosti
	Izjava o korišćenju

