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FIZIČKI FAKULTET

Srd̄an Stavrić
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Zoranu S. Popoviću jer mi je svojim sugestijama često ukazi-
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demonstrirajući da nije zalud toliko vreme proveo na Reddit-
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Ab initio istraživanje strukturnih i elektronskih
osobina metala adsorbovanih na
dvodimenzionalnim materijalima

SAŽETAK

Tokom poslednjih petnaest godina, svedoci smo izuzetnih istraživačkih napora

usmerenih ka primeni neobičnih osobina dvodimenzionalnih (2D) materijala u razvoju

naredne generacije nanoelektronskih komponenti. Napredak ovih tehnologija počiva

na sveobuhvatnom razumevanju osnovnih fizičkih mehanizama koji odred̄uju efikas-

nost napravljenih ured̄aja u kojima su spojevi izmed̄u metala i 2D materiajala neza-

obilazni. U ovoj tezi smo istraživali adsorpciju metala na novoj klasi 2D materi-

jala koristeći metod zasnovan na osnovnim principima kvantne mehanike, sa poseb-

nim naglaskom na strukturnim i elektronskim osobinama obrazovanih nanostruk-

tura. Primenjeni numerički metod temelji se na teoriji funkcionala gustine (density

functional theory – DFT), koja omogućava izračunavanje fižickih osobina atoma,

molekula i kristala koristeći elektronsku gustinu.

Odabravši litijum, kalcijum i titanijum kao predstavnike različitih klasa metala,

ispitivali smo njihovu adsorpciju na grafenu. Morfologija rasta adsorbovanih metala

suštinski zavisi od prirode med̄usobne interakcije adsorbata. Izrazito privlačna inter-

akcija dovodi do obrazovanja trodimenzionalnih (3D) struktura, dok slaba privlačna

ili snažna odbojna interakcija pogoduju formiranju 2D struktura. Rezultati ovog is-

traživanja poslužili su kao osnova za ispitivanje adsorpcije litijuma na širokom skupu

2D kristala, koje je iznedrilo jasnu sliku vezivanja litijuma za površinu 2D kristala za-

snovanu na transferu naelektrisanja sa metala na površinu. Pored toga, pokazano je

da se sposobnost litijuma i kalcijuma da predaju elektrone površini može upotrebiti

kao okidač strukturnog faznog prelaza u jednosloju disulfida molibdena (MoS2).

Ustanovljeno je da je prekrivenost MoS2 litijumom neophodna za ovaj fazni prelaz

dvaput veća nego u slučaju kada je na njegovoj površini adsorbovan kalcijum.

KLJUČNE REČI: grafen, 2D materijali, jednosloj MoS2, DFT, adsorpcija metala,

transfer naelektrisanja, litijum-jonske baterije
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First-principles study of the structural and
electronic properties of metals adsorbed on

two-dimensional materials

SUMMARY

The last fifteen years witnessed unprecedented research efforts aimed at exploit-

ing the peculiar properties of two-dimensional (2D) materials in the next gener-

ation of nanoelectronic devices. The successful development of these technologies

requires thorough understanding of the fundamental physical mechanisms governing

the functionalities of fabricated components, where junctions between metals and

2D materials are indispensable. In this thesis, the adsorption of metals on a new

class of 2D materials is studied by means of the first-principles calculations, with

special emphasis on the structural and electronic properties of formed nanostruc-

tures. The employed computational method is based on density functional theory

(DFT) that uses the electron density rather than the many-body wavefunction to

compute the ground-state properties of atoms, molecules, and crystals.

Choosing lithium, calcium, and titanium as representatives of different classes

of metals, we studied their adsorption on graphene. The growth morphology is

highly dependent on the nature of adsorbate-adsorbate interaction. In cases where

the interaction is strongly attractive, the formation of 3D structures is favored,

while the weak attractive or strongly repulsive interaction facilitate the formation

of 2D structures. The outcome of this study served as a solid basis for further

research on the adsorption of lithium on a large set of other 2D crystals, where

the general trends in binding are successfully explained by a simple charge transfer.

Once again, lithium’s ability to donate electrons to the substrate is exploited to

trigger the structural phase transition in molybdenum disulfide monolayer (MoS2).

The Li coverage required to induce the phase transition is determined, whereas it is

found that the same effect can be achieved using half as many calcium atoms.

KEYWORDS: graphene, 2D materials, monolayer MoS2, density functional theory,

metal adsorption, charge transfer, Li-ion batteries
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Introduction

”Begin at the beginning,” the King said, very gravely, ”and go on till you come to

the end: then stop.” , (Lewis Carroll, Alice in Wonderland).

During the last decade, among the fastest growing internet communities is the one

called The Flat Earth Society, which gathers the members from all around the globe.

Though I sincerely doubt that two physicists believe our planet is like a giant pan-

cake, their dream of flat or, more precisely, two-dimensional (2D) world, when it

finally came true, gained to Andre Geim and Konstantin Novoselov the Nobel Prize

in Physics. Discovery of graphene [1], a single free-standing atomic layer of carbon,

successfully ended the long-lasting pursuit for 2D crystals, while the demonstrations

of rich physics hidden in this wonder material have motivated the search for its

relatives. In the light of these discoveries, the year of 2004 is now considered annus

mirabilis that started a whole new era in the materials science.

Since then, more than a hundred of 2D crystals are synthesized with a large

diversity in mechanical, electronic, optical, and magnetic properties that opened the

immense possibilities and attracted a great deal of attention from both physicists

and engineers. Like graphene, which was obtained for the first time from thin films

of graphite by a simple duck-tape method, the majority of 2D materials are isolated

from their three-dimensional (3D) counterparts. The layered structure of graphite

and similar 3D materials enables such a method to work in practice, as they are

built out of many individual 2D layers that are loosely connected by weak van der

Waals (vdW) forces. Furthermore, these forces are responsible for the mechanical

stability of the so-called van der Waals heterostructures, novel materials which did

not exist prior to discovery of 2D crystals and have been successfully synthesized

in laboratories by stacking layers of different 2D crystals like LEGO blocks on the

nanoscale [2].

The well-known Moore’s law [3] states that the number of transistors in a dense

integrated circuit doubles every two years. This clever observation, as it is realized

by Gordon Moore more than 50 years ago, may be one of the indications that the
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evolutionary path of our current electronic technology is narrowing and approach-

ing an end due to quantum-mechanical limitations of silicon at the atomic scale.

Therefore, an alternative approach is required and the eyes of many are on novel

2D crystals. Fortunately, a recent breakthrough in the scalable fabrication of 2D

crystals is pushing them towards the new stage in nanotechnology [4].

The possibility to produce large quantities of various 2D materials prompted

a new interest in their application in electronics. For example, a large family of

transition metal dichalcogenides (TMDs) holds a yet untapped potential, as it is

demonstrated that a nanometer thick semiconducting TMD can adsorb 5 − 10%

incident sunlight, which is an order of magnitude higher than that of standard

semiconductors such as GaAs and Si [5]. The aforementioned superiority allows

for the construction of solar cells made of MoS2/graphene and MoS2/WS2 bilayers

with power conversion efficiencies 1 − 3 orders of magnitude higher than that of

the best ultra-thin solar cells on the market. Another interesting application of

2D materials is in the electro-mechanical devices for ultra-fast electronics, which

exploits the connection between the structural and electronic properties of materials.

It is experimentally demonstrated that strain, shear, twisting and bending can be

efficiently used to modify the electronic structure of 2D crystal in a desired way,

and these parameters are controlled more easily in 2D as compared to 3D systems

[6, 7, 8].

To succeed in a rational design of electronic devices, one needs to deeply under-

stand the properties of the individual materials they are made of. Given that there

is an interplay between the structure of 2D crystal and its electronic properties,

computer modeling is extremely useful at every stage in the development of future

electronic devices. Joined forces of quantum-mechanical numerical methods and the

power of modern computers resulted in the computational tools that can give in-

sights into the electronic structure of realistic materials. Bearing in mind that the

macroscopic samples contain large number (∼ 1023) of interacting electrons and nu-

clei whose physical properties are governed by the Schrödinger equation, one needs

to find a roundabout solution to the problem of interacting many-body quantum

system. An approach of Walter Kohn and co-workers based on the electron density

yielded density functional theory (DFT), which made possible the calculations of the

electronic structure of atoms, molecules, and solids by solving the effectively one-

particle equations [9, 10]. Being principally a ground-state theory, DFT enables the

computation of many properties such as the equilibrium crystal structure, cohesive

energy, charge density, magnetic order, static dielectric and magnetic susceptibili-

ties, just to name a few.
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An efficient integration of 2D functional materials into the 3D systems remains

a major challenge, as the hidden issues deteriorate device performance and limit

circuit design. The contact resistivity of metal on graphene and related 2D materials

deserves special attention [11, 12]. Careful reconsideration of the physical models

explaining the behavior of these junctions must include the atomic scale description

of the interaction between metals and 2D materials. Depending on the growth mode

of metal adatoms, when deposited on graphene they can form either smooth ultra-

thin films or 3D nanoclusters, with markedly different metallic contacts. Motivated

by this problem, we employed DFT to study the microscopic mechanisms responsible

for the initial stages of growth of three different metals, namely lithium, calcium, and

titanium, on graphene. Tendency towards planar or 3D growth is rationalized based

on the atomic-scale description of the interaction between metal adatoms, as well

as adsorption geometries of their small clusters. In addition to the characterization

of 2D growth mode of Li driven by the long-range electrostatic Li-Li repulsion, we

provide an explanation for markedly different 3D growth mode of Ti. Furthermore,

we report on the formation of ultra-stable 2D calcium structure on graphene that

can not only functionalize this 2D crystal but also cause the three-fold increase in

the adhesion in bilayer graphene.

The exponential growth in the number of consumer electronic devices such as

mobile phones and notebooks has promoted the efficient energy storage into the one

of the most important problems of today. Layered structure and peculiar electronic

properties of 2D materials foster the concept of utilizing them as main components

of lithium-ion batteries (LIBs). We studied the adsorption of lithium on fifteen

2D crystals with versatile structural and electronic properties. The correlation, re-

vealed by DFT calculations, between the strength of Li binding and the position of

the lowest unoccupied electronic states in 2D crystals served as a criterion for the

division of 2D crystals into two classes. When adsorbed on the majority of consid-

ered 2D crystals, valence electron of Li is transferred and spread across a surface,

while the binding energy is roughly determined by the position of the conduction

band minimum (CBM). On the other hand, carbides of Group XIV elements carry

out localized charge transfer between Li and the substrate. This gives rise to their

capability to accommodate densely packed Li structures with nearly constant bind-

ing energy over range of coverages, which may be of importance in the construction

of LIBs that are based on these materials.

The fabrication of the first single-layer MoS2 transistor [13] demonstrated the

efficient use of this 2D semiconductor as a channel material for field-effect transistors

(FETs). Moreover, when MoS2 is double-gated, high levels of doping also allow the
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observation of metal-insulator transition in the same sheet of monolayer MoS2 due

to strong electron-electron interaction. It is already known from literature that

the structural phase transition in TMDs can be achieved via the intercalation with

alkaline metals, while the electron charge transfer from intercalants to the surface

is indicated as the basic physical mechanism that triggers the structural change

[14, 15]. This encouraged us to further study the lithium and calcium adsorption

on MoS2, while the comparison of the electronic properties of Li- and Ca-covered

MoS2 revealed differences in binding pictures of these two metals on MoS2. Also,

we identified the coverages needed to induce this phase transition.

This thesis is organized as follows: after the Introduction we describe the foun-

dations of density functional theory in Chapter 1. Chapter 2 is devoted to the

description of different numerical methodologies applied in electronic structure cal-

culations, including the projector augmented wave (PAW) method [16]. This method

is the pillar of GPAW code [17] used for the majority of calculations in this thesis.

After that we present the results on the metal adsorption of graphene (Chapter 4) as

well as the lithium adsorption on different 2D crystals (Chapter 5). The structural

phase transitions in 2D semiconductor MoS2 triggered by the adsorption of lithium

and calcium, studied in Chapter 6, will finally bring us to Conclusions.
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Chapter 1

Density functional theory

The many-body problem in condensed matter physics is a formidable one. Though

hamiltonian for systems of interacting particles can often be written down in just a

few lines, its eigenvalue problem is rarely analytically solvable. Realistic materials,

containing a large number of nuclei and electrons interacting with each other are the

archetypal examples of such systems. For practical purposes one can look for numer-

ical solutions of the Schrödinger equation, but even with careful use of symmetry

and power of modern supercomputers they can be found for systems encompassing

no more than a few electrons.1 The aforementioned problem draws attention to the

urgent need for alternative approaches in the calculations of electronic properties of

realistic materials.

This chapter is devoted to density functional theory (DFT), which provides an

efficient way to describe all the ground state physical properties of the many-body

system with the use of just one scalar field – the ground state particle density.

1.1 Schrödinger equation for interacting electrons

and nuclei

The systems which are the subject of interest in condensed matter physics are com-

prised of two types of particles – electrons and nuclei. The basic interaction is

electrostatic or Coulomb – two electrons at positions r and r′ repel one another

and potential energy of this interaction is e2/|r− r′|. The same stands for nuclei of

charge ZIe and ZJe at positions RI and RJ whose potential energy of Coulomb re-

pulsion is ZIZJe
2/|RI −RJ |. On the other hand, electrons and nuclei are attracted

to each other and the potential energy of interaction is −ZIe
2/|r −RI |. If we add

kinetic energy operators of particles, we can write down a complete hamiltonian of

1Storing an 8 electron wavefunction in 6× 6× 6 grid requires ∼ 1010 GB!
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the system,

Ĥ = − ~
2

2me

∑

i

∇2
i −

∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i 6=j

e2

|ri − rj|

−
∑

I

~
2

2MI

∇2
I +

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
,

(1.1)

where quantities related to electrons (nuclei) are written by lower (upper) case let-

ters. The kinetic energy of ions is several orders of magnitude smaller compared to

the kinetic energy of electrons. If we neglect the kinetic energy of ions, we come to

the adiabatic (or Born-Oppenheimer) approximation (Appendix A), which provides

a procedure to separate nuclear and electronic degrees of freedom. It is a fair start-

ing point for many purposes, e.g. the calculations of lattice vibration modes in most

solids [18] or a good basis for perturbation theory in electron-phonon interactions,

which are crucial for transport properties of metals. Bearing in mind that nuclei

are now immobile, we shall treat their contribution to the motion of electrons as an

external field and positions of nuclei as parameters of the hamiltonian. If we adopt

Hartree atomic units, where ~ = e = me = 4πǫ0 = 1, then we can stress out the

most general form of hamiltonian for such a system,

Ĥ =
∑

i

(

− 1

2
∇2

i + Vext(ri)
)

+
1

2

∑

i 6=j

1

|ri − rj|
+ EII . (1.2)

The first term in (1.2) is the kinetic energy operator for the electrons T̂ =
∑

i −1
2
∇2

i ,

the second V̂ext =
∑

i,I VI(|ri − RI |) =
∑

i Vext(ri) is the external potential acting

on electrons due to the presence of nuclei 2, V̂int = 1
2

∑

i 6=j 1/|ri − rj| is the electron-

electron interaction and the final term EII is the electrostatic potential energy of

nuclei interacting with one another.

Time-dependent Schrödinger equation,

i
∂Ψ({rσ}; t)

∂t
= ĤΨ({rσ}; t), (1.3)

is the fundamental equation determining the evolution of a non-relativistic quan-

tum system. In equation (1.3) a set of all the spatial coordinates and spins is

labeled with {rσ} = (r1σ1, r2σ2, . . . , rNσN) and N is a total number of parti-

cles. If we label with k a complete set of quantum numbers describing an eigen-

state of Ĥ with energy Ek, then the corresponding wavefunction can be written as

2We will focus on the external potential acting on electrons due to the nuclei only, but we will
leave open the possibility for another external potential to be added later. There are some issues
which are out of the scope of this thesis when including extra terms in the external potential. For
example, the problem of the external electric field in the spatially periodic systems is a famous one
[19, 20]. In this case, there is no true ground state of the system as the potential V (x) = Ex is
unbounded. This is an obstacle as DFT is primarily a ground state theory.
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Ψk({rσ}; t) = Ψk({rσ})e−iEkt. Written in this way, the time is separated from the

spatial coordinates (and spins) and the squared modulus of the wavefunction |Ψk|2
is time-independent. Furthermore, the expectation value of any observable Ô in an

eigenstate of Ĥ is time-independent, and a suitable expression involves an integral

over all spatial coordinates and spins

〈Ô〉 def
=

〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 . (1.4)

From now on, let us focus on an N -electron system in a time-independent ex-

ternal field emerging from fixed nuclei. This system is conservative, thus its eigen-

problem is governed by a time-independent Schrödinger equation

ĤΨk({rσ}) = EkΨk({rσ}). (1.5)

Electrons are fermions so they obey the Pauli exclusion principle, hence the wave-

function must be antisymmetric under the exchange of the indices of any two elec-

trons

Ψ(r1σ1, . . . , riσi, . . . , rjσj, . . . , rNσN) =

−Ψ(r1σ1, . . . , rjσj, . . . , riσi, . . . , rNσN).
(1.6)

There are N ! distinct permutations of indices i, j ∈ {1, 2, . . . , N} with the same

value of |Ψ|2, therefore N !|Ψ(r1σ1, ..., rNσN)|2 d3r1 . . . d
3rN is the probability to find

any electron with spin σ1
3 in the volume element d3r1. Because the total probability

is normalized to 1, this leads to

1

N !

∑

σ1,...,σN

∫

d3r1 . . .

∫

d3rN N ! |Ψ(r1σ1, . . . , rNσN)|2 = 〈Ψ |Ψ〉 = 1. (1.7)

Now we will proceed towards defining the electron spin density nσ(r). Firstly,

we shall notice that nσ(r)d3r is the probability of finding an electron with spin σ

in a volume element d3r at r. Accordingly, we find nσ(r) by integrating over the

spatial coordinates and spins of the rest of N − 1 electrons,

nσ(r) =
1

(N − 1)!

∑

σ2,...,σN

∫

d3r2 . . .

∫

d3rN N ! |Ψ(rσ, . . . , rNσN)|2

= N
∑

σ2,...,σN

∫

d3r2 . . .

∫

d3rN |Ψ(rσ, . . . , rNσN)|2 = 〈Ψ | n̂σ(r) |Ψ〉 .
(1.8)

A consequence of the equations (1.7) and (1.8) is that nσ(r)d3r is the number of

electrons with spin σ in the volume element d3r as its integral over the volume

3If not stated otherwise, we will use the term spin of the electron to refer to its projection on
the z-axis, that is σ = ± 1

2
.
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of the sistem and sum over spins is equal to the total number of electrons, i.e.
∑

σ

∫
d3rnσ(r) = N .

In equation (1.8) we defined a spin density operator,

n̂σ(r) =
∑

i

δ(r− ri)δσσi
, (1.9)

where δ(r − ri) is the Dirac delta function and δσσi
is the Kronecker symbol. The

expectation value of operator n̂σ(r) in the state Ψ({riσi}) is nothing other than the

electron spin density nσ(r) in this state. Furthermore, expectation value of external

potential is

〈V̂ext〉 = 〈Ψ|
∑

i

Vext(ri)|Ψ〉 =

∫

d3rn(r)Vext(r), (1.10)

where n(r) =
∑

σ n
σ(r) is the electron density. In a similar manner the operator

expectation value in state |Ψ〉 is expressed by using the electron density n(r) in the

same state, i.e. as a functional of the electron density. This is the idea we will

continue to follow in the next sections.

1.1.1 Variational principle

Schrödinger equation can be solved directly – for a known hamiltonian, one can

calculate the eigenstates and the corresponding eigenvectors via the diagonalization

procedure in a chosen basis. As mentioned in the previous section, this approach is

suitable for only a few simple quantum systems. A restatement of the problem can

be found with the aid of Rayleigh-Ritz variational principle.

� Rayleigh-Ritz theorem: Let us suppose that hamiltonian Ĥ has a purely

discrete spectrum. Let the energy functional be defined as follows

E(|Ψ〉) def
=

〈
Ψ|Ĥ|Ψ

〉

〈Ψ |Ψ〉 . (1.11)

Then the stationary points of E(|Ψ〉) are the eigenvectors of Ĥ, while the

stationary values are eigenvalues of Ĥ.

Proof . The variation of (1.11) together with the stationary condition δE(|Ψ〉) = 0

leads to 〈δΨ|(Ĥ − E(|Ψ〉))|Ψ〉 + 〈Ψ|(Ĥ − E(|Ψ〉))|δΨ〉 = 0. Because vectors, |Ψ〉,
and functionals, 〈Ψ|, can be varied independently, both terms in this equation must

vanish. Since 〈Ψ|(Ĥ − E(|Ψ〉))|δΨ〉 = 0 must hold for any possible |δΨ〉, this can

be fulfilled if and only if |Ψ〉 satisfies the time-independent Schrödinger equation,

that is (Ĥ − E(|Ψ〉)) |Ψ〉 = 0.
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The most profound consequence of the theorem is that the ground state energy

is less than or equal to the value of the energy functional in any state, i.e. E0 ≤
E(|Ψ〉), ∀ |Ψ〉 ∈ S, where S is the full state space of the system. To find the ground

state energy, one needs to solve the variational problem of the energy functional

over the entire state space. Stated in this way, it is nothing more but an equivalent

reformulation of the original eigenproblem, thus it brings no advantage to solving it.

Instead of the entire state space S, we should choose only its part T ⊂ S, called the

trial set. With the variational method we find the stationary points within T and

the best approximation for the ground state |Ψ0〉 is that function |Φ0〉 ∈ T which

minimizes E(|Ψ〉) over T . For example, by restricting T to Slater determinants of

plane waves one recovers the Hartree-Fock approximation (HFA)[21, 22, 23]. One

of the great advantages of DFT in comparison to the HFA is the inclusion of the

electron correlation effects.

1.1.2 Hellman-Feynman theorem

In the first part of Section 1.1 we mentioned that, in adiabatic approximation, the

hamiltonian depends parametrically upon positions of nuclei {R}. In cases like this,

when hamiltonian depends upon some parameter, the Hellman-Feynman theorem

provides an expression for the force conjugate to this parameter. Suppose that the

hamiltonian Ĥλ depends upon a parameter (or a set of parameters) λ, then the

energy functional of the system is defined as Eλ = 〈Ψλ|Ĥλ|Ψλ〉, where it is assumed

that |Ψλ〉 is a normalized variational solution. Differentiating Eλ yields

dEλ

dλ
=

d

dλ′
〈
Ψλ′ |Ĥλ|Ψλ′

〉
∣
∣
∣
∣
λ=λ′

+
〈
Ψλ|

∂Ĥλ

∂λ
|Ψλ

〉
. (1.12)

The first term of (1.12) vanishes by variational principle, and the second term gives

the Hellman-Feynman theorem,

dEλ

dλ
=

〈
Ψλ|

∂Ĥλ

∂λ
|Ψλ

〉
. (1.13)

This theorem provides the gradient of the path which minimizes energy on the

given energy surface. It is also crucial for understanding the concept of exchange-

correlation functional. To point out its importance, let us derive one of the profound

implications, that is the expression for forces acting on nuclei in an electron-nuclear

system [24]. In hamiltonian (1.2) terms that depend explicitly upon nuclear positions

{R} are V̂ext and EII . With the help of (1.10), we can find the force acting on a

nucleus I by varying the energy with nuclear position RI while keeping the positions

9



of other nuclei fixed,

FI = − ∂E

∂RI

= −〈Ψ| ∂Ĥ
∂RI

|Ψ〉 = −〈Ψ|∂V̂ext
∂RI

+
∂EII

∂RI

|Ψ〉

=

∫

d3rn(r)
ZI(r−RI)

|r−RI |3
+
∑

I 6=J

ZIZJ(RI −RJ)

|RI −RJ |3
.

(1.14)

Here n(r) is the unperturbed ground state electron density for a particular nuclear

configuration {R}. It is now clear that (1.14) gives the electrostatic force on nucleus

I as it is just an electric field at RI due to the presence of electrons and other

nuclei times the charge of this nucleus ZI . In other words, even though kinetic

energy of electrons and electron-electron interaction change as the nuclei move, their

contribution to the electrostatic force acting on the nuclei cancel out. We must be

careful here because it is not always possible to express forces acting on nuclei solely

in terms of the electron density. The most typical example stems from the core

electrons – when calculating the force on a given nucleus, it is more natural to move

the corresponding core electron density along with the nucleus instead of keeping it

fixed as it is required by the force theorem. For further discussion, we refer to [25].

1.2 Hohenberg-Kohn theorems

The origins DFT can be found in the original works of Thomas [26] and Fermi [27]

way back in 1927., however, modern formulation as an exact quantum theory for the

ground state of the many-body systems is due to the work of Hohenberg and Kohn

[9]. Their approach is suitable for any system of interacting particles in an external

potential including any problem of electrons and fixed nuclei. In this section we will

formulate and prove two general theorems which are governing the very foundation

of DFT and stress out their most important consequences which will be used latter

in this section for a proper definition of energy functional of a quantum many-body

system with hamiltonian (1.2).

� Theorem 1: For any quantum system of interacting particles in an external

potential Vext(r), the ground state density of particles n0(r) uniquely deter-

mines, except for a constant, this external potential Vext(r).

♠ Comment on Theorem 1: All the terms in hamiltonian, except the external

potential Vext(r), are system-independent, i.e. they are the same for all the

systems of its kind. Therefore, if Vext(r) is known then it follows that wave-

functions for all states are determined. Thus all properties of the many-body

systems are, in principle, determined by the ground state particle density.

10



Proof of the Theorem 1 . Proof of the theorem is simple and illustrative. Contrary

to its prediction, suppose that there exist two different external potentials Vext(r)

and V ′
ext(r) which differ by more than a constant but generate the same ground state

density n0(r). These potentials lead to two different hamiltonians, Ĥ and Ĥ ′, whose

ground states |Ψ0〉 and |Ψ′
0〉 are different. Since |Ψ′

0〉 is not the ground state of Ĥ,

it follows from the variational principle that

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉 . (1.15)

The strict inequality holds if the ground state is non-degenerate, which we will

assume for the sake of simplicity 4. The last term in (1.15) can be written as

〈Ψ′
0|Ĥ|Ψ′

0〉 = 〈Ψ′
0|Ĥ ′|Ψ′

0〉 + 〈Ψ′
0|Ĥ − Ĥ ′|Ψ′

0〉

= E ′
0 +

∫

d3r [Vext(r) − V ′
ext(r)]n0(r),

(1.16)

and from (1.15) follows

E0 < E ′
0 +

∫

d3r [Vext(r) − V ′
ext(r)]n0(r). (1.17)

Changing the roles of E ′
0 and E0 and repeating the last few steps yields

E ′
0 < E0 +

∫

d3r [V ′
ext(r) − Vext(r)]n0(r). (1.18)

Now if we add (1.17) and (1.18) together we arrive at a contradiction E0 + E ′
0 <

E0 +E ′
0. We conclude that our assumption does not hold and there don’t exist two

potentials which differ by more than a constant and yield the same ground state

density n0(r). Therefore the density uniquely determines the external potential up

to a constant.

Theorem 1 validates the particle density as a basic variable for the description

of the many-body system’s properties. The next step is to connect the ground state

energy of the system to its particle density. This is achieved by the defining the

energy of a system as a functional of the density within the second Hohenberg-Kohn

theorem.

� Theorem 2: For any quantum system of interacting particles in an external

potential Vext(r), a universal functional for the energy E[n] which depends

solely on density n(r) can be defined such that the exact ground state energy

of a system is a global minimum of E[n]. For any given Vext(r), a density

which minimizes E[n] is the exact ground state density n0(r).

4The assumption of non-degenerate ground state comes from the original work of Hohenberg
and Kohn and does not decrease the generality of the theorem. Thorough discussion on degenerate
ground states is given in [28], p. 18-21.
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♠ Comment on Theorem 2: If E[n] is known than one can get ground state

energy and density via variational principle. The excited states, though known

in principle as stated in the comment following the Theorem 1, must be de-

termined by other means. DFT is genuinely the theory of the ground state of

the many-body quantum systems.

Since we are interested in the electronic structure of realistic materials, we should

focus on the systems described by hamiltonian (1.2). The Theorem 2 can be gener-

alized and thus its validity expanded, but that discussion is out of the scope of this

thesis. In Subsection 1.1.1 we concluded that the quality of the approximation for

the exact ground state wavefunction is limited by the particular choice of the trial

set T over which the energy is minimized. If T is strictly confined to the wavefunc-

tions which yield the same electron density n(r) (and that is the only constraint),

then the wavefunction Ψ0 ∈ T which minimizes the energy is the exact ground state

of the system whose ground state density is n(r).5 Since all the properties of the

system, by the statements of the Theorems 1 and 2, are given if we know the ground

state electronic density, then one can define the total energy functional6 as follows

EHK[n] = 〈Ψ0[n]|T̂ + V̂int + V̂ext + EII |Ψ0[n]〉

= T [n] + Eint[n] +

∫

d3rn(r)Vext(r) + EII

≡ FHK[n] +

∫

d3rn(r)Vext(r) + EII ,

(1.19)

where we have used (1.10) in the second line.

T̂ is the kinetic energy operator for electrons, V̂int is the operator of electron-

electron interaction, V̂ext is the external field generated by nuclei (and any other

spin-independent external fields) and EII
7 is the nucleus-nucleus interaction energy.

In the last line of (1.19) we have defined the functional FHK
def
= T [n] + Eint[n]

which includes all internal energies, kinetic and potential, of the interacting electron

system. FHK is universal, i.e. it depends on the electronic density only, and not on

the external potential. Now we can easily prove Theorem 2.

Proof of the Theorem 2 . Consider an electronic system with the ground state den-

sity n0(r) corresponding to an external potential Vext(r). A ground state energy of

5Not every scalar field f(r) : R3 7→ R represents a density of the many-electron system. One of
the limitations of this particular choice is that the energy functional, defined in this way, must be
generated by some external potential. This is called V-representability and the conditions for such
choice to be made is not known in general [28].

6This is the total energy functional as defined in the original work of Hohenberg and Kohn
[9]. There is also an alternative constrained search formulation of Levy and Lieb which is to some
extent more instructive and clarifies the physical meaning of the energy functional [29].

7There is no ”hat” above this term because it is not an operator acting on the state space of
electrons, i.e. it does not explicitly depend on the electronic coordinates.
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the system is the value of the functional EHK for the ground state density n0(r) and

by variational principle it is the expectation value of the hamiltonian in the ground

state |Ψ0〉,
E0 = EHK[n0] = 〈Ψ0|Ĥ|Ψ0〉 . (1.20)

Another density n′(r) necessarily corresponds to a different state |Ψ′〉 and the energy

in that state is higher than in the ground state

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′|Ĥ|Ψ′〉 = EHK[n′] (1.21)

Thus we deduce that the value of the total energy functional EHK[n] for any other

density is higher than the value in the ground state density, that is the ground state

energy of the system.

Despite the strong statement of Theorem 2, there is no procedure on how to

construct external potential for a known ground state density. The energy functional

EHK[n], in general, is not known. Next section is devoted to the roundabout solution

to this problem.

1.3 Kohn-Sham ansatz

The basic idea behind the approach of Kohn and Sham [10] stems from the mean-

field approximation – replacing the system of interacting electrons in an external

potential by the auxiliary system of non-interacting electrons in the effective one-

particle potential. The connection between the two is the ground state density,

which must be the same for both systems. Kohn-Sham ansatz (KS) 8 is based upon

two assumptions:

1. The exact ground state density of the interacting many-electron system can be

represented by the density of the auxiliary system of non-interacting electrons.

2. The auxiliary hamiltonian contains two terms - the usual kinetic operator and

an effective local potential Veff(r) acting on an electron at point r.

The first assumption is known as the non-interacting V-representability and, to the

best of our knowledge, there is no rigorous proof of its validity. Nonetheless, we

will proceed with this assumption.9 The assumed locality of Veff(r) in the second

assumption is not crucial to the KS ansatz but it is exceedingly useful. The schematic

representation of the KS ansatz is given in Fig. 1.1. Despite the assumption that V̂ext

8ansatz - the word is from German and it means ”educated guess to be later verified”.
9We follow the rationale that it’s easier to ask for forgiveness than to get a permission.
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Figure 1.1: Schematic representation of Kohn-Sham ansatz. Quantities of the in-
teracting (non-interacting) system are given on the left (right). The connection
between the two is provided by the arrow with the KS label above it. The notation
HK0 is used to emphasize that HK theorems are applied to a non-interacting system.
The many-body wavefunctions of the interacting system are labeled with large Ψ
and the one-particle Kohn-Sham orbitals are labeled with the small letters ψ (the
scheme is taken from [25]).

Vext(r)
HK⇐= n0(r)

KS⇐⇒ n0(r)
HK0=⇒ VKS(r)

⇓ ⇑ ⇑ ⇓

Ψi({r}) =⇒ Ψ0({r}) ψi=1,Ne
(r) ⇐= ψi(r)

does not depend on spin, the spin dependency of Veff(r) is necessary for the correct

ground state density for each spin. Thus it should be written as V σ
eff(r) to emphasize

that the effective potential is different for spin-up and spin-down electrons. For the

sake of simplicity, we will abandon the spin dependence of V σ
eff(r), but we will discuss

it when necessary. Now, let us write the hamiltonian for the auxiliary independent-

particle system. By the assumptions of the KS ansatz we have

Ĥaux = −1

2
∇2 + Veff(r). (1.22)

Currently, an exact form of Veff(r) is not specified. The potential which yields

the ground state density of the independent particle system (and, by means of KS

ansatz, of the interacting system) will be found through the variational procedure

which can be performed only if the expression (1.22) holds for a broader range of

effective potentials. In that sense Veff(r) is a set or a family of potentials.

If the system contains N independent electrons, its ground state is a Slater

determinant of the N lowest lying orbitals ψi(r), and the ground state density is

just the sum of the squared moduli of occupied orbitals

n(r) =
N∑

i=1

|ψi(r)|2 =
occ.∑

i

|ψi(r)|2. (1.23)

Kinetic energy of the independent particles is given by 10

Ts = −1

2

N∑

i=1

〈
ψi|∇2|ψi

〉
=

1

2

N∑

i=1

|∇ψi|2. (1.24)

10After partial integration, the first term which is of the form (ψ∗(r)∇ψ(r))|S (S is the surface
of the system) vanishes as either ψ|S or ∇ψ|S must vanish at the system’s border. Note that
the kinetic energy of independent particles is labeled with ”s” subscript to distinguish it from the
kinetic energy T [n] of the interacting many-electron system.
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The classical Coulomb interaction energy of the electron density n(r) with itself, the

so-called Hartree term, is defined as follows

EH =
1

2

∫

d3r d3r′
n(r)n(r′)

|r− r′| . (1.25)

Now let us write the expression for the total energy within KS approach and find

its connection to the total energy (1.19) of the interacting many-body system

EKS[n] = Ts[n] +

∫

d3rn(r)Vext(r) + EH[n] + EII + Exc[n]. (1.26)

There are few remarks about the last expression. First, we assumed that the system

is electroneutral and thus the sum including the terms Vext, EH and EII forms a

neutral grouping, which is important when dealing with the infinite spatially periodic

systems with long-range Coulomb interaction.11 Secondly, the kinetic energy of

the independent-particle system Ts is expressed in (1.24) as a functional of the

orbitals, though by application of the Hohenberg-Kohn theorems it must be a unique

functional of the density n(r). This condition is fulfilled as the ground state density

uniquely determines all the wavefunctions of the independent particle system and

the kinetic energy is just the sum of the squares of the wavefunctions’ moduli, thus

it is uniquely determined. Lastly, by the condition that the total energy of the

auxiliary system must be equal to the total energy of the fully interacting one, and

comparing (1.26) to (1.19) we find the expression for the term which includes all the

many-body effects of exchange and correlation,

Exc[n] = FHK[n] − (Ts[n] + EH[n])

= 〈T̂ 〉 − Ts[n] + 〈V̂int〉 − EH[n].
(1.27)

The last expression is the definition of the exchange-correlation (XC) functional

within the Kohn-Sham approach. The last line of (1.27) reveals that Exc is the

difference between the kinetic and internal energy of the true interacting many-

electron systems and their analogs, fictitious independent-particle systems. More

details on this topic can be found in Section 1.4.

The connection between the two systems is thus fully established, and if the

universal functional Exc[n] were known then the ground state energy (and density)

could be found by varying EKS[n] with respect to either the density n(r) or the

effective potential Veff(r). Next subsection is devoted to the variation of EKS[n] and

the derivation and solution of the Kohn-Sham equations which are governing this

procedure.

11See, for example, App. F of [25].
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1.3.1 The Kohn-Sham variational equations

The Kohn-Sham equations are the Euler-Lagrange equations corresponding to the

variation of the energy functional EKS[n] with respect to orbitals. If we have an ar-

bitrary functional of density Ω[n] then its variational derivative is defined as follows

δΩ[n]
def
= Ω[n+ δn] − Ω[n] =

∫

d3r
δΩ

δn(r)
δn(r). (1.28)

All the terms in (1.26) except the kinetic energy Ts[n] depend explicitly on the

electronic density, and the electronic density together with Ts[n] are explicitly ex-

pressed as a functional of the orbitals. Hence, one can vary EKS with respect to the

orbitals and use the chain rule to derive the variational equation

δEKS

δψ∗
i (r)

=
δTs

δψ∗
i (r)

+

[
δEext

δn(r)
+

δEH

δn(r)
+
δExc

δn(r)

]
δn(r)

δψ∗
i (r)

. (1.29)

Since the orbitals are orthonormal, 〈ψi|ψj〉 = δij, the variational derivative of n(r)

with respect to orbitals can be easily found from (1.23)

δn(r)

δψ∗
i (r)

= ψi(r), (1.30)

and of Ts from (1.24)

δTs
δψ∗

i (r)
= −1

2

N∑

j=1

∫

d3r′
δψ∗

j (r′)

δψ∗
i (r)

∇2ψj(r
′),

= −1

2

∫

d3r′ δ(r− r′)∇2ψi(r
′) = −1

2
∇2ψi(r).

(1.31)

By means of the variational principle, the expression (1.29) must be equal to zero.

Hence, adding the constraint of orthonormalization of the wavefunctions through

the Lagrange multiplier method, we have

δ

δψ∗
i (r)

{

EKS[n] −
N∑

j=1

εj

[〈
ψj|ψj

〉
− 1

]}

= 0, (1.32)

which results in the Kohn-Sham equations
[

− 1

2
∇2 + VKS(r)

]

ψi(r) = εiψi(r). (1.33)

The expression (1.33) is the eigenproblem of the auxiliary hamiltonian ĤKS, whose

eigenvalues are the so-called Kohn-Sham energies, and the corresponding eigenfunc-

tions are known as the Kohn-Sham orbitals. We have also defined the Kohn-Sham

potential,

VKS(r) = Vext(r) +
δEH

δn(r)
+
δExc

δn(r)
≡ Vext(r) + VH(r) + Vxc(r). (1.34)
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where VH(r) =
∫

d3r′n(r′)/|r − r′| is the Hartree potential and Vxc(r) = δExc

δn(r)
is

the exchange-correlation (XC) potential. Equations (1.33) and (1.34) are equivalent

to the variational problem. They have the form of independent-particle equations

with the effective potential VKS(r) which must be determined self-consistently with

the corresponding density. From the Hohenberg-Kohn theorems it follows that the

ground state density uniquely determines the Kohn-Sham potential from the set of

potentials, that is Veff(r)|n0(r) = VKS(r). If one would have the exact form of Exc[n],

then (1.33) and (1.34) would lead to the ground state density and energy of the

system of independent particles and, by means of the KS ansatz, to the true ground

state density and energy of the interacting many-electron system. When dealing

with the spin-polarized systems, one needs to solve the Kohn-Sham equations for

each spin, and due to V ↑
eff(r) 6= V ↓

eff(r) the spin-up spectrum will differ from the

spin-down spectrum.

KS equations must be solved by means of the iterative self-consistent field method

(SCF). The standard procedure is as follows: the input density n
(m)
in (r) of the m-th

cycle generates the effective potential V
(m)
eff (r) for which one solves the KS equations

(1.33) to obtain the eigenvalues {ε(m)
i } and orbitals {ψ(m)

i }. Calculated orbitals yield

the output density n
(m)
out (r) =

∑occ.
i |ψ(m)

i |2 of the m-th cycle which is used for the

construction of the input density for the (m+1)-th cycle. The procedure is repeated

until the self-consistency is reached, i.e. until the input and the output density differ

less than the predefined value. Full SCF KS scheme is depicted in Fig. 1.2.

The total energy of the system Etot[n] can be calculated for any density, as it

is needed for the iterative procedure. Hence, let us derive the expression for the

total energy within the KS approach in terms of density and eigenvalues. For the

assumed effective potential Veff(r) and the corresponding density, from (1.24) and

(1.33) one gets

Ts[n] ≡
occ.∑

i

∫

d3rψ∗
i (r)

(

−1

2
∇2

)

ψi(r),

=
occ.∑

i

∫

d3r[εi − Veff(r)]ψ∗
i (r)ψi(r) =

occ.∑

i

εi −
∫

d3rn(r)Veff(r).

(1.35)

Together with (1.26), it yields

Etot[n] =
occ.∑

i

εi−
∫

d3rn(r)Veff(r)+

∫

d3rn(r)Vext(r)+EH[n]+Exc[n]+EII , (1.36)

or equivalently, employing the definition (1.34) for Vxc(r)

Etot[n] =
occ.∑

i

εi −
1

2

∫

d3rn(r)VH(r) + Exc[n] −
∫

d3rn(r)Vxc(r) + EII . (1.37)
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Initial guess

n(r)

Calculate effective potential

Veff(r) = Vext(r) + VH[n] + Vxc[n]

Solve KS equation

[

−1
2
∇2 + Veff(r)

]

ψi(r) = εiψi(r)

Calculate electron density

n(r) =
occ.∑

i

|ψi(r)|2

Self-consistent?

Output quantities

Energy, forcess, stresses, eigenvalues, ...

Yes

No

Figure 1.2: Schematic representation of the self-consistent method for solution of
Kohn-Sham equations.

At this point, we need to provide a feasible approximation for Exc[n]. Roughly,

by their construction, there are two types of XC functionals:

• non-empirical , which are constructed to satisfy the known exact conditions

(such as sum rules [30]) and usually have systematic failures (and successes!) so

their reliability for calculations of basic physical properties (lattice constants,

cohesive energies, band gaps etc.) can often be predicted. These functionals

are mostly used in condensed matter physics and will be used in this thesis as

well;

• (semi-)empirical , whose parameters are fitted to experimental data obtained

for the extensive sets of atoms and molecules[31] or data generated by other

first-principle methods, e.g. wavefunction-based methods.12 The aim of these

12These are usually refered to as post-Hartree-Fock methods [32]. They are considered highly
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functionals is to best reproduce a set of reference values. Hence, they are

specialized for particular tasks and their usability is confined to the types of

data used for their construction.

There are plenty of developed functionals of both kinds and the number is still

growing. Bearing in mind the variety of XC functionals, we will devote the next

section to the non-empirical XC functionals which are used for calculations in this

thesis.

1.4 Exchange-correlation functionals

One of the great advantages of the Kohn-Sham approach lies in the expression for

the total energy functional – it separates the independent particle kinetic energy

Ts[n] and the long-range EH[n] from the term which encompasses all the many-body

effects, that is the exchange-correlation energy Exc[n]. This convenience gives the

possibility for the Exc[n] to be reasonably approximated as a (semi-)local functional

of the density.

1.4.1 Local density approximation (LDA)

There would be no practical use of DFT if it’s not for the workable approximations

for Exc[n]. The basic idea behind the local density approximation (LDA) comes from

the properties of the interacting homogeneous electron gas, for which many aspects

were known at the time when DFT was proposed as a new method for the electronic

structure calculations. Generally, the true XC potential Vxc[n(r)] at point r depends

not only on the local density n(r) but also on the density at all other points r′ in

the system. If we ignore all the non-locality of Vxc[n(r)] and thus assume that it

depends only on the local density n(r), Exc[n] can be written as

ELDA
xc [n] =

∫

d3r ǫxc[n]n(r), (1.38)

where ǫxc[n] = ǫx[n] + ǫc[n] is the exchange-correlation energy per particle of the

homogeneous electron gas. Stated in this form, it is just the usual function of density

n. That is, within LDA we assume that at every point r the exchange-correlation

energy per particle ǫxc[n] is equal to that of the interacting homogeneous electron

gas with density n(r) = n. It is an extremely useful approach for systems with

reasonably slowly varying spatial density n(r), and it has been the most popular

approximation in condensed matter physics for decades.

accurate, but computational cost undermines their usability.
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From (1.38), the exchange-correlation potential Vxc[n(r)] defined in (1.34) be-

comes

V LDA
xc (r) =

δELDA
xc

δn(r)
= ǫxc[n(r)] + n(r)

dǫxc[n(r)]

dn(r)
(1.39)

Recalling the equation (1.37) we get the simple expression for total energy within

LDA

ELDA
tot [n] =

occ.∑

i

εi −
1

2

∫

d3rn(r)VH(r) −
∫

d3rn(r)
dǫxc[n(r)]

dn(r)
n(r) + EII . (1.40)

Usually ǫxc is expressed as a function of the dimensionless parameter rs, called the

Wigner-Seitz radius, which is the mean radius of the sphere that can be assigned to

each electron in the system, so that the system volume is just the sum of the volumes

of all these spheres. Similarly to density, it is a function of the spatial coordinates

and it is defined by

rs(r) =

(
4πn(r)

3

)−1/3

. (1.41)

In LDA, the expression for exchange energy per particle is exact – as we are

dealing with the homogeneous gas, so too can ǫx be calculated exactly within the

HFA. Indeed, if we assume that we have interacting electrons in the uniform positive

background, the HFA gives the dispersion relation for electrons,

ε(k) =
1

2
k2 − kF

π
f(k/kF ),

f(x) = 1 +
1 − x2

2x
ln

∣
∣
∣
∣

1 + x

1 − x

∣
∣
∣
∣
,

(1.42)

where kF = (2εF )1/2 is the Fermi wavevector. Integrating the expression (1.42) for

all k < kF yields the total ground state energy of the system per electron

ǫ0 =
1.105

r2s
− 0.458

rs
. (1.43)

The first term in (1.43) is the kinetic energy and the second term is the exchange

energy per particle of the homogeneous electron gas.13 Therefore, in Hartree atomic

units the exchange energy per particle of unpolarized homogeneous electron gas is

ǫx(rs) = −0.458

rs
(1.44)

Contrary to the exchange energy, no general form of correlation energy is known

exactly, but the low-density (rs ≫ 1) and high-density (rs ≪ 1) limits can be

13For the complete derivation of the exchange energy within HFA, interested reader should look
in [33], p. 334-336, while the thorough treatment of the homogeneous electron gas can be found
in [25].

20



calculated analytically. In the low-density limit the electrostatic potential energy

dominates the kinetic energy and electrons form a Wigner lattice14 [34]. Though

density in this case is not strictly uniform as electrons sit at the lattice points, we

can still use the expression for the correlation energy of this system to estimate ǫc at

low densities. In the high-density limit, the kinetic energy is the dominant one and

thus the random-phase approximation (RPA) becomes exact[35]. The limiting factor

is that real metals have rs ∼ 2−6, therefore neither of the limits can be used for the

correlation energy of real systems. Usually, one needs to develop an interpolation

scheme that joins the low- and high-density limits of ǫc. One of the most popular

forms is by Perdew and Zunger [36], who have parametrized the numerical results

obtained by Ceperley and Alder [37] with Monte Carlo calculations,

ǫc(rs) =

{

−0.1423/(1 + 1.0529
√
rs + 0.3334rs) for rs ≥ 1,

−0.0480 + 0.0311 ln rs − 0.0116rs + 0.0020rs ln rs for rs ≤ 1.

LDA is, due to its simplicity and reasonably good results, still in use in condensed

matter physics, but its popularity steeply declined with the development of the XC

functionals which systematically include gradients of the density. The aim of the

next section is to give a short description of the functionals of this kind.

1.4.2 Generalized gradient approximation (GGA)

The success of LDA has motivated further development of various functionals outside

of the local approximation. The first step beyond LDA is to include the magnitude

of the gradient of the density |∇n| as well as the density itself at each point. This

idea of gradient expansion approximation (GEA) was proposed already in the orig-

inal work of Kohn and Sham [10], but the efforts in the following years led to no

consistent improvement. On the contrary, the results obtained with GEA is often

worse compared to LDA, and moreover GEA violates sum rules and some other rel-

evant conditions [38]. One of the issues with GEA is that gradients in real materials

are so large that the expansion breaks down.

For the reasons stated above, a variety of forms have been proposed for func-

tionals that are dependent on the gradient of the density, but preserve the desired

properties for large gradients. They have the common name generalized gradient

approximation (GGA), and the exchange-correlation energy within GGA have a

14It is a bcc lattice in 3D, a triangular lattice in 2D and evenly spaced lattice in 1D.
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general form

EGGA
xc [n↑, n↓] =

∫

d3rn(r)ǫxc(n
↑, n↓, |∇n↑|, |∇n↓|, . . .) =

=

∫

d3rn(r)ǫhomx (n)Fxc(n
↑, n↓, |∇n↑|, |∇n↓|, . . .)

(1.45)

where Fxc is dimensionless and ǫhomx is the exchange energy of unpolarized electron

gas given by (1.44). Exc is expressed in terms of spin densities as most of the GGA

functionals are given in the spin-polarized form. Nevertheless, it is easy to show the

validity of the spin-scaling relation

Ex[n
↑, n↓] =

1

2
[Ex[2n

↑] + Ex[2n
↓]] (1.46)

where Ex[n] is the exchange energy for an unpolarized gas of density n(r). This is

a great simplification, as we need to consider only the function Fx(n, |∇n|) for the

spin-unpolarized system. The standard way to express this function is in terms of

dimensionless reduced density of m-th order

sm
def
=

|∇mn|
(2kF )mn

=
|∇mn|

2m(3π2)m/3n(1+m/3)
. (1.47)

Recalling that kF = 3(2π/3)1/3r−1
s , sm is proportional to the mth-order fractional

variation in density normalized to the parameter rs.

The expansion of Fx up to the second-order terms has been calculated analyti-

cally [39, 40],

Fx = 1 +
10

81
s21 +

146

2025
s22 + . . . , (1.48)

and moreover,

s1 ≡ s =
|∇n|
2kFn

=
|∇rs|

2(2π/3)1/3rs
. (1.49)

There are numerous forms for Fx(n, s), where s = s1. We will give the parametriza-

tion of Perdew, Burke and Ernzerhof, the so-called PBE functional [41]. It is among

the most popular GGA functionals and it has a conservative philosophy of GGA

construction as it tries to retain all the correct features of LDA, while adding oth-

ers. Thus, it is a systematical improvement over LDA and this is the main reason

why we have used it for the majority of our calculations. The PBE functional of

exchange is given by a simple form, chosen to satisfy Fx(0) = 1 (and thus recover

the local approximation) and to be constant at large s,

Fx(s) = 1 + κ− κ

1 + µs2/κ
. (1.50)

22



The value of κ = 0.804 is chosen to satisfy the Lieb-Oxford bound which provides

the lower limit for XC energy

Exc[n] ≥ 2.273ELDA
x [n]. (1.51)

The value of µ = 0.21951 recovers the linear response form of the LDA, i.e. it is

chosen to cancel the term from the correlation. At first glance it is a strange choice,

but it is made purposely and with this value of µ the results obtained with PBE

functional agree very well with quantum Monte Carlo calculations.

As with LDA, the correlation part of XC functional is a more problematic one.

It is expressed in terms of spin polarization, which is defined by

ζ(r) =
n↑(r) − n↓(r)

n(r)
. (1.52)

The form is chosen to satisfy several conditions, and can be expressed by

EGGA−PBE
c [n↑, n↓] =

∫

d3rn[ǫhomc (rs, ζ) +H(rs, ζ, t)] (1.53)

where t is dimensionless gradient t = |∇n|/(2φkTFn), kTF = 0.815kF r
1/2
s is the

Thomas-Fermi screening wavevector, φ = ((1 + ζ)2/3 + (1 − ζ)2/3)/2 and

H(rs, ζ, t) = γφ3 ln
(

1 +
β

γ
t2

1 + At2

1 + At2 + A2t4

)

, (1.54)

where β = 0.066725 and γ = 0.031091. Finally, the function A is given by

A =
β

γ

[

exp

(

− ǫhomc

γφ3

)

− 1

]−1

(1.55)

For a detailed description of the methodology behind the construction of PBE func-

tional in the words of its creator we refer to [30].

To conclude this Chapter, we give some information about the improvement

which GGA functionals bring over LDA. Properties such as bond dissociation ener-

gies are calculated to a high precision within GGA, with errors of the order of ≤ 10%,

while the LDA may overestimate it by as much as 100%. With modern GGA XC

functionals, atomic and molecular quantities can be calculated with nearly chemical

accuracy. Before GGA this was only possible using the configuration-interaction

(CI) schemes in which the true many-body wavefunction is expanded in some small

set of Slater determinants composed of suitable atomic basis functions. As it is a

wavefunction-based method, it is computationally expensive, thus GGA brought a

great speedup in such calculations. Moreover, the GGA gives better results for bulk

moduli of solids with an error of around 10%, compared to the typical error of 20%
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of the LDA, and the PBE XC potential is only slightly more complicated than in

the LDA, but it is still multiplicative potential, thus leading to simple single-particle

equations with no extra computational cost. A cautionary note is that there is no

guarantee that the GGA will be better than LDA for some specific calculation, but

for calculations of quantities relevant for this thesis PBE is widely considered as a

superior choice.
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Chapter 2

Methods in electronic structure
calculations

In order to describe the ground-state electronic properties, in Chapter 1 we have

dealt with density functional theory, which provides an elegant way to replace the

realistic system of interacting electrons with the effectively one-particle problem. To

calculate the desired physical quantities, one needs to solve the Kohn-Sham equation

in a chosen basis, thus obtaining the eigenvalues and eigenfunctions.1 The choice of

a suitable basis set is system specific, i.e. the basis set suitable for molecules usually

is improper for solids. As we are interested in physical properties of the spatially

periodic systems, this chapter is organized as follows: in the first part of the chapter

we will explain the basics of electronic structure calculations of crystals, while the

second part will be devoted to the general method for determination of electronic

structure and the one used for calculations in this thesis – the projector augmented

wave method.

2.1 Basics of electronic structure calculation

In practice, every DFT calculation starts with the preparation of the input files which

contain the types of atoms that constitute the system together with their positions.

Thus, we shall begin our discussion with the definition of crystal structure in real

and reciprocal space and continue with its connection with the Fourier transform

and plane wave basis set – the simplest basis set suitable for practical solution of

the Schrödinger equation for electrons in crystals.

1In this chapter we discuss the solution of the time independent one-particle Schrödinger equa-
tion for electrons in crystals. Every conclusion drawn from this discussion stands also for the
Kohn-Sham equation, as it is by its structure the Schrödinger-like one-particle equation.
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2.1.1 Crystal structure and the Fourier transform

Crystal is defined as a highly ordered periodic structure completely specified by

• the Bravais lattice (BL) – a set of points in space, all of them connected by

translation vectors T(n1, n2, n3) = n1a1 + n2a2 + n3a3, where ni ∈ Z;

• the basis – the structural motif which is repeated along the lattice vectors,

specified by types A1, A2, . . . , Aν and the positions {d1,d2, . . . ,dν} of atoms

attached to the crystal points.2

Three non-coplanar vectors {a1, a2, a3} are called primitive vectors, and the paral-

lelepiped formed by them is called primitive cell. Because of the underlined spatial

periodicity, all the r-dependent functions describing electronic properties (such as

electron density) must be also periodic in space in the same way. Therefore, a

general function defined in all the volume of the crystal Ω obeys strict conditions

f(r + T(n1, n2, n3)) = f(r) for any combination of integers ni. Such a periodic

function can be represented by Fourier transform in terms of Fourier components at

wavevectors q defined in a reciprocal space,

f(q) =
1

Ω

∫

Ω

d3rf(r)eiq·r. (2.1)

Due to spatial periodicity of the function f(r), each Fourier component must satisfy

Born-Von Karmen periodic boundary conditions in each of the dimensions, i.e. if

Ncell = N1×N2×N3 is the number of cells in a crystal it must be fulfilled eiq·Niai = 1

for i = 1, 2, 3. In other words, q is restricted to the set of vectors satisfying q · ai =

(2π × integer)/Ni for each of the primitive vectors ai. Thus, for functions with

periodicity of the crystal lattice, every Fourier component must satisfy

f(q) =
1

Ω

∑

n1,n2,n3

∫

Ωcell

d3rf(r)eiq·(r+T(n1,n2,n3))

=
1

Ncell

∑

n1,n2,n3

eiq·T(n1,n2,n3)
1

Ωcell

×
∫

Ωcell

d3rf(r)eiq·r,

(2.2)

where Ω = NcellΩcell. The sum over all lattice points in the last line of (2.2) vanishes

for all q except those for which q ·T(n1, n2, n3) = 2π × integer for all translations

T. Since T(n1, n2, n3) is a sum of integer multiples of the primitive translations ai,

it follows that q ·ai = 2π× integer. The set of vectors q in the reciprocal space that

satisfy this condition is called reciprocal lattice. If we define three primitive vectors

2The term basis, referring to the structural motif of the crystal, should not be confused with
the plane wave basis which we will use for the solution of the Schrödinger equation.
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bi of the reciprocal lattice, i.e. vectors that satisfy the conditions ai · bj = 2πδij,

we can represent vectors of the reciprocal lattice in this basis as G(m1,m2,m3) =

m1b1+m2b2+m3b3 where mi ∈ Z. Non-zero Fourier components are then given by

f(G) = 1
Ωcell

∫

Ωcell

d3r f(r)eiG·r, where G are vectors of the reciprocal lattice. This is

a great simplification which allows us to run calculations within an elementary cell

only and obtain the function in the whole crystal by periodic extension.

2.1.2 Schrödinger equation in a plane wave basis

The independent particle Schrödinger equation for electrons in the effective periodic

potential Veff(r + T(n1, n2, n3)) = Veff(r) is

Ĥeff(r)ψi(r) =

[

− 1

2
∇2 + Veff(r)

]

ψi(r) = εiψi(r). (2.3)

In crystals it is convenient to require that the wavefunctions obtained as a solution

to (2.3) are normalized within the volume of the crystal Ω. As any periodic function

can be expanded in the complete set of Fourier components, wavefunction that is

the solution to (2.3) can be written as

ψi(r) =
∑

q

ci,q ×
1√
Ω

eiq·r ≡
∑

q

ci,q |q〉 , (2.4)

where ci,q are the expansion coefficients of the wavefunction in the basis of or-

thonormal plane waves |q〉 satisfying 〈q′|q〉 = 1
Ω

∫

Ω
d3r e−i(q′−q)·r = δq,q′ . Using the

orthonormality conditions and inserting (2.4) into (2.3), multiplying from the left by

〈q′| and integrating in the real space lead us to the Schrödinger equation in Fourier

space,
∑

q

〈q′|Ĥeff |q〉 ci,q = εici,q. (2.5)

The matrix elements of the kinetic energy operator are simply

〈q′| − 1

2
∇2|q〉 =

1

2
|q|2δq,q′ . (2.6)

Potential Veff(r), due to its periodicity, can be represented in a plane wave basis

as Veff(r) =
∑

m Veff(Gm)eiGm·r, where Gm are the reciprocal lattice vectors and

Veff(Gm) is the Fourier component of the potential. Thus, the matrix elements of

the potential

〈q′|Veff |q〉 =
∑

m

Veff(Gm)δq′−q,Gm
, (2.7)

are non-zero only if q and q′ differ by some reciprocal lattice vector Gm.
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Now we came to the point - if we define q = k + Gm and q′ = k + Gm′ (which

differ by a reciprocal lattice vector Gm′′ = Gm −Gm′) the Schrödinger equation for

any given k within the reciprocal cell can be written as the matrix equation,

∑

m′

Hmm′(k)ci,m′(k) = εi(k)ci,m(k), (2.8)

where

Hmm′(k) = 〈k + Gm|Ĥeff |k + Gm′〉 =
1

2
|k + Gm|2δmm′ + Veff(Gm −Gm′). (2.9)

In (2.8) we labeled with i = 1, 2, . . . distinct eigenvalues and eigenfunctions. For

the complete solution of the Schrödinger equation (2.3) we need to solve the ma-

trix equation (2.8) for every k-point in the reciprocal cell. More details about the

importance of the operations in k-space3 can be found in the following subsections.

2.1.3 The Bloch theorem and electron bands

The concept of electron bands in crystals can be formulated with the help of a

simple but profound Bloch theorem [42]. The connection between Bloch theorem

and Fourier transform and the role of k-space in the electronic structure calculations

is explained in this subsection.

Each eigenfunction of the Schrödinger equation (2.8) labeled with index i for

a given k can be written as a linear combination of plane waves with wavevectors

restricted to q = k + Gm, i.e.

ψi,k(r) =
∑

m

ci,m(k) × 1√
Ω

ei(k+Gm)·r ≡ eik·r
1√
Ncell

ui,k(r), (2.10)

where

ui,k(r) =
1√
Ωcell

∑

m

ci,m(k)eiGm·r, (2.11)

are functions with the periodicity of Bravais lattice, ui,k(r+T(n1, n2, n3)) = ui,k(r)

for any translation through lattice vector T(n1, n2, n3). The Bloch theorem, given

in (2.10), states that any eigenfunction is a product of eik·r and a periodic function

with the periodicity of a crystal lattice. For ψi,k(r) to be orthonormal over the

volume of the crystal Ω, ui,k(r) must be orthonormal in one primitive cell

1

Ωcell

∫

Ωcell

d3ru∗i,k(r)ui′,k(r) =
∑

m

c∗i,m(k)ci′,m(k) = ci(k)T · ci′(k) = δii′ . (2.12)

In (2.10) the states of electron in a periodic potential are labeled with index i and

wavevector k. The possibility to label different states by a well-defined k means

3The terms reciprocal space, k-space and Fourier space are used synonymously.
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that k is a conserved quantity, but since it is indistinguishable from any wavevector

k′ = k + G where G is a vector of the reciprocal cell, we can only say that k is

conserved modulo addition of any reciprocal lattice vector. Hence, analogous to

the momentum in free space, the conserved quantity in crystals is called crystal

momentum.

Due to Born-Von Karmen boundary conditions, the number of allowed wavevec-

tors in a primitive cell is equal to the number of cells in the crystal. In macroscopic

samples, this number is so large (∼ 1023) that we don’t need to bother about whether

a particular k-point is allowed or not. Hence, in the limit of large volume Ω the

k-points become dense continuum and consequently εi(k) become continuous bands,

labeled with a band index i. Finally, at each k there is a discrete set of eigenstates

labeled with band index which may be found by diagonalizing the hamiltonian (2.9)

in the basis of discrete Fourier components k + Gm, m = 1, 2, . . ..

2.1.4 Integration of functions over the Brillouin zone

In order to solve (2.8) we need to give the answers to a few questions:

• how to choose the reciprocal cell, as the choice is not unique?

• how to use the symmetry of the crystal to reduce the calculations?

• how to divide the chosen reciprocal cell into a grid of k-points?

First, let us define the Wigner-Seitz cell as a region of space around lattice point

that is closer to that point than to any other. It can be constructed by bisecting with

perpendicular planes the vectors joining this lattice point with its nearest neighbors.

Since there is nothing in the definition of the Wigner-Seits cell that refers to any

particular choice of primitive vectors, this cell will maintain the full symmetry of

the Bravais lattice. This brings us to the concept of the first Brillouin zone (BZ),

which is the Wigner-Seits cell of the reciprocal lattice. It is unique among primitive

cells because its boundaries are the bisecting planes of the G vectors where Bragg

scattering occurs. Inside the BZ there are no such boundaries, thus the bands must

be continuous and analytical inside the zone.

The full symmetry group of a BL – the space group – is composed of (1) the

translations T(n1, n2, n3) through lattice vectors and (2) the point group {Rn;n =

1, . . . NPG}, i.e. a group of operations that are leaving at least one lattice point

fixed – rotations, inversions, reflections and their combinations. Every symmetry

operation of BL can be constructed by a successive applications of the operations of

these two kinds. Crystal structures whose space group is a semi-direct product of

the translational subgroup with the point group are called symmorphic, and we shall
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largely confine our attention to the crystals of this kind.4 By application of point

group symmetry operators, the calculations can be magnificently reduced since all

information can be found from states with k in the irreducible Brillouin zone (IBZ)

[45]. The values of functions for the rest of k-points in the BZ can be reconstructed

from their values inside IBZ with the point group symmetry operations. The action

of symmetry operators Rn on the wavefunction can be stated as

Rnψi,k(r) = ψi,Rnk(Rnr) = ψi,k(r); or ψi,R−1
n k(r) = ψi,k(Rnr). (2.13)

If R−1
n k leads to a distinguishable k-point, then (2.13) shows that the states at R−1

n k

can be generated from those at k and the corresponding eigenvalues must be equal,

εi(R
−1
n k) = εi(k). In all crystals BZ can always be reduced by at least a factor of 2

using relation of states at k and −k. For example, simple cubic crystal has 48 point

symmetry operations and its IBZ is just 1/48 the total BZ. The larger the point

group, the greater the reduction of calculations.

For many quantities describing electronic structure of materials, such as total

energy, electron density and number of electrons in bands, density of states (DOS)

etc., it is necessary to sum (integrate) over k throughout the BZ. Hence, to find

some intrinsic property of a crystal to which we refer as ”per unit cell”, we need

to sum over values of k and divide the result with the number of values Nk. For a

general function fi(k) the average value per cell becomes

f̄i =
1

Nk

∑

k

fi(k) → Ωcell

(2π)3

∫

BZ

d3k fi(k), (2.14)

where (2π)3/Ωcell is the volume of the BZ 5, where we replaced the sum with an

integral as the k-points are dense enough in the limit of large crystal volume to

validate this conversion.

Integration over the full BZ can be reduced to the integration over only the IBZ

with the help of symmetry. If we define the weight wk to be the number of k-points

in full BZ related by symmetry operations to the given k-point in IBZ (including

the point in the IBZ) divided by the total number Nk of k-points in BZ, the sum in

(2.14) becomes equivalent to

f̄i =
IBZ∑

k

wkfi(k). (2.15)

4However, as a general crystal structure is composed of a BL and a basis, in cases when di-
mensions of the basis are in a special relation to the primitive vectors there exist additional non-
symmorphic operations which are taking the structure into itself, namely: screw axes and glide

planes. For the pedagogical treatment of the group theory in solid state physics we refer to the
textbooks [33, 43] and [44] for truly interested reader.

5For 2D crystals it is (2π)2/Scell.
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Quantities such as electron density can always be written as

n(r) =
1

Nk

∑

k

nk(r) =
1

NPG

∑

Rn

IBZ∑

k

wknk(Rnr). (2.16)

To calculate these quantities in k-space, one needs to accurately replace analytical

integral in BZ with a sum on a chosen grid used in numerical integration.6 This is

a problem specific to the material under study and depends upon having sufficient

points in regions where the integrand varies rapidly. In this respect, the key division

of crystal structures is between insulators and metals.

Insulators have filled bands that can be integrated using only a few special points

[46]. Since the integrand fi(k) is a function of ψi,k and εi(k) and for insulators the

sum (2.14) is over filled bands, it is a smoothly varying periodic function of k.

Therefore, it can be expanded in Fourier components

fi(k) =
∑

T

fi(T)eik·T, (2.17)

where T are the lattice vectors. The most important point is that the contribution

of the rapidly varying terms at large T decreases exponentially, so that the infinite

sum (2.17) can be truncated to a finite sum. Monkhorst and Pack [47] proposed a

general method for the division of BZ into a uniform grid of points determined by

a simple formula valid for any crystal,

kn1,n2,n3
=

3∑

i=1

2ni −Ni − 1

2Ni

bi, (2.18)

where bi are the primitive vectors of the reciprocal lattice and Ni are the dimensions

of the grid. The larger the dimensions of the grid, the finer and more accurate are

the sampling. If Ni are even, the set does not include the highest symmetry points,

i.e. it misses the Γ point (k = 0) and the points on the BZ boundary. Moreover,

this grid has a nice property that it exactly integrates a periodic function that has

Fourier components which extend only to Niai in each direction.

On the contrary to insulators, metals present difficulties when integrating the

states that are close to the Fermi surface, which plays a special roll in many of

their properties, as the Fermi function shows sharp variation from unity to zero as

a function of k. In order to represent the Fermi surface the tetrahedron method is

widely used [48]. In this method IBZ is divided into a set of tetrahedra whose corners

are taken to be the grid points. This is a particularly convenient as the proper choice

6Number of grid points in BZ should not be confused with the number Nk of allowed values of
k-points in the BZ.
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of tetrahedra can fill all the space for any grid, e.g. an irregular grid that has more

points near the Fermi surface and fewer of them far from the Fermi surface where

high accuracy is not needed. Furthermore, with the arrangement of tetrahedra

that avoids the misweighting of k-points, this method maps exactly to the special-

points scheme of Monkhorst and Pack [49, 50]. Matrix elements and eigenvalues are

obtained for the k-points on the corners of tetrahedra and the integration for each

tetrahedron is performed analytically, after interpolating eigenvalues and matrix

elements inside the tetrahedron. The tetrahedron method is improved by Blöchl

[51] and it is widely implemented in DFT codes.

2.1.5 Calculation of electron density

As an example how the real space and the reciprocal space are intertwined in the

electronic structure calculations, we shall briefly present the main procedures in the

calculation of the electron density.

The electron density in a crystal can be written as

n(r) =
1

Nk

∑

k,i

f(εi(k))ni,k(r), (2.19)

where ni,k(r) = |ψi,k(r)|2 and f(εi(k)) is the Fermi function. For a plane wave basis,

from (2.10) we get

ni,k(r) =
1

Ω

∑

m,m′

c∗i,m(k)ci,m′(k)ei(Gm′−Gm)·r, (2.20)

and

ni,k(G) =
1

Ω

∑

m

c∗i,m(k)ci,m′′(k), (2.21)

where m′′ denotes the G vector for which Gm′′ = Gm+G. As stated in the previous

subsections, the point group symmetry operations Rn of the crystal can be used to

find density in real n(r) and reciprocal space n(G) in terms of the k-points in the

IBZ only.

The representation of electron density in Fourier space (2.21) is intuitively clear

but to calculate it straightforwardly using (2.21) is far from efficient. This expres-

sion involves a double sum, i.e. a convolution in Fourier space that requires N2
G

operations, where NG is the number of G vectors needed to describe the density.

For large systems this becomes particularly expensive. On the other hand, if the

Bloch states are known in real space on a grid of NR points, the density can be found

as a square of this states in NR operations. This procedure involves the usage of fast

Fourier transform (FFT) to convert density from one space to another in N logN
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operations, where N = NR = NG. The density in real space n(r) is needed to find

potentials, e.g. ǫxc(r) and Vxc(r), and n(G) can be used for solving the Poisson

equation in Fourier space, thus the expressions for density in both spaces are used

at some point during calculations. Cautionary note for the calculation of density

is that it requires Fourier components that extend twice as far in each direction as

those needed for the wavefunction ψ as their relation is n ∝ |ψ|2. Also, the FFT

requires a regular grid in the form of a parallelepiped, whereas the wavefunction

cutoff is usually expressed as a sphere with (1/2)|k+G|2 < Ecutoff . For that reasons

the number of points in the FFT grid for density is roughly an order of magnitude

larger than the number of G vectors in the basis of the wavefunction. Neverthe-

less, the FFT approach is much more efficient for large systems since the number of

operations scale as N logN .

As we stated in Chapter 1, within the DFT approach to electronic structure of

materials one has to determine the ground state electron density, which is calculated

by solving the KS equations self-consistently (see Fig. 1.2). During this procedure,

the input density of the (m + 1)-th cycle is constructed from the output density of

the m-th cycle. Using solely the output density from the current interation as the

input density for the next iteration would lead to numerical issues and violate the

SCF procedure. Hence, the input density of the (m + 1)-th iteration, n
(m+1)
in (r), is

constructed as a mixture of density n
(m)
out (r) and n

(m)
in (r). The simplest approach is

linear mixing which estimates an improved density input n
(m+1)
in (r) at step (m+ 1)

as a linear combination of n
(m)
in (r) and n

(m)
out (r) with fixed coefficients

n
(m+1)
in (r) = αn

(m)
out (r) + (1 − α)n

(m)
in (r) (2.22)

where α ∼ 0.01 − 0.1.

More advanced methods use the Jacobian J (the second derivative matrix) of

the system and build up the information upon it as the iterations proceed. One

of the most popular methods is the Broyden method [52, 53, 54], which starts with

the approximate form of the inverse Jacobian J −1 and improves it in each iteration

by making the change in density for the next step be in a direction orthogonal to

directions of the last couple (∼ 10) iterations. The computational cost of Broyden

method is similar to that of linear mixing, but the speedup of the iterative procedure

is considerable. Self-consistence is achieved when the input and output densities

differ less then some predefined value. Finally, the output density of the last iteration

is the ground state electron density.

33



2.2 Numerical representation of wavefunction

The question of an accurate representation of one-particle wavefunctions is so pro-

found that it has stimulated the development of completely different methodologies

in the electronic structure calculations. This particular task is followed by vari-

ous numerical difficulties, the origin of which lies in the different behavior of the

wavefunctions in the diverse regions of the system.

In the atomic regions (near the nucleus) the kinetic energy of electrons is large,

resulting in rapid oscillations of the wavefunctions and consequently for an accurate

numerical representation fine grids are required. On the other hand, large kinetic

energy makes the Schrödinger equation insensitive to the changes of chemical en-

vironment. Therefore, the wavefunction in the atomic region can be accurately

represented by a small set of atomic-like orbitals. Electrons with well localized

wavefunctions within this region are called core electrons.

The opposite situation is to be found in the region between the atoms – the

so-called interstitial or bonding region – where the kinetic energy of electrons is

small and the wavefunctions are smooth, but they respond strongly to the changes

of chemical environment. In this region the wavefunctions can be represented with

a comparably small plane wave basis set. Such behavior are characteristic for the

valence wavefunctions, which are responsible for chemical bonds in molecules and

the construction of the electronic bands in solids. Difference between the core and

valence states are sketched in Fig. 2.1.

Thus, one needs to perceive the behavior of wavefunctions in both regions and

construct the appropriate basis for their representation in practical calculations.

Based on a question whether the calculations explicitly include all the electrons in

the system, these methods can be divided into two groups:

• all-electron methods

• pseudopotentials

2.2.1 All-electron methods

All-electron methods explicitly include all electrons, core and valence, in the calcula-

tion of the electronic wavefunction and density. They are the most general numerical

methods for the precise solution of the Schrödinger equation.

The basic idea behind these methods is to divide the electronic structure problem

to properly represent the rapid oscillations of wavefunctions near each nucleus in

the system as well as its smooth part in the bonding region. Therefore, the smooth

functions are augmented near each nucleus by solving the Schrödinger equation in

34



Figure 2.1: Electronic states in solid silicon. The valence states are delocalized over
the crystal (green line) as the wavefunctions from neighboring atoms overlap. The
lowest-energy 1s state (red) is at an energy two orders of magnitude lower than the
valence states and is strongly localized near the nucleus, with no overlap between the
atoms. The gray regions around the atoms indicate where the wavefunction, density
and potential are smoothed in pseudized methods. From [55]. b) Comparison of
a wavefunction in the Coulomb potential of the nucleus (blue) to the one in the
pseudopotential (red). The real and the pseudo wavefunction and potentials match
above a certain cutoff radius rc (source: www.wikipedia.org/wiki/Pseudopotential).

the sphere at each energy and matching to the outer wavefunction. The idea of space

division was originally proposed by Slater [56] for calculation of wavefunctions in a

periodic potential. The resulting augmented plane wave method (APW) was later

modified within Green’s function formalism into Korringa-Kohn-Rostocker method

(KKR) [57, 58]. They approached the electronic structure as a scattered-electron

problem where an electron beam traveling through solid is represented as a plane

wave. If for some energy the scattered waves interfere destructively a bound state

has been determined. This approach can be translated to a basis set method with

energy and potential dependent basis functions. Accordingly, a model potential

had to be chosen: the so-called muffin-tin potential approximates the true potential

by a constant in the interstitial region and by a spherically symmetric potential

in the atomic regions. This lead to a muffin-tin orbitals (MTO) approach, which

was initially proposed by Andersen [59] as a method suited to provide a satisfying

interpretation of the electronic structure of solids (e.g. canonical bands) in terms of

a minimal basis of orbitals, but it subsequently extended into a new methodology.

Augmented wave methods became practically applicable with an important mod-

ification due to Andersen [60], who showed that the energy-dependent basis set of
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Slater’s APW method can be mapped onto one with energy independent basis func-

tions, by linearizing the partial waves for the atomic regions in energy. The APW

equations are more difficult than the usual independent-particle equations that are

linear in energy, such as (2.8), where all the eigenvalues and eigenvectors can be

obtained with a single diagonalization.

The APW effective potential depends upon the logarithmic derivatives that are

functions of energy ε = εi,k which are not known in advance and must be calculated

for each band separately. This requires the computationally demanding procedure

of ”root tracing” of the energy-dependent characteristic polynomial of the APW

equation. Andersen’s approach circumvent this procedure by the replacement of

the original APW problem with the energy independent eigenvalue problem that

can be solved with standard numerical techniques. Thus, the ”L” method has been

obtained, that make use of linearization of the equations around reference energies.

The linearized augmented plane wave method (LAPW) is widely considered as the

one that can provide the most precise solutions of the KS equations. Moreover, the

results obtained with LAPW method serve as a golden standard for most of the

DFT benchmark calculations, as well as for the construction of pseudopotentials.

2.2.2 Pseudopotentials

In the pseudopotential approach, only the valence electrons are explicitly included in

the calculation and the repulsion of the core electrons is described with an effective

potential together with the Coulomb attraction of the nucleus. Two main reasons

have motivated the introduction of pseudopotentials: one is to avoid the explicit

description of core electrons and the other is to eliminate the rapid oscillations of

the wavefunction near the nucleus, which normally requires either complicated or

large basis set (usually both).

We will describe the very basics of the algorithm for the construction of pseu-

dopotentials. The first step is an all-electron atomic DFT calculation (usually in

LDA) in spherical approximation for a chosen electronic configuration,

− 1

2

d2

dr2
rψnl(r) +

[
l(l + 1)

2r2
+ Veff(r) − εnl

]

rψnl(r) = 0 (2.23)

where Veff(r) = −Z/r + VH([n]; r) + Vxc([n]; r). After the inspection of determined

eigenvalues and wavefunctions, one divides the electrons into core and valence (see

Fig 2.1a) and choose the cutoff radius. The cutoff radius rc can be different for each

l and should be larger than the radial coordinate of the outermost node of the radial

wavefunction. Then for each l, the pseudo wavefunction is constructed in a way that
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it matches the all-electron wavefunction outside the cutoff radius rc and be equal to

some reasonable model function inside the core region, i.e.

ψ̃l(r) =

{

fl(r; {λi}) for r < rc

ψl(r) for r > rc.

The set of adjustable parameters {λi} are obtained either by fitting to experimen-

tal data (atomic spectroscopic data for outer electrons, electron-atom cross sections

etc.) or are determined ab-initio to mimic the valence properties calculated for the

isolated atom. The freedom of choice for the function fl(r; {λi}) is limited by the

imposed conditions. The list of such requirements is given by Hamann, Schluter

and Chiang (HSC) [61] for the construction of ”good” ab-initio norm-conserving

pseudopotential:

1. all-electron and pseudo valence eigenvalues agree for the chosen reference elec-

tron configuration;

2. all-electron and pseudo valence wavefunctions match beyond a chosen cutoff

radius rc;

3. the logarithmic derivatives of the all-electron and pseudo wavefunctions agree

at rc;

4. the integrated charge inside the core region for each pair of all-electron/pseudo

wavefunctions agrees. This is the direct consequence of the norm-conservation;

5. the first derivative with respect to energy of the logarithmic derivatives of the

all-electron and pseudo wavefunctions agrees at rc.

Pseudo wavefunctions of silicon for two distinct electron configurations are presented

in Fig. 2.2a.

The next step is the reconstruction of the potential which corresponds to the

pseudo wavefunction, i.e. the so-called inversion of Schrödinger equation,

Ṽ scr
l (r) = εl −

l(l + 1)

2r2
+

1

2rψ̃l(r)

d2[rψ̃l(r)]

dr2
. (2.24)

This approach is always applicable if pseudo wavefunction is nodeless. The obtained

pseudopotential is screened, i.e. it contains the Hartree and XC contribution of

valence electrons. Thus, the final step is the removal of these contributions – the

unscreening of pseudopotential,

Ṽl(r) = Ṽ scr
l (r) − VH([ñ]; r) − Vxc([ñ]; r). (2.25)

37



Figure 2.2: a) Comparison of the pseudo wavefunction (solid lines) and the cor-
responding all-electron wavefunctions (dashed lines) for the electron configurations
3s23p2 and 3s13p23d1 of Si; b) nonlocal pseudopotential of Si for angular momen-
tum l = 0, 1, 2, and the Couloumb potential of a point-like atomic core (dashed line)
(from [62]) .

Pseudopotentials of silicon for angular momenta l = 0, 1, 2 are presented in Fig. 2.2b.

For the thorough overview of different approaches in pseudopotential method we

refer to [25] and references cited therein.

The calculations can be performed after the construction of desired pseudopoten-

tials for all the different atoms in the system. The resulting valence wavefunctions

are smooth enough to be well represented with a plane wave basis set. As the number

of basis functions must be finite in practical calculations, the plane wave expansion

of wavefunctions is truncated after some energy. The plane wave basis set is very

inefficient in the description of strong oscillations of all-electron wavefunctions near

the nucleus. Although computationally cheap, the pseudopotential method comes

with a price – all the information on the electron density and wavefunctions in the

core region is lost. This deficiency is overcame by the method described in the

following section.

2.3 Projector augmented wave method

Two distinct methodologies, i.e. all-electron methods and pseudopotentials, can be

combined into a unified electronic structure method – the projector augmented wave

method (PAW) [63]. As most of the calculations in this thesis were done with GPAW
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code based on the PAW method, we will dedicate the remainder of the chapter to

this particular approach.

At the root of the PAW method lies a transformation that maps the true wave-

functions with their complete nodal structure onto auxiliary wavefunctions that are

numerically convenient.7 The goal is to have smooth auxiliary wavefunctions with

a rapidly convergent plane wave expansion that will allow calculations similar to

that of the pseudopotential approach. In the PAW method, auxiliary wavefunctions

are used to construct the true wavefunctions from which one evaluates the total

energy and other relevant physical quantities. To some extent, the PAW method

is a missing link between APW methods and the pseudopotential method, and the

latter can be derived from the PAW method with a suitable approximations [64].

2.3.1 PAW transformation operator

We begin this discussion by stressing out that within the PAW method the core and

the valence wavefunctions have distinct treatment. To elaborate on the underlined

differences, let us denote the true valence wavefunctions as |ψi〉 and the auxiliary

wavefunctions with |ψ̃i〉, where i ≡ (i,k, σ) is the composite label that contains the

band index i, a k-point vector k and a spin index σ. The transformation T that

maps auxiliary wavefunctions to the true valence wavefunctions is defined as

|ψi〉 = T |ψ̃i〉 , (2.26)

and consequently the KS equations (1.33) are transformed as follows

T †HT |ψ̃i〉 = T †T |ψ̃i〉 εi. (2.27)

The equation (2.27) is the same as (1.33) a Schrödinger-like equation, but for a

transformed hamiltonian T †HT and with an overlap operator T †T on the right-hand

side. The operator T has to modify the smooth auxiliary wavefunction in atomic

regions, as we demand the true wavefunction to have a correct nodal structure.

Therefore, it makes sense to write a transformation operator as identity plus the

sum of atomic contributions,

T = 1 +
∑

R

SR. (2.28)

For every atom R in the system, the local term SR adds the difference in the atomic

region around that particular atom between the true and the auxiliary wavefunction.

7One should be careful about terminology here, as it has changed from the original work of
Blöchl. By true wavefunction, we mean the true solution to the original KS equations (1.33)
with no transformation of any kind involved. Thus, this would be an analogue to the all-electron
wavefunction in the pseudopotential approach. Also, the name auxiliary wavefunction is used to
make a distinction from the pseudo wavefunctions defined in the pseudopotential approach.
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It is defined in terms of the so-called partial waves, which are the solutions |φlR〉 of

the Schrödinger equation for the isolated atom R.

Partial waves |φlR〉 for the basis set inside the atomic sphere of the atom R, thus

any valence wavefunction inside the atomic region R can be expressed as a linear

combination of partial waves with yet unknown coefficients,

ψ(r) =
∑

lR

φlR(r)clR , in the region |r−RR| < rc,R. (2.29)

The label lR ≡ ((lm), α)R refers to a site R and contains the angular momentum

indices (lm) and an additional index α that differentiates the partial waves with the

same angular momentum quantum numbers on the site R. It should be noted that

the partial waves are not the bound states and consequently are not normalizable,

unless we truncate them beyond a certain radius rc,R. The results obtained with the

PAW method do not depend on the sphere radius rc,R as long as the truncation is

not done too close to the nucleus.

The core wavefunctions are treated separately, as they do not spread out of

the corresponding atomic spheres. Thus the truncation radii rc,R for all the atoms

must be chosen in a way that all the core states lie completely inside the atomic

spheres. Furthermore, we will use the frozen-core approximation so that electron

density and energy that correspond to the core states are the same as they are

in the isolated atoms. We require that the transformation T produce only the

wavefunctions that are orthogonal to the core states. Therefore, the set of atomic

partial waves |φiR〉 includes only the valence wavefunctions that are orthogonal to

the core wavefunctions of the atom R.

For each partial wave an auxiliary partial wave |φ̃lR〉 is used in the definition of

the local operator SR,

|φlR〉 = (1 + SR) |φ̃lR〉 ⇔ SR |φ̃lR〉 = |φlR〉 − |φ̃lR〉 . (2.30)

Since the operator 1+SR changes the wavefunctions only inside the region of atom

R, we require that the partial waves are identical to their auxiliary counterpart

beyond a certain radius rc,R, i.e.

φlR(r) = φ̃lR(r) for |r−RR| > rc,R. (2.31)

As the transformation operator T must be applicable to an arbitrary auxiliary

wavefunction and T is just a sum of the local transformations SR, the local expantion

of the auxiliary wavefunction into the auxiliary partial waves can be written as

ψ̃(r) =
∑

lR

φ̃lR(r) 〈p̃lR |ψ̃〉 for |r−RR| < rc,R. (2.32)
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The last equation is a definition of the projector functions |p̃lR〉 for the atom R.

Furthermore, the equation (2.32) draws the conclusion that
∑

lR
|φ̃lR〉 〈p̃lR | = 1,

which is valid inside the atomic region R. This also implies that 〈p̃lR |φ̃mR
〉 = δlR,mR

.

Note that neither the projector functions nor the partial waves need to be orthogonal

among themselves.

The action of SR on an arbitrary auxiliary wavefunction can be expressed from

equations (2.30) and (2.32) as

SR |ψ̃〉 =
∑

lR

SR |φ̃lR〉 〈p̃lR |ψ̃〉 =
∑

lR

(
|φlR〉 − |φ̃lR〉

)
〈p̃lR |ψ̃〉 . (2.33)

The transformation operator is constructed as a sum of the contributions from all

the atoms in the system, i.e.

T = 1 +
∑

R

∑

lR

(|φlR〉 − |φ̃lR〉) 〈p̃lR | . (2.34)

The true valence wavefunction can be expressed as

|ψ〉 = |ψ̃〉 +
∑

R

∑

lR

(|φlR〉 − |φ̃lR〉) 〈p̃lR |ψ̃〉 = |ψ̃〉 +
∑

R

(
|ψ1

R〉 − |ψ̃1
R〉

)
, (2.35)

where we defined the one-center expansions

|ψ1
R〉 =

∑

lR

|φlR〉 〈p̃lR |ψ̃〉 ,

|ψ̃1
R〉 =

∑

lR

|φ̃lR〉 〈p̃lR |ψ̃〉 .
(2.36)

Let us elaborate on the expression (2.35) of the true valence wavefunction in the

different regions of space:

• according to (2.31) in the interstitial region the partial waves are pairwise

identical to their auxiliary counterparts so that the auxiliary wavefunction in

this region is identical to the true valence wavefunction, ψ(r) = ψ̃(r).

• in the augmentation region (in any atomic region in the system) the true

valence wavefunction is equal to its partial wave expansion in that particular

region, i.e. ψ(r) = ψ1
R(r) as the auxiliary wave function and its partial wave

expansion are equal according to (2.32).

In practice the partial wave expansions are truncated. Thus, the identity (2.32) does

not hold strictly and the consequence is that the plane waves (i.e. the basis for the

expansion of the auxiliary wavefunction) also contribute to the true wavefunction in
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the atomic region. In this way the missing terms in the partial wave expansion are

recovered by plane waves.

The final note of this subsection is an answer to the question whether the trans-

formation of the auxiliary wavefunction defined in (2.34) indeed provides the true

wavefunction. The transformation should be thought of merely as a change of rep-

resentation analogous to a change of coordinates [65]. Therefore, if the total energy

functional is transformed consistently, its minimum will yield an auxiliary wavefunc-

tion that produces the correct true wavefunction.

2.3.2 Expectation values of operators

As we have defined the transformation itself in Subsection 2.3.1, the question arise

how to calculate relevant physical quantities, i.e. the expectation values of cor-

responding operators. The expectation values can be determined either from the

reconstructed true wavefunctions or directly from the auxiliary wavefunctions with

the use of the transformed operator,

〈A〉 =
∑

i

fi 〈ψi|A|ψi〉 +
Nc∑

j=1

〈φc
j|A|φc

j〉

=
∑

i

fi 〈ψ̃i|T †AT |ψ̃i〉 +
Nc∑

j=1

〈φc
j|A|φc

j〉 ,
(2.37)

where fi are the occupation numbers of the valence states and Nc is the total number

of core states in the system (thus this sum runs over all the atoms in the system).

According to (2.35) we can decompose the matrix elements into their individual

contributions as

〈ψ|A|ψ〉 = 〈ψ̃ +
∑

R

(
ψ1
R − ψ̃1

R

)
|A|ψ̃ +

∑

R′

(
ψ1
R′ − ψ̃1

R′

)
〉

= 〈ψ̃|A|ψ̃〉 +
∑

R

(
〈ψ1

R|A|ψ1
R〉 − 〈ψ̃1

R|A|ψ̃1
R〉

)

︸ ︷︷ ︸

part 1

+
∑

R

(
〈ψ1

R − ψ̃1
R|A|ψ̃ − ψ̃1

R〉 + h.c.
)

︸ ︷︷ ︸

part 2

+
∑

R 6=R′

〈ψ1
R − ψ̃1

R|A|ψ1
R′ − ψ̃1

R′〉
︸ ︷︷ ︸

part 3

.

(2.38)

Only the first part of (2.38) is evaluated explicitly while the second and the third

part are neglected, because they vanish for sufficiently local operators as long as the
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partial wave expansion is well converged. For the second part the argumentation for

such approximation is as follows: the difference ψ1
R − ψ̃1

R vanishes per construction

beyond some augmentation region, as the partial waves are pairwise identical beyond

that region; the difference ψ̃ − ψ̃1
R vanishes inside the augmentation region if the

partial wave expansion is sufficiently converged; thus, in no region of space both

functions ψ1
R − ψ̃1

R and ψ̃ − ψ̃1
R are simultaneously nonzero. For the third part the

conclusion is similar, as the differences ψ1
R − ψ̃1

R from different sites can not be

nonzero in the same region of space. Therefore, the second and the third part of

(2.38) can easily be neglected for operators such as the kinetic energy or the real

space projection operator |r〉 〈r| which produces the electron density. It should be

noted that for truly nonlocal operators (such as the Hartree term) the second and

the third part must be treated differently. For the expressions of the expectation

values of nonlocal operators, calculation of forces, construction of partial waves

and projector functions, local properties (projected density of states, local magnetic

moments etc.) as well as the treatment of the external potentials in PAW and many

other technical details required to make the method work in practice we refer to

[66].8

Thus, neglecting the second and the third part of (2.38), using (2.35) and the

first line of (2.37), we can express the expectation values of the local and semilocal

operators as

〈A〉 =
∑

i

fi
(
〈ψ̃i|A|ψ̃i〉 + 〈ψ1

i |A|ψ1
i 〉 − 〈ψ̃1

i |A|ψ̃1
i 〉
)

+
Nc∑

j=1

〈φc
j|A|φc

j〉

=
∑

i

fi 〈ψ̃i|A|ψ̃i〉 +
Nc∑

j=1

〈φ̃c
j|A|φ̃c

j〉

+
∑

R

( ∑

l,l′∈R
Dll′ 〈φl|A|φl′〉 +

Nc,R∑

j∈R
〈φc

j|A|φc
j〉
)

−
∑

R

( ∑

l,l′∈R
Dll′ 〈φ̃l|A|φ̃l′〉 +

Nc,R∑

j∈R
〈φ̃c

j|A|φ̃c
j〉
)
,

(2.39)

where we used the notation l, l′ ∈ R to point out that the indices l and l′ refer to the

partial waves of the same site R (the notation lR,l′R would be cumbersome) and Nc,R

is the number of core states of the atom R. We have also introduced the one-center

8The paper of Rostgaard is a self-contained description of the basic theory of PAW method.
The expressions and notation therein closely follow the implementation of PAW method in the
GPAW code.
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density matrix Dll′ , which is defined as

Dll′ =
∑

i

fi 〈ψ̃i|p̃l〉 〈p̃l′ |ψ̃i〉 =
∑

i

〈p̃l′ |ψ̃i〉 fi 〈ψ̃i|p̃l〉 . (2.40)

The auxiliary core states |φ̃c
j〉 allow to incorporate the tails of the core wavefunctions

into the plane wave part and thus assure that the partial wave contributions cancel

strictly beyond the augmentation region. The auxiliary core states are identical to

the true core states in the tales, but are a smooth continuation inside the atomic

sphere.

The electron density is given by

n(r) = ñ(r) +
∑

R

(
n1
R(r) − ñ1

R(r)
)
,

ñ(r) =
∑

i

fiψ̃
∗
i (r)ψ̃i(r) + ñc,

n1
R(r) =

∑

l,l′∈R
Dll′φ

∗
l′(r)φl(r) + nc,R,

ñ1
R(r) =

∑

l,l′∈R
Dll′φ̃

∗
l′(r)φ̃l(r) + ñc,R,

(2.41)

where nc,R is the core density of the atom R and ñc,R its auxiliary counterpart

identical to the true core density in the interstitial region and a smooth continuation

inside the augmentation region.

The bare electrostatic potential of nucleus is difficult to represent using delocal-

ized basis sets, as its eigenvalues are slowly converging with the plane wave expan-

sion. In a cases like this one can heal the undesirable behavior in the equations

for the smooth functions by adding and subtracting a properly chosen operator BR,

localized in a single atomic region R. As a consequence of a strict localization of

operator BR, one can use the identity between the auxiliary wave function and its

own partial wave expansion and express the expectation values of BR as follows

0 = 〈ψ̃i|BR|ψ̃i〉 − 〈ψ̃1
i |BR|ψ̃1

i 〉 . (2.42)

By repeating this procedure for each atomic region the nuclear Coulomb singularity

in the equations for the smooth functions can be completely removed, and what is

left is the term that can be dealt with in the radial equations about each nucleus.

2.3.3 Total energy

The main goal of PAW method is to provide the numerical background for practi-

cal calculations within DFT, where the total energy is one of the most important
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quantities. Similar to wavefunctions, the total energy of the system can be written

as a sum of three terms

E = Ẽ +
∑

R

(E1
R − Ẽ1

R), (2.43)

and we shall explain in detail every term separately.

The plane wave part Ẽ involves only smooth functions and is evaluated on equis-

paced grids in real and reciprocal space. This is computationally the most demand-

ing part, and the calculation is similar to the pseudopotential approach. Recalling

the Kohn-Sham expression (1.26) for total energy, the smooth part of the total

energy can be written as follows

Ẽ =
∑

i

〈ψ̃i| −
1

2
∇2|ψ̃i〉 +

1

2

∫

d3r

∫

d3r′
(
ñ(r) + Z̃(r)

)(
ñ(r′) + Z̃(r′)

)

|r− r′|

+

∫

d3r ñ(r)ǫxc(r; [ñ]) +

∫

d3r v̄(r)ñ(r).

(2.44)

The term Z̃(r) is an angular dependent core-like density that will be described after

we give the expressions for the second and third part of total energy. The second

part of total energy is the sum of terms

E1
R =

∑

l,l′∈R
Dll′ 〈φl′ | −

1

2
∇2|φl〉 +

Nc,R∑

j∈R
〈φc

j| −
1

2
∇2|φc

j〉

+
1

2

∫

d3r

∫

d3r′
(
ñ1(r) + Z(r)

)(
ñ1(r′) + Z(r′)

)

|r− r′|

+

∫

d3rn1(r)ǫxc(r; [n1]),

(2.45)

and the third part is similarly

Ẽ1
R =

∑

l,l′∈R
〈φ̃l′ |

1

2
∇2|φ̃l〉

+
1

2

∫

d3r

∫

d3r′
(
ñ1(r) + Z̃(r)

)(
ñ1(r′) + Z̃(r′)

)

|r− r′|

+

∫

d3r ñ1(r)ǫxc(r; [ñ1]) +

∫

d3r v̄(r)ñ1(r).

(2.46)

The nuclear charge density −Z(r) is defined as a sum of δ-functions on the nuclear

sites, Z(r) = −
∑

R ZRδ(r−R), where ZR are the atomic numbers. Note that the

self energy of a point charge is infinite and thus it must be subtracted out.

Two terms in the expressions for total energy deserve closer inspection – the com-

pensation density Z̃(r) =
∑

R Z̃R(r) and the potential v̄(r). The former is given as

a sum of angular momentum dependent gaussians, which have an analytical Fourier
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transform. It is nonspherical and it is constantly adapting to the instantaneous

environment.9 The construction of compensation charges must be achieved in a

way that the augmentation charge densities n1
R(r) + ZR(r) − ñ1

R(r) − Z̃R(r) have

vanishing electrostatic multi-pole moments for each atomic site. This is necessary if

we don’t want for the one-center contributions to produce an electrostatic potential

outside of their own atomic region. When this condition is fulfilled, the electrostatic

interaction of the one-center parts between different sites vanishes. Moreover, the

compensation density given in this form is still localized in the atomic region, but a

technique similar to Ewald summation [67] allows to replace it by a very extended

charge density. If this is done, all the functions in Ẽ converge as fast as the auxiliary

density itself.

The potential v̄ =
∑

R v̄R, which occurs in the last terms of (2.44) and (2.46)

enters the total energy in the form of the operator B, described in Subsection 2.3.2

0 =
∑

R

[
∑

i

fi 〈ψ̃i|
(

v̄R −
∑

l,l′∈R
|p̃l〉 〈φ̃l|v̄R|φ̃l′〉 〈p̃l′ |

)

|ψ̃i〉
]

=
∑

R

[
∑

i

fi 〈ψ̃i|v̄R|ψ̃i〉 −
∑

R

∑

l,l′∈R
Dll′ 〈φ̃l|v̄R|φ̃l′〉

]

.

(2.47)

The main reason behind the introduction of potential v̄ is that the self-consistent

potential in the plane-wave part of total energy Ẽ is rarely smooth enough. This

artificial potential improves the plane wave convergence significantly, without chang-

ing the converged result. Note that v̄ must be localized within the augmentation

region, where the expansion (2.32) of the auxiliary wavefunction into the auxiliary

partial waves holds.

2.3.4 Comparison of PAW and pseudopotential methods

Once we have obtained the expression for the total energy in terms of the electron

density, the rest follows: the Kohn-Sham potential is the derivative of the potential

energy with respect to density, the hamiltonian follows from derivatives with respect

to wavefunctions and the forces are partial derivatives of the energy functional with

respect to atomic positions. As we stated in Section 2.2 the PAW method is to

some extent an approach that combines the pseudopotentials with the all-electron

methods, thus recovering the information about electron density in the regions close

to nuclei. The question arise: what approximations are incorporated into the PAW

method? The answer is that all the approximations are made already in the deriva-

tion of the expression for the total energy functional:

9A similar term occurs in the pseudopotential approach. For comparison of the compensation
charge densities in PAW and pseudopotential method we refer to [64].
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• we use the frozen-core approximation. It is not an inherent characteristic of

the PAW method and in principle can be overcome. See [68] for a relaxation

of this requirement;

• the plane wave expansion of the auxiliary wavefunction is truncated after some

energy cutoff defined as Ecut = 1
2
(~2)G2

max. The size of the basis set can

be easily controlled with this single parameter, thus achieving the desired

convergence degree. Typical cutoff is around 15 Ha (≈ 400 eV);

• the partial wave expansions must be converged. Most often one uses one or

two partial waves per angular momentum (l,m) and site. Cautionary note is

that the partial wave expansion is not variational, as the changes in partial

waves affect the total energy functional itself and not only the basis set.

The PAW method is in a close connection with the pseudopotential approach. More-

over, the latter can be derived as the well defined approximation from the PAW

method. The augmentation part of total energy ∆E = E1 − Ẽ1 is a functional of

the one-center density matrix Dll′ defined in (2.40), and the pseudopotential ap-

proach can be recovered if we truncate a Taylor expansion of ∆E about the atomic

density matrix after the linear term, and the term linear to Dll′ is the energy related

to the nonlocal pseudopotential,

∆E(Dll′) = ∆E(Dat
ll′) +

∑

l,l′

(Dll′ −Dat
ll′)
∂∆E

∂Dll′
+O(Dll′ −Dat

ll′)
2

= Eself +
∑

i

fi 〈ψ̃i|vnl|ψ̃i〉 +O(Dll′ −Dat
ll′)

2.
(2.48)

The last expression can be interpreted as follows: the PAW method is an analogue to

the pseudopotential method but with a pseudopotential that adapts to the instanta-

neous electronic environment. This is achieved as the explicit nonlinear dependence

of the total energy on the one-center density matrix is properly taken into account.

Derivation of the formal relationship between the PAW method and the ultra-soft

pseudopotentials [69] in detail can be found in the paper of Kresse and Joubert [64].

To conclude the discussion on the PAW method, we will point out its main

advantages compared to the pseudopotentials:

• PAW method cures the transferability issues of the pseudopotential method.

Watson [70] and Kresse [64] shown that most pseudopotentials fail for high spin

atoms such as Cr. Even if it is possible to construct the pseudopotentials that

can handle situations like this, the failure can not be predicted beforehand.

There is no guarantee that a pseudopotential constructed from the all-electron
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calculation on isolated atom or by fitting to experimental data will be accurate

for molecule or solid. In contrast, well-converged PAW results do not depend

on a reference system such as isolated atom, because it uses the full density

and potential.

• The full charge and spin density obtained with PAW method enable the de-

termination of hyperfine parameters. These parameters are sensitive probes of

the electron density near the nucleus, which is not available in the pseudopo-

tential method. Though the reconstruction techniques for the pseudopoten-

tial approach that make possible the calculation of hyperfine parameters are

invented [71], they are not widely used as the PAW method is more straight-

forward and more precise.

• the plane wave convergence is more rapid compared to the norm-conserving

pseudopotentials and should be equivalent to that of ultra-soft pseudopoten-

tials [69]. However, the expression for total energy in PAW method is simpler

than that of the ultra-soft pseudopotentials and therefore is expected to be

more efficient.

• the algorithm for the construction of pseudopotentials requires the determi-

nation of parameters {λi}. As they influence the results, their choice can be

critical. Furthermore, the PAW method provides more flexibility for the choice

of auxiliary partial waves, which are like pseudopotentials obtained from the

isolated atom as reference system. However, the choice of partial waves does

not influence the converged results.
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Chapter 3

Two-dimensional materials

Discovery of graphene in 2004 [1], the first truly two-dimensional (2D) crystal, has

started a new era of materials’ science and triggered the exponential growth of in-

terest in 2D materials across various disciplines. Since their modern debut, owing to

the rich variety of structural, mechanical, thermal, electronic and optical properties,

2D materials continue to exhibit scientific and technological promise. They provide

a broad platform for theoretical and experimental investigation and development of

next-generation nano- and optoelectronic devices. The ongoing efforts resulted with

nearly a hundred of experimentally isolated 2D materials and thousands of them

that are just waiting to be discovered [72].

A spotlight of the last decade of research has been on 2D semiconductors [73]

whose physical properties can be tuned through manipulation of thickness [74], sub-

strate engineering, strain [75, 76], or doping [77]. The possibilities are becoming even

greater with the synthesis of van der Waals heterostructures [2], made by stacking

layers of different 2D materials in a precisely chosen sequence. In this chapter, bear-

ing in mind the still growing manifold of 2D materials and their heterostructures,

we will provide the very basics of the structural and electronic properties of the few

representatives which are in the focus of our current research.

3.1 Graphene

Graphene is a single-atomic layer of carbon atoms arranged in a hexagonal structure

(Fig. 3.1). It is the basic atomic structure for all the other carbon allotropes. The

ball structure of zero-dimensional (0D) fullerene (C60) can be wrapped-up from a

piece of graphene layer with the introduction of pentagons (and therefore curvature)

of carbon atoms. Similarly, one-dimensional (1D) carbon nanotubes (CNTs) with a

variety of chiralities can be made by rolling graphene sheets into cylinders with the

diameter of few nanometers. The direction of rolling, given by the chiral vector in
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a graphene plane, defines the chirality of CNTs.

Figure 3.1: Carbon allotropes of different dimensions. Adapted from [78].

The first high-quality graphene sheets were isolated from graphite by Geim and

Novoselov in 2004 using the technique called the micromechanical cleavage [1]. The

subtle optical effect that graphene creates on top of SiO2 substrate of carefully

chosen thickness allows its observation with an ordinary optical microscope. Prior

to this discovery, the first observation of graphene was reported in 1961 by Boehm

and coworkers [79]. They obtained single graphite sheets1 by reduction of graphite

oxide in very dilute alkaline suspensions, but the mechanical exfoliation of graphene

directly from graphite along with the demonstration of its extraordinary properties

such as strong ambipolar electric field effect with a carrier concentration of 1013 cm−2

and a room-temperature mobility of 104 cm2 V−1 s−1 was due to Geim and Novoselov.

The significance of their work was recognized by the science community and the two

researchers shared the Nobel Prize in Physics in 2010.

The discovery of graphene came four centuries after the invention of a lead pencil

with a core made of graphite powder mixed with a clay binder. A lead pencil is

suitable for writing and drawing as the graphite is made out of graphene monolayers

weakly coupled by van der Waals forces (Fig. 3.1). Thus, every time we press a pencil

against a paper we are producing graphene sheets. The reason for a few-centuries

gap between the invention of pencil and the isolation of graphene is twofold: (a) only

recently the suitable experimental tools for the search of one-atom-thick materials

are constructed and (b) no one expected for the 2D material to exist in a free state,

as Mermin argued that the long-range crystalline order in two dimensions can be

1The word graphene was coined by Hanns-Peter Boehm in 1986 to describe single sheets of
graphite, but the term itself became highly popular only after the discovery of Geim and Novoselov.
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broken with little energy cost at any finite temperature thus breaking 2D crystal at

ambient conditions [80].

3.1.1 Graphene crystal structure

Graphene crystal structure consists of two interpenetrating triangular sublattices, A

and B. Therefore, the honeycomb lattice can be represented as a triangular lattice

with a two-atoms basis and a lattice constant of a = 2.46 Å. Every atom of sublattice

A has three nearest neighbors from sublattice B (and vice versa) at the distance of

a/
√

3 ≈ 1.42 Å (Fig. 3.2). The primitive lattice vectors a1 and a2 (Fig. 3.2) can be

written as

a1 =

(
a

2
,

√
3a

2

)

, a2 =

(
a

2
,−

√
3a

2

)

. (3.1)

From the relations ai · bj = 2πδij we find the primitive vectors of the reciprocal

lattice,

b1 =

(
2π

a
,

2π√
3a

)

, b2 =

(
2π

a
,− 2π√

3a

)

. (3.2)

On Fig. 3.2b the high symmetry BZ points are labeled. Of particular importance

Figure 3.2: a) Honeycomb lattice is made of two interpenetrating triangular lattices
labeled with A (white circles) and B (black circles). a1 and a2 are lattice primitive
vectors and δ1, δ2, δ3 (green) are the nearest neighbors vectors. b) BZ of the
triangular lattice (shaded area) with the high symmetry points (green) Γ, K, K′, M.
b1 and b2 are primitive vectors of the reciprocal lattice. Adapted from [81].

are the six corners of the BZ – points K and K′ – for reasons that will become clear

latter.2 The triangle ΓMK is the irreducible wedge of the BZ.

2Only two adjacent BZ corners are inequivalent, as the other four can be reached from these
two with the translations by reciprocal lattice vectors.
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3.1.2 sp2 hybridization

Carbon is the sixth element in the periodic system. The electronic configuration

of an isolated carbon atom is 1s22s22p2, i.e. two electrons are in the core 1s state

and they are not involved in the chemical bonds while the rest four electrons are

in the valence 2s and 2p states. As the energies of 2p orbitals (2px, 2py, 2pz) are

approximately 4 eV higher than the energy of 2s orbital, it is favorable that two

electrons occupy 2s state and the other two occupy 2p states. However, in molecules

and solids, carbon atom is surrounded by its neighbors and the electronic structure is

changed drastically from the isolated case. One electron in a carbon atom is excited

from 2s to the third (empty) 2p state. This gives the possibility for carbon atoms

Figure 3.3: Up: valence atomic orbitals of carbon atom; down: hybridized sp2

orbitals (left) and unaffected 2pz atomic orbital (right).

to form n+ 1 spn hybridized orbitals by superposition of 2s and n× 2p orbitals. In

graphene, sp2 hybridization (Fig. 3.3) leads to a trigonal planar structure followed

by the formation of strong σ bonds of carbon atom with its three nearest neighbors

(Fig. 3.2). Hybridized sp2 orbitals, lying in graphene (xy) plane, can be written as

a linear combination of 2s, 2px and 2py orbitals,

|sp2a〉 =
1√
3
|2s〉 −

√

2

3
|2py〉 ,

|sp2b〉 =
1√
3
|2s〉 +

√

2

3

(√
3

2
|2px〉 +

1

2
|2py〉

)

,

|sp2c〉 = − 1√
3
|2s〉 +

√

2

3

(

−
√

3

2
|2px〉 +

1

2
|2py〉

)

.

(3.3)

Head-on overlapping of sp2 orbitals leads to the formation of strong covalent

σ bonds in graphene, which are responsible for the robustness of its structure and

high mechanical stability. Graphene is the strongest material ever measured, with
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an intrinsic tensile strength of 130.5 GPa and a Young’s modulus of 1 TPa [82]. The

electronic structure emerging from sp2 orbitals, σ bands, are far from the Fermi level

(EF ), thus the electrons which occupy σ bands do not participate in the electronic

transport.

In addition to σ bonds in graphene, lateral overlap of the unhybridized 2pz

orbitals is leading to the formation of weaker π bonds and the corresponding π

bands. Details about the π bands, which are crucial for many of peculiar electronic

properties of graphene are described in the following subsections.

3.1.3 π bands of graphene

The electronic properties of graphene are mainly governed by the energy bands near

EF , π bands, which originate in the lateral overlap of the atomic 2pz orbitals. The

expressions for π bands can be derived via the tight-binding (TB) method. The

method itself, followed by the complete derivation of the π bands dispersion, is

given in Appendix B.

Graphene elementary cell contains two carbon atoms. Each atom participates

with one 2pz orbital, thus two energy bands will be derived via the TB method – a

fully occupied π and an empty π∗ band. Dispersion relations for the valence π band

(− sign) and the conduction π∗ band (+ sign) are

ε±(k) =
ǫ2p ± γ|f(k)|
1 ∓ s|f(k)| , (3.4)

where

f(k) = eikya/
√
3 + 2 cos(kxa/2)e−ikya/2

√
3. (3.5)

Expression (3.4) for the values of parameters γ = 3.033 eV, s = 0.129, ǫ2p = 0 (from

[83]) is plotted in Fig. 3.4a. The latter value (ǫ2p = 0) means that the zero of energy

scale is set to be equal to the energy of 2pz orbital. Graphene has no bandgap as

two bands are meeting at K and K′ points in BZ, thus the valence band maximum

(VBM) and the conduction band minimum (CBM) coincide. Finally, the vicinity of

points K and K′ is where the graphene shows its remarkable property – the linear

energy dispersion near EF .

3.1.4 Dirac fermions

To derive the expressions for the electronic excitations close to EF we need to expand

f(k) in the vicinity of points K and K′. By relabeling these points according to the

inset of Fig. 3.4a, their coordinates become

K → K+

(4π

3a
, 0
)

, K′ → K−

(

− 4π

3a
, 0
)

⇔ Kξ =
(

ξ
4π

3a
, 0
)

, ξ = ±1. (3.6)
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Figure 3.4: a) 2D plot of π bands with BZ in inset. Adapted from [81]. High
symmetry points of BZ are relabeled (K→K+, K′ →K−) to follow the discussion of
Dirac fermions. Parameters used in the tight-binding calculations are from [83]; b)
3D plot of π bands of graphene in the approximation of next-nearest neighbors with
Dirac cones magnified in the inset. The difference in energy scale compared to the
2D plot comes from the different values of parameters γ and s. From [78].

It is easy to verify that the function f(k) vanishes at the points K+ and K−. If we

define q ≡ k−Kξ and assume that a|q| ≪ 1, the Taylor expansion of f(k) near Kξ

up to the first order yields

f(k) = f(Kξ + q) = eiqya/
√
3 + 2e−iqya/2

√
3cos

(
2πξ

3
+
qxa

2

)

≈
(

1 +
iqya√

3

)

+ 2

(

1 − iqya

2
√

3

)(

− 1

2
− ξ

√
3qxa

4

)

≈ −a
√

3

2
(ξqx − iqy),

(3.7)

For the sake of notational simplicity, let us restrict the discussion to the excita-

tions near the K+ (K) only.3 Within the first order of q the overlap matrix S (B.14)

can be considered as unity matrix, as s ∼ q2. Consequently, the equation (B.7)

becomes the eigenproblem for the transfer integral matrix H, indicating that H is

an effective hamiltonian for graphene at low-energy, i.e. it describes the excitations

near EF . As p = ~q, H can be expressed as follows

HK =
aγ

√
3

2~

(
0 px − ipy

px + ipy 0

)

=
aγ

√
3

2~
p · σσσ = vFp · σσσ, (3.8)

where vF = aγ0
√

3/(2~) is the Fermi velocity and σσσ = (σx, σy) are Pauli matrices,

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

. (3.9)

If we recall the expression for the hamiltonian of the independent relativistic particles

of mass m and spin 1/2 in 2D,

Ĥ2D = cp · σ +mc2σz, σz =

(
1 0
0 −1

)

, (3.10)

3The discussion for excitations near K− is analogous, only the chirality is reversed. See [81] p.
14-16.
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we conclude that HK describes the massless spin-1/2 particles in two dimensions –

the so-called Dirac fermions.

The eigenvalues and eigenfunctions of hamiltonian (3.8), i.e. energies and wave-

functions of Dirac fermions are

ε±(q) = ±~vF q, Ψ± =
1√
2

(
1

±eiφ

)

eiq·r. (3.11)

where ± refers to the conduction and valence bands, respectively, and φ is the

polar angle of momentum in the graphene plane, p = (px, py) = (p cosφ, p sinφ).

Similarly to light, the dispersion of Dirac fermions is linear in momentum but they

are approximately 300 times slower than light.

The wavefunction (3.11) has two components, resembling the components of

spin-1/2. Referring back to the definitions of the Bloch functions (B.2) and (B.7)

shows that this degree of freedom is related to the relative amplitude of the Bloch

function on the A and B sublattice. It is called pseudospin. If all the electrons of

the π band were located on the A sublattice, this could be viewed as a pseudospin

”up” state |↑〉 = (1, 0)T, whereas electrons solely on the B sublattice correspond to a

”down” state |↓〉 = (0, 1)T. In graphene, electron density is shared equally between

sublattices if the A–B symmetry is not broken due to an external potential. For

the thorough discussion on the Dirac fermions of graphene and analogues we refer

to [81, 84].

3.1.5 Density of states

Density of states (DOS) in 2D crystal is the number of states of electrons in energy

interval dE around the certain energy E per unit area

D(E) =
g

(2π)2

∑

i

∫

BZ

d2k δ(εi(k) − E) (3.12)

where g is the degeneracy of electronic states.4 An analytic expression for DOS in

the vicinity of EF can be obtained easily by inserting the expression (3.11) for the

energy of electrons. For the conduction band (ε+) the expression (3.12) yields 5

D(E) =
g

2π

∫ ∞

0

dq qδ(~vF q − E) =
g

2π~2v2F
E, E > 0. (3.13)

As the electrons in graphene have a degeneracy of 4 (spin degeneracy is 2 and

additional factor of 2 is due to pseudospin), using similar treatment for the valence

4Assuming the same degeneracy for all electron bands.
5The integration formally goes to infinity, but we must bear in mind that the linear dispersion

holds only in the vicinity of EF .
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band (ε−) we can express DOS for electrons in the vicinity of EF as

D(E) =
2

π~2v2F
|E|. (3.14)

We conclude that as a consequence of linear dispersion near EF the DOS in this

energy interval is also a linear function of energy. The distinct electronic property

of graphene can be deduced from Fig. 3.5 – it is a semi-metal, characterized by a

fact that it does not show a bandgap but the DOS at EF is zero. Moreover, from

Fig. 3.5, it can be seen that Dirac approximation works well in the energy interval

∼ 1 eV around EF .

Figure 3.5: Graphene DOS calculated with the tight-binding method with zero
energy at EF . The plot has been made using values from [85]. The difference between
the blue (γ = 3.033 eV, overlap integral s = 0.129) and the red line (γ = 3.033, no
overlap s = 0) clearly represents the effect of the 2pz orbital overlap on the electronic
structure of graphene. DOS within the Dirac approximation is represented with a
green line. Occupied states are filled with color. Adapted from [86].

3.2 Hexagonal boron nitride (h-BN)

Boron nitride (BN) is the lightest Group III-V compound. It exhibits various crys-

talline polymorphs analogous to carbon structure. For example, graphite and di-

amond, the two most common carbon allotropes, consist of sp2-bonded graphene

layers and sp3 carbon atom network, respectively. In close resemblance to these

structures, BN exhibits hexagonal (h-BN) and cubic (c-BN) polymorphs, which

consist of layered and tetrahedral structures, respectively. From the former the
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thermodinamically stable monolayers can be isolated by micromechanical cleavage

method, similarly to graphene exfoliation from graphite.

Monolayer h-BN is composed of alternating boron and nitrogen atoms in a hon-

eycomb lattice with a lattice constant of a = 2.50 Å, and a nearest-neighbor distance

of 1.45 Å (Fig. 3.6a). As the electronic configuration of its atoms are B: [He]2s22p1

and N: [He]2s22p3, elementary cell of h-BN contains 12 electrons. Thus, h-BN is

not only isostructural but also isoelectronic to graphene. Regardless of the geomet-

rical similarities, h-BN shows strikingly different electronic properties from those

of graphene. In the polar structures, such as h-BN, pz orbital electrons are pre-

dominantly located on the atom with larger electronegativity. This removes the

degeneracy of valence and conduction bands at K point and leads to bandgap open-

ing. As the difference in the Pauling electronegativity of B (2.04) and N (3.04) is

large, h-BN is ionic crystal and contrary to semimetallic graphene it is an insulator,

exhibiting a direct K → K bandgap between 4.69 eV (PBE) and 7.92 eV (with the

GLLB-SC quasi-particle correction) [87, 88].6 Band structure of h-BN is shown in

Fig. 3.6b.

Figure 3.6: a) Crystal structure of h-BN. Boron atoms are represented with salmon
orange spheres and nitrogen atoms with blue spheres; b) h-BN band structure calcu-
lated within the LAPW approach by applying PBEsol XC functional. Band colors
represent their character: bands with predominately pz character of N are in red,
while that with pz character of B are in green (unpublished results).

Due to the strong in-plane covalent B-N bonds and the absence of dangling

bonds at surface, h-BN has excellent chemical and thermal stability with resistance

to oxidation and to damage of high temperature up to approximately 1500 ◦C in air.

It has a high dielectric breakdown field of 7.94 MV/cm, comparable to the break-

down fields of standard dielectrics, such as SiO2. h-BN is regarded as a promising

6Many DFT XC functionals lead to gaps that are significantly below experimental values. This
is a well-known problem in DFT approach and the great improvement has been made by better
treatment of the non-local exchange. For details see [89, 90].
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assistant material to enhance the performance of other 2D materials in nanodevices.

Moreover, graphene/h-BN heterostructure serves as a platform suitable for study-

ing many-body correlation effects of Dirac fermions in graphene, such as fractional

quantum Hall effect in the high magnetic field [91].

3.3 Phosphorene

Black phosphorus (BP) is a rare allotrope of phosphorus, firstly sintesized a cen-

tury ago from white phoshporus under high temperature and pressure [92]. It is

much denser (2.69 g cm−3) than white (1.83 g cm−3) and red phosphorus (2.05 −
2.34 g cm−3) and can sustain up to 400 ◦C in air without spontaneous ignition in

sharp contrast to highly flammable white phosphorus.

At normal conditions, bulk BP is a layered structure and resembles graphite.

First studies of BP showed that it is an intrinsic p-type semiconductor with an

energy gap of around 0.33−0.35 eV and hole and electron mobility of 350 and 220

cm2 V−1 s−1 at room temperature, respectively [93]. Angle-resolved photoemission

spectroscopy measurements have confirmed a 0.2−0.3 eV direct bandgap [94]. Very

recently single layer of black phosphorus known as phosphorene was mechanically

exfoliated from bulk BP thus reviving interest in this material [95, 96].

Figure 3.7: a) Crystal structure of phosphorene. High-symmetry directions, arm-
chair (x) and zigzag (y), are presented in green. Each P atom is bonded with three
neighboring atoms, two of which are in the same plane at 97° and the third is between
the layers at 102°. Distances between P atoms and angles between bonds shown in
this figure are obtained from DFT-PBE calculations; b) The DFT-calculated (dashed
lines) and GW-calculated (solid lines) band structure of phosphorene. Zero is set to
be at the top of the valence band (from [97]).

Phosphorene structure is markedly different from honeycomb graphene, as its

atoms lie in two parallel planes making a form of a puckered (or buckled) sheet

(Fig. 3.7a). For such structures, buckling is defined as a distance between two atomic

planes. Each P atom in phosphorene is covalently bonded to the three neighbors
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similarly to C atoms in graphene, but the sp3 hybridization is the reason for the

puckering, as four sp3-hybridized orbitals so formed are directed towards the four

corners of a tetrahedron with a P atom in its center.

Based on DFT calculations, Wei et al. found that the critical tensile strain of

phosphorene in the X (armchair) and Y (zigzag) directions (Fig. 3.7a) are 30% and

27%, respectively. Such a large critical strain is undoubtedly associated with the

unique structure of phosphorene. One of the most profound structural property

of phosphorene is an inherent in-plane anisotropy which leads to the anisotropy of

its mechanical properties, thermal conduction, optical detection as well as carrier

transport [98].

First-principles calculations have confirmed the expectation that phosphorene

bandgap is much larger compared to the bandgap of bulk BP, with the reported value

between 0.8 eV (DFT result) and 2 eV (GW result) [97].7 Though VBM is located

slightly away from the Γ point and CBM is exactly at Γ point, we regard phosphorene

as a direct-gap semiconductor as the difference between the VBM and energy at Γ

point is less than 10 meV. The reason behind the discrepancy of 150% between the

DFT and GW values, substantially larger than in other 2D semiconductors, is the

highly anisotropic band structure of the lowest conduction band and highest valence

band. Fig. 3.7b shows that the band dispersion is nearly flat along the Γ−Y direction

with a large carrier effective mass of around me ≈ 2.6m0 and mh ≈ 8.3m0 compared

to the values me ≈ mh ≈ 0.3m0 found for Γ−X direction [?]. This confines particles

to an effective 1D environment along the armchair direction, and the effective lower

dimension contributes to a larger self-energy correction.

It was experimentally demonstrated for BP that the bandgap can be tuned mono-

tonically from 0.3 eV to 1.0 eV when sample thickness is scaled down from bulk to

single layer [96]. Furthermore, bandgap of phosphorene can be tuned by applying

compressive strain. Kistanov et al. [99] showed that the compressive strain of up

to −20% along the armchair direction reduces the bandgap from 0.84 to 0.51 eV,

while further compression shows no significant effect; for ripples along the zigzag

direction, semiconductor-to-metal transition occurs. For the comprehensive review

of anisotropy in physical properties, as well as the utility of phosphorene in the

field effect transistor technology, optoelectronic devices, gas sensors and batteries

we refer to [98].

7Due to the surface oxydation, the preparation of a single layer phosphorene for ARPES mea-
surement which would provide precise determination of the band structure is challenging [?].
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3.4 Group XIV carbides – SiC, GeC and SnC

Carbides of group XIV elements, AC (A = Si,Ge, Sn), are theoretically predicted to

form an alternate arrangement of A and C atoms in a highly stable 2D honeycomb

structure [100]. Thus, they are isostructural to h-BN (Fig. 3.6a), although nearest-

neighbor distances and lattice constants are much larger than h-BN values (Table

3.1).

Table 3.1: Nearest-neighbor distances, d, lattice constants, a and cohesive energies
per pair of atoms, Ec of SiC, GeC and SnC calculated within DFT-LDA approach.
Values are taken from [100]. Bandgaps, EG, within the DFT-LDA approach and
G0W0-corrected values are from [101]. Symmetry points of BZ indicate where max-
imum (minimum) of valence (conduction) band occurs.

2D crystal d(Å) a(Å) Ec(eV) EG(eV)
LDA G0W0

SiC 1.77 3.07 15.25 2.57 3.88
K → M K → M

GeC 1.86 3.22 13.23 2.26 3.37
K → K K → K

SnC 2.05 3.55 11.63 1.71 2.43
K → Γ K → Γ

Despite the fact that single layers of AC materials are not yet experimentally

isolated, there are direct experimental indications that 2D form of SiC may exist

[102]. As a theoretical evidence for the structural stability of their monolayers,

cohesive energies Ec per pair of atoms AC obtained within the DFT-LDA approach

are comparable to that of graphene (20.08 eV) and h-BN (17.65 eV) (see values in

Table 3.1). Calculations for variable lattice constants of buckled (or puckered) AC

geometries confirmed that the planar structure is the most stable one. Furthermore,

analysis of phonon modes which provide a reliable test for a structural stability,

showed no imaginary phonon frequencies of SiC, GeC, and SnC [100].

In addition to structural similarity to h-BN, the electronic structures of these

materials resemble that of h-BN. The reason for a bandgap opening at K point is

the symmetry breaking due to the substitution of one C atom in the elementary

cell with a Si (Ge, Sn) atom. Compared to large h-BN bandgap, the bandgaps of

AC materials are smaller, and this discrepancy can be attributed to the smaller

difference in the electronegativity of Si (Ge, Sn) and C than that between B and

N. Thus, AC are semiconductors, but only GeC has a direct bandgap located at K

point. SiC is an indirect-gap semiconductor with VBM at the K point and CBM
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at the M point and SnC has VBM at K point and CBM at Γ point. Their band

structures are presented in Fig. 3.8. Both the valence and the conduction bands

Figure 3.8: Electronic band structure of a) SiC, b) GeC and c) SnC. The DFT-LDA
band structures are shown with a solid black line, and the G0W0 corrected band
structures are presented with red circles connected with dotted lines; d) the valence
and the conduction band energies of SiC at the Γ, K and M points for variable lattice
constants, where a0 is the equilibrium lattice constant. Blue (green) color indicates
direct (indirect) bandgap for a certain lattice constant. Adapted from [101].

have predominantly Si (Ge, Sn) and C p-orbital character. From Fig. 3.8 it can be

seen that the bands between the points K and M are nearly flat, indicating a large

carrier effective mass in K–M direction.

The bandgaps of AC monolayers decrease in the sequence SiC → GeC → SnC

(Table 3.1). Lü et al. speculated that the bandgaps of the AC are mainly determined

by the interplay between the (1) repulsion of the valence band and the conduction

band and (2) the delocalization effect due to orbital overlapping [101]. The reduction

of the AC bond length enhances the repulsive effect and thus increases the bandgap,

while on the other hand it causes broadening of both the valence and the conduction

bands which decreases bandgap. For SiC, as the lattice constant increase from 0.78a0

to 0.91a0 (a0 is the equilibrium lattice constant), the delocalization effect is dominant

and bandgap increases. However, from 0.91a0 to 1.18a0 the bandgap decreases as

the repulsive effect dominates. This results with an arch-shape modulation of the

SiC bandgap under strain, as can be seen in Fig. 3.8d.
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3.5 Transition metal dichalcogenides (TMDs)

Transition metal dichalcogenides (TMDs) are layered materials with electronic prop-

erties which promote them as main candidates for range of application – from na-

noelectronics and nanophotonics to actuation and sensing at the atomic scale. The

first paper with the description of their structure was published by Linus Pauling

in 1923 [103]. By the end of the 1960s, around 60 TMDs were known, at least 40

of them with a layered structure [104]. In the last 15 years, the rapid growth of

graphene-related research and the development of advanced techniques suitable for

isolation of single layers from bulk samples brought TMDs back in the spotlight.

Generalized chemical formula of TMDs is MX2, where M is a transition metal

of groups IV-X and X is a chalcogen (S, Se, Te). TMD monolayer itself contains

three atomic planes (X–M–X) which can adopt two structural phases based on the

coordination of transition metal atom – trigonal prismatic (D3h point group) or

octahedral (D3d point group) (see Fig. 3.9).

Figure 3.9: a) Structural phases of monolayer TMDs: trigonal prismatic (2H) and
octahedral (1T); b) distorted octahedral (1T′) structural phase. Lattice vectors are
represented with arrows. Adapted from [105].

Bulk TMDs, similarly to graphite, are layered materials with weak van der Waals

forces between the layers. They can be found in several different polytypes depending

on the type of stacking. The most common are trigonal (1T), hexagonal (2H) and

rhombohedral (3R), where the digit indicates the number of layers in the stacking

sequence. For example, the most abundant phase of MoS2 is 2H with the stacking

sequence AbA BaB, where capital (lower case) letters stand for chalcogen (transition

metal) atoms. We point out that the structural phase of all layers within a polytype

is the same – for 1T it is trigonal prismatic whereas 2H and 3R polytypes have

octahedral coordination of transition metal atom.

62



Electronic properties of bulk TMDs are distinct – ranging from insulators such

as HfS2, semiconductors such as MoS2 and WS2, semimetals such as WTe2 and

TiSe2, to metals such as NbS2 and VSe2 [106]. Moreover, some TMDs exhibit low-

temperature phenomena including superconductivity, charge density wave (CDW

– a periodic distortion of crystal lattice) and Mott transition (metal to non-metal

phase transition) [107, 108, 109, 110]. Structural phases together with the observed

electronic properties of the most common TMDs are presented in Fig. 3.10.

Figure 3.10: The periodic table with the basic structural and electronic properties
of bulk TMDs. Adapted from [105].

Now we will focus our attention on monolayer TMDs. Exfoliation of single

layers of TMDs mainly preserves the electronic properties of their bulk counterparts,

though the confinement effects due to reduced dimensionality lead to additional

characteristics [111, 112, 113]. Based on their structural phase, they will be referred

to as 2H-MX2 (trigonal prismatic) and 1T-MX2 (octahedral) (see Fig. 3.9).8 In both

2H and 1T phases, the non-bonding d bands of the TMDs are located between the

bonding (σ) and antibonding (σ∗) bands which arise from the M–X bonds.

The electronic structure strongly depends on: (1) the coordination environment

of the transition metal, and (2) the number of its d electrons [114]. Due to the crystal

field, trigonal prismatic coordination of transition metal atoms leads to the formation

of three groups of d orbitals – dz2 , dx2−y2,xy and dxz,yz with a considerable bandgap

between the first two groups. On the other hand, when a transition metal atom

is surrounded by chalcogen atoms situated in the vertices of octahedron, d orbitals

split into two groups – doubly degenerate dz2,x2−y2 (eg) and triply degenerate dyz,xz,xy

(t2g). In both cases, the diversity in the electronic properties of TMDs, presented

in Fig. 3.10, stems from the progressive filling of the non-bonding d bands from

group IV to group X. Thus, materials with the partially filled d orbitals, as in the

8The indices which label the number of layers in a stacking sequence of bulk TMDs are now
redundant, but they are frequently retained in the literature.

63



case of 2H-NbSe2 and 1T-ReSe2, exhibit metallic conductivity. On the contrary,

fully occupied orbitals, such as in 1T-HfSe2, 2H-MoSe2 and 1T-PtSe2, result in the

semiconducting material.

Compared to the impact of metal atoms, the effect of chalcogen atoms on the

electronic structure is less profound but the trend is still observable. The chalco-

gen atoms cause broadening of the d bands. Thus, the bandgap decreases along

the chalcogen group. The first-principles calculations have confirmed the gradual

decrease, as LDA (G0W0) bandgaps of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 are 1.58

(2.48), 1.32 (2.18) and 0.93 (1.71), respectively [115].

For a range of TMDs, one phase is thermodynamically more stable than the

other, but the metastable phase can be obtained by various manipulations. For

example, the transition of semiconducting 2H-MoS2 to the metallic 1T polymorph

can be achieved by mechanical deformation [8] or by adsorption of alkali metals

[104, 116, 15]. Destabilization of the 2H phase due to the adsorption of alkali metals

is caused by (1) the change in the d-electron count as the valence s electron is

transferred from alkali metal atom to the transition metal atom and (2) the relative

change in the free energy of the two phases. Moreover, recent studies have shown

that the structural change of MoS2 can be partial, resulting with the formation of

coherent 2H-1T interfaces [117, 118]. The opposite scenario of 1T → 2H transition

is reported for TaS2 on Li intercalation [119]. In Fig. 3.10 transition metals which

can exhibit both phases are represented with two-color squares.

Apart from the 2H → 1T structural phase transition, several group VI TMDs

undergo a distortion of the crystal lattice that lower the periodicity of the 1T phase.

The pronounced distortion results in the additional metal-metal bonds which can

lead to the dimerization of the 1T phase. The so-called 1T′ (Fig. 3.9b) phase is

formed under certain conditions owing to instability in the electronic structure of

the 1T phase [120, 121]. The microscopic mechanism behind the 1T → 1T′ transition

is believed to be the Jahn-Teller effect, in which the splitting of the partially filled

degenerate d orbitals lowers the total energy [121]. This distortion is reminiscent

of CDW phases of group V TMDs which are typically stable at low temperatures

(< 120 K for TaSe2 and < 40 K for NbSe2) [109], but this lattice distortion has been

observed at room temperatures for Li-intercalated MoS2 and WS2 [118]. Not less

intriguing is the fact that the 1T′ phase is metastable even after the intercalant is

removed [122].

To conclude the discussion, we will take a closer look at the electronic properties

of semiconducting 2H-MoS2, which is widely considered as one of the most promising

TMDs for future electronic devices [13]. Its bandgap can be tuned by reducing its
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thickness from bulk to monolayer as shown in Fig. 3.11. The bandgap gradually

increases from bulk to monolayer, with the corresponding values of 0.88 eV and 1.71

eV, respectively [123]. The experimental value for the bandgap of monolayer 2H-

MoS2 is 2.16 eV [124]. Moreover, bulk 2H-MoS2 is an indirect-gap semiconductor

Figure 3.11: Band structure of 2H-MoS2 calculated within DFT-GGA approach for
samples of decreasing thickness. Lowest energy transitions are indicated with solid
arrows. Adapted from [123].

with VBM at Γ point and CBM at the midpoint along Γ–K direction, while the

monolayer 2H-MoS2 is a direct-gap semiconductor with VBM and CBM at the K

point. Monolayers of all the group VI TMDs have in common that their VBM and

CBM are located at the corners of the hexagonal BZ (see Fig. 3.2b). This property

opens the possibility for the observation of valley-dependent physics and, in further

perspective, the application in the valleytronic devices.
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Chapter 4

Growth of metals on graphene

This chapter is devoted to the initial stages of growth of metallic structures on

graphene. We selected lithium (Li), calcium (Ca) and titanium (Ti) as representa-

tives of three groups of metals, namely – alkaline, alkaline earth, and transition met-

als. Based on the atomic-scale description of the interaction between their adatoms

we rationalized the tendency of metals to form clusters on graphene. For metals

which show a strong preference for clusterization, comparison of the total energies

of their few-atoms clusters adsorbed on graphene clarifies their preference towards

the formation of 2D or 3D nanostructures on graphene.

Particularly interesting properties were found for Ca adsorbed on graphene.

Moderate attractive interaction between Ca adatoms on graphene is a driving force

for the formation of 2D structures of Ca on graphene. We provide a detailed de-

scription of the electronic properties of the monolayer and bilayer graphene func-

tionalized with Ca as such materials show great promise in the engineering of high

quality contacts in vertical heterostructures of 2D materials.

4.1 Introduction

Since the discovery of graphene, studies of its structural and electronic properties

were accompanied the search for the potential applications of this 2D material in

future nanotechnologies. For the development of efficient graphene-based electronic

devices of critical importance is the high-quality junction between graphene and

metallic contacts. Xia et al. argued that the factors that determine the resistance

of metal-graphene junction remain unclear as the measurements of contact resis-

tance have been inconsistent [125]. They found at 6 K an anomalous temperature

dependence in a palladium-graphene junction as it drops abruptly to a value of just

110±20 Ω, which is few times the minimum achievable resistance. For the thorough

understanding of such behavior, of high priority is the atomic scale description of
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metal-graphene interaction.

Depending on the strength of the interaction of metal atoms with graphene and

the nature of interaction among metal atoms themselves, they form either smooth

ultra-thin films on graphene or 3D nanostructures with strikingly different electrical

contacts. The prediction of the growth mode of metals on graphene can be made

already from the insights which the study of their small clusters can give. Besides,

due to its chemical inertness graphene is a suitable template for the growth of metal

nanoclusters used as model catalysts [126]. Structural properties of metal clusters,

i.e. the size and the shape, substantially affect their catalytic activity.

Another potential application of 2D materials which draws special attention is

their usage in the design of materials for hydrogen storage. It is well known that

pristine carbon structures cannot adsorb a large amount of hydrogen [127], therefore

the functionalization of graphene with metal atoms is considered as a promising

method to increase the number of adsorbed H2 molecules. Recent DFT studies of Ti-

decorated single-walled carbon nanotubes (SWCNTs) [128], C60 molecules decorated

with Ti, Sc and V atoms [129] and graphene doped with Al atoms [130] all assumed

that metal atoms are individually dispersed across carbon surfaces. Although the

individual binding of metal atoms on a surface is necessary to achieve full hydrogen

storage capacity, this binding picture is not always easy to achieve. For instance,

Sun et al. [131] reported the tendency of Ti atoms to cluster at C60 and Krasnov

et al. [132] reported that Sc atoms form clusters on small SWCNTs. In cases like

these, the tendency for clustering is driven by the metal-metal attraction, which is

much stronger than the interaction of metal atoms with carbon surface.

Cohen and co-workers [133] performed the first systematic DFT study of the

binding of metal atoms at graphene. They used the cohesive energies of bulk metals

(EC) as a measure of the strength of metal-metal interaction and compared their val-

ues with the binding energies (EB) of individual metal atoms adsorbed on graphene.

They argued that the shape and geometry of structures formed by metal atoms upon

adsorption on graphene can be guessed from the EB/EC values. According to their

reasoning, metals with high EB/EC values show tendency for wetting the surface,

while the ones with small EB/EC ratio form closely packed 3D clusters. The values

of EB/EC for a range of metals calculated by applying GGA-PBE XC functional are

represented in Fig. 4.1a.1

Their assumption is partly supported by the study of the adsorption of alkali

metals on graphite [135]. Furthermore, Pulido et al. [134] showed that gold, repre-

1Unpublished results from our calculations. Values from [133] only slightly differ from the values
presented in Fig. 4.1.
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Figure 4.1: a) Ratio between binding energy of metal atoms on graphene (EB) and
their bulk cohesive energy (EC) calculated with GGA-PBE XC functional (unpub-
lished results). Metals which we further consider in our study are shown in green;
b) Gold clusters with 5, 19 and 39 atoms supported on the graphene sheet. Geome-
tries are optimized within DFT approach, with the usage of GGA-PW91 functional.
Adapted from [134].

sentative of metals with small EB/EC values, form compact 3D clusters on graphene,

as shown in Fig. 4.1b. However, the values of cohesive energies in metal clusters are

generally much smaller than the corresponding bulk value. For instance, calculated

cohesive energy of a gas-phase Ti dimer is 1.47 eV/atom, significantly smaller than

the bulk value found for hcp Ti crystal of 5.29 eV. It is worth noting that alkali

metals have the highest EB/EC ratio and gold has by far the lowest and there are

plenty of metals with intermediate EB/EC values (Fig. 4.1a). Hence, the predic-

tion of growth mode of nanostructures formed upon deposition of metal atoms on

graphene based solely on the EB/EC ratio can be considered only as a rough guess.

For an accurate description of preference for 2D or 3D growth of metals a more

subtle approach must include not only individual metal atoms on graphene but also

their small clusters.

We selected three metals – Li, Ca and Ti – as typical representatives of adsorbates

with markedly different adsorption behavior. From a microscopic picture of the

interaction between metal adatoms combined with the structural properties of their

small clusters, we provide a detailed description of the structural and electronic

properties of metal nanostructures formed on graphene. For Li atom on graphene,

we applied a simple model to include the long-range electrostatic repulsion between

Li adatoms from neighboring unit cells in the estimate of the binding energy. In

addition to this, we report a novel structure of graphene functionalized with Ca

atoms adsorbed in a monolayer arrangement and get insights into the origin of the

enhanced adhesion in bilayer graphene induced via Ca intercalation.

68



4.2 Metal adatoms on graphene

We start the discussion on the metal adsorption on graphene with the definitions

of physical quantities which will be often used in further discussion. For additional

information on computational details, e.g. choice of the XC functional, division of

the BZ, structure optimization algorithm etc. see Appendix C.

• The binding energy of metal cluster Mn at graphene, where M = Li,Ca,Ti

and n is the number of atoms, is defined as

EB(Mn) = nE(M) + E(G) − E(Mn/G), (4.1)

where E(M), E(G) and E(Mn/G) are total energies of free metal atom,

pristine graphene (per unit cell) and metal cluster Mn on graphene, respec-

tively. Thus, the binding energy of metal adatom is obtained as EB(M) =

E(M) + E(G) − E(M/G).

• The adhesion energy, as a measure of energy gained upon deposition of metal

cluster on graphene from gas phase, is defined as

Ead(Mn) = E(Mn) + E(G) − E(Mn/G), (4.2)

where E(Mn) is the total energy of isolated gas-phase cluster.

• To estimate the strength of the interaction between adsorbed metal atoms we

define the interaction energy as follows

EM−M
int = EB(M2) − 2EB(M). (4.3)

The positive (negative) value of EM−M
int corresponds to the repulsive (attrac-

tive) interaction between adsorbates, while the strength of the interaction is

proportional to the absolute value of EM−M
int .

The simplest sistem which can be adsorbed on graphene surface is an individual

atom. We used 6 × 6 unit cell with 72 C atoms to simulate the adsorption of

metal adatoms and small metal clusters (dimers, trimers and tetramers) on graphene

surface (Fig. 4.2). Our tests showed that the further increase of the unit cell size

has a minor effect to the structural and electronic properties of adsorbates. Three

distinguishable adsorption sites are considered: (1) on top of C atom (T site), (2)

between adjacent C atoms (B site) and (3) above the center of the hexagon (H site)

(see Fig. 4.2). For all three considered metals we found the preference for adsorption
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at H site. This behavior is already reported for Li, Ca and Ti in [133] and our results

just confirm their findings. Besides, the displacements of C atoms are small and do

not exceed 0.05 Å irrespective of the adsorbed metal. The distances between metal

adatoms adsorbed at H site and the graphene sheet are shown in Table 4.1.

Figure 4.2: The unit cell with 72 C atoms. Different adsorption sites are denoted:
hollow (H), bridge (B) and on-top (T).

We compared the binding energy of metal adatom with the cohesive energy of

bulk metal calculated for the most stable crystal structure. For Li it is body-centered

cubic (bcc) lattice, for Ca face-centered cubic (fcc) lattice and hexagonal close-packed

(hcp) lattice for Ti [33]. The corresponding values for EC, EB, their ratio EB/EC

together with the electron charge transfer from metal adatoms to graphene obtained

from Bader analysis [136] are given in Table 4.1.

Table 4.1: Structural and energetic properties of metal adatoms for the hollow site.
The properties listed are distances between metal adatoms and the graphene plane
(h) and the corresponding binding energies (EB), cohesive energies of bulk metals
(EC), ratio between the binding and cohesive energies (EB/EC) and the electron
charge transfer from adatoms to graphene (∆Q).

Atom type Li Ca Ti

h(Å) 1.71 2.30 1.84
EB(eV) 1.16 0.55 1.52
EC(eV) 1.65 1.94 5.29
EB/EC 0.70 0.28 0.29
∆Q(e) 0.90 0.89 0.92

Driven by the high EB/EC parameter Li atoms on graphene arrange into dis-

persed 2D layers, as already reported in previous studies [133, 135]. This is a general

trend for alkali metals on graphene and we chose Li as a representative for further

description of interaction of alkali metals with graphene.
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Small EB/EC values found in Mg, some transition metals and noble metals [133]

indicate much stronger metal-metal binding compared to the metal-graphene inter-

action. Consequently, when adsorbed on graphene, these metals tend to maximize

the number of metal neighbors in the structures they form. Hence, they are likely

to gather into compact 3D clusters. Recently, the experimental study of Zan et al.

[137] confirmed the clustering of Fe and Cr atoms on single-layer graphene sheet.

We will describe in detail the interaction of transition metal atoms with graphene

taking Ti as a typical representative.

The EB/EC value of Ca is close to that found in transition metals, as reported

in [133] and confirmed by our calculations (Table 4.1). Yet, Lee et al. [138] showed

that Ca adatoms prefer to bind individually on zig-zag edges of graphene nanorib-

bons. Therefore, it is arguable whether the conclusions on trends in metal binding

on graphene can be drawn solely from the EB/EC ratio. We provide a more accurate

description of clustering of Ca adsorbates on graphene based on (1) the considera-

tions of Ca dimers, trimers and tetramers and (2) interaction between Ca adatoms.

In addition to this, we describe a novel 2D structure with Ca coverage of 1/6 mono-

layer [139], confirmed by our calculations as very stable.

4.3 Interaction between metal adatoms

The shape and the type of the thermodynamically stable structures formed upon de-

position of metal adatoms on graphene critically depend on the interaction between

adsorbates. We evaluated the interaction energy of metal dimers on graphene from

eq. (4.3) for four dimer configurations with distances 2.47 Å, 4.26 Å, 4.91 Å and

6.51 Å as depicted in Fig. 4.3a-d, respectively. Along with the calculations of metal

dimers with fixed bond length, for metals with an attractive interaction between

adatoms, that is Ca and Ti, we performed additional calculations on their dimers

adsorbed on graphene with unconstrained geometry optimization.

In conjunction with the considerations on Ca and Ti dimers, we performed cal-

culations on their trimers and tetramers in order to find the most stable adsorption

geometries of these clusters. Trimers are used to examine the tendency of metals

for wetting the surface. When the growth morphology of metal nanostructures is

inquired, tetramers are the smallest clusters where one can inspect the preference for

either 2D or 3D growth. Therefore, if the preferred geometry of tetramer adsorbed

on graphene is planar rhombohedral, the metal has a tendency towards 2D growth.

On the contrary, tetrahedral adsorption geometry is a clear evidence of 3D growth.
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Figure 4.3: a)-d) Dimer configurations with the corresponding distances between
metal adatoms in angstroms; e) lithium, b) titanium and c) calcium interaction
energies.

4.3.1 Lithium adsorption on graphene

High EB/EC value of Li (Table 4.1) and of alkali metals in general [133] shows that

these atoms are very unlikely to form clusters upon their deposition on graphene.

Therefore, we did not further consider Li clusters on graphene.

In Fig. 4.4 the DOS of the pristine graphene is compared with that of the

graphene with Li adatom adsorbed at the H site. Atomic-orbital projected DOS

presented in Fig. 4.4 shows that Li-2s valence state is completely empty, thus prov-

ing that the electron from Li-2s state is transferred to the lowest unoccupied states

of pristine graphene. We performed Bader charge analysis which confirmed that 0.9

electrons are transferred from Li adatom to graphene (Table 4.1). Our calculations

show no spin polarization of graphene substrate upon deposition of Li atom, as the

transferred electron is delocalized across the surface thus filling both spin channels

equally. The cone-shaped DOS near EF specific to graphene is preserved, but the

EF is shifted higher in energy due to the presence of an additional electron.

From calculated interaction energies of Li dimers, Fig. 4.3e, we found that the

Li-Li interaction is always repulsive as the Li adatoms on graphene are positively

charged. Due to periodic boundary conditions (PBC) imposed within graphene plane

long-range electrostatic repulsion between Li adatoms from neighboring cells results

in the strong variation in the binding energy EB as a function of the unit cell size.

We obtained EB from the calculations performed using n × n rhombohedral cell,

where n = 3 − 8. Thus, as the Li-Li distance increases from 7.38 Å to 19.68 Å the
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Figure 4.4: Total DOS of pristine graphene (black), graphene with adsorbed Li
atom at H site (red) and the atom-projected DOS for Li-2s state (orange). DOS of
pristine graphene is shifted in energy scale to match the DOS of Li atom adsorbed
on graphene. Zero of the energy scale is set at the Fermi level of Li atom adsorbed
on graphene.

binding energy approaches the value which corresponds to the infinite unit cell size,

E∞. We fitted the obtained DFT-PBE results to a curve that closely resembles the

screened Coulomb potential,

EB(r) = E∞ − α
e−βr

r
, (4.4)

where r is the distance between Li adatoms from the neighboring cells. The values

of parameters α = 7.29 eV and β = 0.11 best fit the binding energy. The DFT-PBE

values for EB together with the fitting function are shown in Fig. 4.5.

Thus, Li binding energy calculated employing PBC can be considerably underes-

timated if calculations are performed on the small unit cells with imposed in-plane

PBC. Khanta et al. [140] performed DFT-LDA calculations for a variable unit cell

size and found an increase in Li binding energy of 0.66 eV when the unit cell is dou-

bled from 4.88 Å to 9.76 Å. Latter studies [141, 142] confirmed a strong variation

in the binding energy depending on the unit cell used to model graphene surface.

Therefore, an accurate picture of the binding of Li adsorbates on graphene should

account for the long-range electrostatic repulsion. A simple approach to include this

interaction is to apply eq. (4.4) and estimate the binding energy as E∞ for r → ∞.
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Figure 4.5: Variation of Li binding energy on graphene with the distance between
adatoms from neighboring unit cells.

4.3.2 Titanium clusters on graphene

Titanium, a representative of the transition metals, has an intermediate EB/EC

value (Table 4.1), much smaller than the value of Li but much larger than the

values of noble metals (see Fig. 4.1a). Thus, the firm prediction of Ti growth on

graphene requires additional considerations.

Far the most favorable Ti dimer configuration on graphene is the one with

Ti atoms chemisorbed in the centers of adjacent carbon hexagons, as depicted in

Fig. 4.6a, with binding energy of 2.43 eV/atom and Ti-Ti distance of 2.37 Å (see

Table 4.2). The length of Ti2 in this configuration is slightly shorter than the dis-

a)

b)

c) e)

f)d)

Figure 4.6: Ti dimers a-b), trimers c-d) and tetramers e-f) on graphene. Ti and
C atoms are shown as dark green and gray spheres, respectively. The most stable
adsorption geometries for small Ti clusters are presented in the upper panel.
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tance between centers of the adjacent hexagons as Ti atoms tend to come closer to

each other and recover the length of the gas-phase Ti2, which is 1.94 Å [143].

In addition to the parallel-to-plane adsorption geometry, Ti2 can be adsorbed

perpendicularly to surface (Fig. 4.6b). Xiao et al. reported that bonding of Co

dimers on hexagonal carbon rings results in a perpendicular arrangement of the

dimers with respect to the carbon plane [144]. Our calculations show that perpen-

dicular adsorption geometry of Ti2 is not stable, as the binding energy is 1.30 eV

(0.65 eV/atom) lower than the one of Ti2 parallel to graphene plane due to the lack

of the second contact point to the surface. Thus, in further inspection of Ti dimer

adsorption, we will take into account only configurations where both Ti atoms are

lying on the graphene surface.

Considerations on Ti dimers of variable length clearly show that the interac-

tion between Ti adatoms on graphene is strong, attractive and short-ranged (see

Fig. 4.3f), as the interaction energy obtained from eq. (4.3) is negative for all dimer

lengths. According to our calculations, when Ti-Ti distance increases from 2.47 to

4.26 Å, the absolute value of interaction energy reduces greatly from 1.84 to 0.55

eV, and for larger distances it steeply diminishes as depicted in Fig. 4.3f. Finally, if

the dimer length is larger than 6 Å, the interaction between Ti atoms is negligible.

Table 4.2: Binding energies (EB), adhesion energies (Ead), average intra-cluster
bond lengths of Ti dimers, trimers and tetramers on graphene and the largest out-
of-plane displacements of C atoms (∆z) when a particular metal cluster is adsorbed.
The corresponding adsorption geometries are presented in Fig. 4.6. Note that the
energies are expressed per metal atom.

Cluster Adsorption EB Ead M -M bond length ∆z
type geometry (eV/atom) (eV/atom) (Å) (Å)

Ti2 Fig. 4.6a 2.43 0.97 2.37 0.06
Ti2 Fig. 4.6b 1.78 0.31 1.96 0.04
Ti3 Fig. 4.6c 2.91 1.11 2.48 0.13
Ti3 Fig. 4.6d 2.67 0.88 2.52 0.08
Ti4 Fig. 4.6e 3.15 0.74 2.62 0.16
Ti4 Fig. 4.6f 2.97 0.79 2.57 0.13

In Table 4.2 we also included adhesion energies (Ead) of small Ti clusters obtained

from eq. (4.2). The adhesion energy is expected to decrease with the increase of

cluster size due to reduced reactivity of bigger clusters compared to the smaller

ones. With the increase in cluster size the coordination number of metal atoms is

approaching the value of bulk metal, thus chemical bonds are becoming saturated.

Furthermore, the ratio of the number of atoms in direct contact with the surface and
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the total number of atoms in cluster is decreasing as the cluster is growing. However,

in small clusters which contain only a few atoms deviations from this trend often

occur. This is the case for Ti, as the adhesion energy of Ti2 parallel to the surface

is 0.14 eV lower than of the Ti3 adsorbed as depicted in Fig. 4.6c.

In addition to strong Ti-Ti interaction which drives the increase in the number

of bonds in Ti clusters, Ti adsorbates on graphene will also optimize the number of

bonds to the surface. The insights from the adsorption of Ti trimers confirm this

tendency (Fig. 4.6c-d). The interaction of Ti atoms with graphene is of comparable

strength to the Ti-Ti interaction in small clusters. Trimer in the Fig. 4.6c has

all of its atoms in direct contact with the surface, adsorbed in the centers of the

neighboring hexagons. It is the most stable trimer configuration, with the binding

energy of 2.91 eV/atom. When adsorbed perpendicularly to graphene plane, as

depicted in Fig. 4.6d, Ti3 misses one contact point which give rise to 0.24 eV/atom

smaller binding energy. For the sake of completeness, we inspected linear Ti trimer

and found that it is highly unstable in gas phase as its total energy is 1.13 eV (0.38

eV/atom) higher than the total energy of triangular Ti3. Hence, we did not include

linear Ti trimers in further considerations.

The expected tendency of 3D growth is confirmed after the investigation of struc-

tural properties of Ti4 – the smallest clusters which can be used to probe the pref-

erence for either 2D or 3D adsorption. We found that upon deposition on graphene,

tetrahedral Ti4 (Fig. 4.6e) is 0.72 eV lower in energy than the energy of the planar

Ti4 (Fig. 4.6f). Compared to the favorable Ti3 adsorption geometry (Fig. 4.6c),

Ti4 depicted in Fig. 4.6e has an extra Ti atom above the center of the Ti triangle

which results with three additional Ti-Ti bonds. On the other hand, planar Ti4 has

one additional Ti atom in direct contact with the surface but has one less Ti-Ti

bond than the tetrahedral Ti4. We conclude that the planar adsorption geometry

is highly unfavorable due to preference of Ti clusters to maximize the number of

internal bonds at the cost of less atoms on graphene surface.

Therefore, the strong attractive metal-metal interaction is the driving force for

3D clustering of Ti on graphene. Note that the adhesion energy of planar Ti tetramer

is larger than that of tetrahedral cluster (Table 4.2) due to noticeably higher total

energy of the planar Ti4 in gas phase. Our calculations showed that the tetrahedral

Ti4 in gas-phase is 0.90 eV lower in total energy than its planar counterpart. Though

the planar geometry of Ti4 adsorbed on graphene has one more atom on the surface

compared to the tetrahedral isomer, the strength of Ti interaction with graphene is

insufficient to break Ti-Ti bonds in tetrahedral Ti4 and thus flatten its structure.

The final note of this subsection is dedicated to other transition metals. As the
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binding picture of their adatoms is found to be qualitatively the same as that of Ti

[133], we expect that all of them are likely to form similar 3D islands on graphene.

4.3.3 Calcium clusters on graphene

Calcium atom, as a representative of the alkali-earth metals, has two valence elec-

trons in its ground state occupying 4s orbital. This gives rise to the qualitatively

different binding picture than that of transition metals, where the dominant role in

the binding is played by d electrons. Therefore, even though the EB/EC of Ca is

nearly equal to the value found for Ti (see Table 4.1), the structural properties of

Ca adsorbates could differ substantially from those of transition metals.

Similarly to the study of Ti, we started our account on Ca clusters with the

pursuit for the most stable dimer configuration. Parallel-to-plane adsorption ge-

ometry depicted in Fig. 4.7a with the bond length of 3.65 Å is far more favorable

than the perpendicular dimer configuration with bond length of 3.79 Å, shown in

Fig. 4.7b. The binding energy of the former is 0.99 eV/atom, noticeably higher than

0.61 eV/atom which is the binding energy of the later (Table 4.3).

a)

b)

c)

d)

e)

f)

Figure 4.7: Ca dimers a-b), trimers c-d) and tetramers e-f) on graphene. Ca and
C atoms are shown as ice-blue and gray spheres, respectively. The most stable
geometries are presented in the upper panel.

The dependence of interaction energy on dimer length (Fig. 4.3g) clearly shows

the substantial difference in the nature of the interaction of Ca adatoms from that of

Ti (Fig. 4.3f). We found very strong repulsion between Ca adatoms at the distance

of 2.47 Å. This repulsive interaction is not surprising for such small distances be-

tween Ca atoms, as it can be rationalized from the fact that the equilibrium length

of gas-phase Ca2 is 4.00 Å. At intermediate distances of 4.26 and 4.92 Å the inter-

action between adatoms is attractive, thus revealing the tendency of Ca atoms for
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clusterization. Yet, the interaction energy of 0.88 eV/dimer of the most stable Ca2

configuration is much smaller than the corresponding value of 1.85 eV/dimer found

for the most stable adsorption configuration of Ti2. Furthermore, Ca dimer length

is 3.65 Å, much larger than 2.43 Å of the Ti dimer. The differences in the structural

properties of Ca and Ti dimers already indicate possible 2D growth of Ca, though

for the unambiguous conclusion on the growth morphology bigger clusters must be

examined.

Table 4.3: Binding energies (EB), adhesion energies (Ead), average intra-cluster
bond lengths of Ca dimers, trimers and tetramers on graphene and the largest out-
of-plane displacements of C atoms (∆z) when a particular metal cluster is adsorbed.
The corresponding adsorption geometries are presented in Fig. 4.7. Note that the
energies are expressed per metal atom.

Cluster Adsorption EB Ead M -M bond length ∆z
type geometry (eV/atom) (eV/atom) (Å) (Å)

Ca2 Fig. 4.7a 0.99 0.88 3.65 0.08
Ca2 Fig. 4.7b 0.61 0.50 3.79 0.02
Ca3 Fig. 4.7c 1.04 0.66 3.83 0.13
Ca3 Fig. 4.7d 0.88 0.50 3.82 0.03
Ca4 Fig. 4.7e 1.14 0.77 3.87 0.14
Ca4 Fig. 4.7f 1.05 0.41 3.81 0.06

The study of Ca trimers (Fig. 4.7c-d) shows that a trimer parallel to graphene

plane is 0.48 eV more stable than the same trimer adsorbed perpendicularly to

plane, with only two atoms on the surface. Furthermore, maximal out-of-plane dis-

placement of C atoms for horizontally adsorbed trimer is considerably larger than

the corresponding displacement for vertically adsorbed trimer (Table 4.3), indicat-

ing much stronger interaction with graphene when Ca3 is adsorbed as depicted in

Fig. 4.7c.

The preference for 2D growth is strongly supported by the study on the Ca

tetramer. After the calculations on gas-phase tetramers, we found the planar geom-

etry of Ca4 to be metastable as the tetrahedral one is 1.08 eV lower in energy. This

energy difference between planar and tetrahedral Ca4 is even larger than the energy

difference of the corresponding Ti tetramers in the gas-phase. Yet, the adsorption

on graphene is changing the energy balance of Ca tetramers drastically. The planar

Ca4 depicted in Fig. 4.7e is the most stable tetramer configuration, with the total

energy as much as 0.36 eV lower than that of the Ca4 with tetrahedral geometry

depicted in Fig. 4.7f. The strength of the interaction of Ca atoms with graphene is

sufficient for breaking intra cluster Ca bonds in order to gain one extra Ca atom in
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direct contact with the surface.

Strong interaction of Ca with graphene, together with the Ca-Ca attraction

of moderate strength give rise to the preference of Ca adsorbates to gather into 2D

islands and finally to form stable 2D monolayers on graphene with uniform coverage.

We will devote the remainder of the chapter to these particular structures.

4.4 Calcium 2D structures on graphene

From the inspections on small Ca clusters on graphene we concluded that the 2D

growth mode of Ca on graphene is preferred. In this subsection we describe the struc-

tural and electronic properties of one-atom-thick films of Ca adsorbed on graphene

sheet. In addition to this, we report the enhanced adhesion of Ca-intercalated bilayer

graphene.

We calculated total energies of structures with different Ca coverages and found

that the most favorable configuration is the one with the coverage of 1/6 monolayer2

with the Ca-Ca distance of 4.26 Å. This structure is depicted in Fig. 4.8a and we

refer to it as G-Ca-2D. When this structure is compared with Ca dimers adsorbed

Figure 4.8: a) The most stable monolayer arrangement of Ca adatoms on graphene,
marked in text as G-Ca-2D; b) Trends in Ca binding energy as a function of size of
Ca nanostructures.

on graphene presented in Fig. 4.3a-d, it becomes clear that for the Ca-Ca distance

of 4.26 Å the interaction energy of 0.66 eV is not far from its maximum value of 0.88

eV found for the most stable Ca dimer with the bond length of 3.64 Å (Fig. 4.7a).

Though the Ca-Ca distance in G-Ca-2D structure is larger than the equilibrium

value found for the most favorable Ca2 configuration on graphene, the benefit of this

2That is – one Ca atom per six C atoms.
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arrangement is in the great increase in the coordination number of Ca adatoms, as

each of them shares as many as six nearest neighbors. This results with the binding

energy of 1.53 eV/atom, which is noticeably higher than the values calculated for

any of small Ca clusters (Fig. 4.8b).

To get insights into the electronic properties of G-Ca-2D structure and find

further evidence of its high structural stability, we calculated the corresponding

band structure along the high symmetry direction Γ − K of BZ (Fig. 4.9a) and

produced the DOS plots (Fig. 4.9b-c). Due to the electron charge transfer from Ca

adsorbates the Fermi level of G-Ca-2D is shifted up on energy scale from the Dirac

point by 1.5 eV (Fig. 4.9b-c) and the C-2p states in the vicinity of the Fermi level

are partly hybridized with the Ca-4s states. The character of these states can be

rationalized from the DOS plot projected on C and Ca atomic orbitals (Fig. 4.9c).

In the energy range from −2 eV to 1 eV relative to the Fermi level, we found that the

electronic states are either or pure Ca-4s character (from −2 to −1 eV) or mixture

of Ca-4s and C-2p orbitals (from −1 to 1 eV). The considerable energy dispersion

Figure 4.9: a) Band structure of G-Ca-2D structure depicted in Fig. 4.8a; b) total
DOS and c) atom-projected DOS of the G-Ca-2D.

over BZ presented in Fig. 4.9a is a firm evidence of the modification of Ca atomic

states due to direct overlap of Ca-4s orbitals centered at neighboring Ca adatoms,

which results in the high stability of the G-Ca-2D nanostructure.

The modification of graphene electronic structure due to adsorption of uniform

Ca layer and the formation of G-Ca-2D heterostructure can be exploited for various
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purposes. For instance, one can achieve the ultra-strong adhesion when G-Ca-2D is

brought in contact with an additional pristine graphene sheet on top of Ca layer.

The corresponding sandwitched structure is depicted in Fig. 4.10a. Graphite in-

tercalation is one of the best-known experimental procedures used for extraction of

graphene layers from graphite since intercalants increase the distance between layers

appreciably and are likely to weaken the inter-layer attraction.

In order to find the equilibrium inter-layer distance we calculated the adhe-

sion energy for various distances ranging from 3.0 to 7.0 Å. It is well-known that

the London dispersive forces play a decisive role in the inter-layer interaction of

heterostructures of 2D materials. Thus, we included London dispersive forces in

our calculations by applying optB88-vdW functional [145] and found that the Ca-

intercalation of bilayer graphene truly increases the distance between the graphene

planes from 3.55 to 4.65 Å. Nonetheless, intercalation with Ca also increases the

adhesion energy nearly three times from 0.26 J/m2 of pristine graphene bilayer to

0.74 J/m2. This adhesion energy is larger than the values obtained for typical mi-

cromechanical structures and is comparable to the ultra-strong adhesion of graphene

sheet on a silicon oxide substrate [146].

Figure 4.10: a) Ca-intercalated graphene bilayer with the same Ca coverage as in
G-Ca-2D structure; b) adhesion energy as a function of distance between graphene
layers calculated for pristine, Ca- and Li-intercalated graphene bilayers are presented
with brown, blue and yellow dots, respectively. The calculations are performed
applying optB88-vdW functional [145].

The origin of the vast increase in the adhesion energy is the attractive elec-

trostatic interaction between the graphene plane and the Ca layer. We performed

Bader analysis on the structure shown in Fig. 4.10a and reveal a charge transfer of

1.05 electrons per Ca atom to graphene planes. As a matter of comparison, an indi-

vidual Ca atom adsorbed on graphene monolayer showed much lower charge transfer

of 0.89 electrons (see Table 4.1). Further proof that the enhanced adhesion has an

electrostatic origin can be found if the adhesion energy is calculated without the
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inclusion of dispersive forces. Thus, we performed the calculations with GGA-PBE

functional and found the adhesion energy of 0.37 J/m2 when the bilayer graphene

is intercalated with Ca atoms. As the GGA-PBE value of the adhesion energy of

pristine bilayer graphene is negligible, we conclude that the gain of 0.37 J/m2 is

solely due to electrostatic interaction. Therefore, the positively charged Ca layer

is a mediator of the electrostatic attraction between negatively charged graphene

planes (Fig. 4.10a).

Motivated by the importance in the technology of lithium-ion batteries (LIBs)

where graphite is used as main anode material, we calculated the adhesion energy of

the Li-intercalated bilayer graphene. Considering adsorption structures with cover-

age Θ of 1/18 ML and 1/32 ML and applying optB88-vdW functional, we calculated

adhesion energies of 0.58 and 0.41 J/m2, respectively. The results for Θ = 1/18 ML

are compared to those found for Ca-intercalated graphene with the coverage of

Θ = 1/6 ML. Our study revealed that the adhesion energy of Li-intercalated bilayer

graphene increases with an increase of coverage. Note that due to electrostatic repul-

sion between Li adatoms both monolayer and bilayer graphene which contain high

concentration of Li are unstable. Therefore, thermodynamically favorable coverage

when bilayer graphene is intercalated with Li depends on the competing effects of a

strong repulsion between Li adatoms and their attractive interaction with graphene

layers.
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Chapter 5

Lithium adsorption on
two-dimensional crystals

During the last decade, newly discovered 2D materials have been extensively utilized

in the design of nanoelectronic devices as well as in the cutting-edge technology of

energy storage. Owing to their layered structure and peculiar electronic properties,

2D materials are widely considered as main candidates in the development of novel

components of lithium-ion batteries with superior functionalities. To succeed in

the rational design of the improved cathode and anode materials, one needs to

understand the basic physical mechanisms governing the interaction of Li with 2D

materials.

This Chapter is devoted to the interaction of Li with fifteen 2D crystals, including

transition metal oxides (TMOs) and dichalcogenides (TMDs), carbides of Group

XIV elements, functionalized graphene, silicene and germanene as well as black

phosphorus (BP) and Ti2C MXene. Structural and electronic properties of the

majority of aforementioned materials are already described in Chapter 3. Here

we describe the general trend in Li binding based on the position of the lowest

unoccupied electronic states of pristine 2D materials. Therefore, we distinguish

two classes (or groups) of 2D materials: the first class contains the majority of

them which follow a simple binding picture while the second one encompasses a few

materials where the interaction with Li gives rise to substantial changes of structural

and electronic properties.

5.1 Introduction

Since the isolation of single graphene layer in 2004 and the experimental demonstra-

tion of its superb electronic properties the research efforts motivated by this discov-

ery have resulted in a whole new class of 2D materials with a variety of structural
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and electronic properties. The possibilities became even larger with the appearance

of van der Waals (vdW) heterostructures made of various 2D crystals stacked in

a predetermined sequence [2]. Different choice of stacking sequence in vdW het-

erostructures can drastically alter their properties and hence the functionality of

the electronic devices which are made of them.

2D materials together with their vdW heterostructures are widely considered as

promising candidates for key components in diverse fields of nanotechnology, e.g. for

post-silicon transistors [13, 147], next generation of solar cells [148], or lithium-ion

batteries (LIBs) with improved charging rate and storage capacity [149, 150]. The

efficiency of LIBs, today’s main energy storage devices in mobile phones, notebooks

as well as electrical cars, depends on the choice of materials they are build of, as

they must be able to adsorb and quickly transport large quantities of lithium. These

features strongly depend on (1) the strength of Li binding to these materials and

(2) the mobility of Li atoms on their surface.

The prediction of the behavior of Li atoms upon their deposition on cathode or

anode is based on our understanding of interaction of Li atoms with the building

blocks of battery’s components. Therefore, the number of scientific papers aimed

to shed light on the microscopic mechanisms which are governing the interaction

of Li with 2D materials is rapidly growing. Due to importance of graphene in

various future technologies, Li adsorption on this 2D crystal has been thoroughly

studied [133, 141, 151]. In Chapter 4 we have shown that the repulsive interaction

between Li adsorbates at graphene is of electrostatic origin and is a consequence of

the pronounced electronic charge transfer from Li adatoms to graphene layer. The

same effect is found in DFT studies of adsorption of alkaline metals to other 2D

crystals. Though the first-principles studies covered Li adsorption on MXenes [152],

phosphorene [153, 154, 155], SiC [156], MoO2 [157], MnS2 [158], MoS2 [159, 160] as

well as graphene/MoS2 bilayers [161], the study which will provide the details on

general trends of Li adsorption on a variety of 2D crystals is still missing.

We applied DFT to reveal the structural and electronic properties of Li adsor-

bates at 2D materials. General trends of Li binding at diverse 2D crystals can be

rationalized from their basic electronic properties, namely the energies of the lowest

unoccupied electronic states. Among selected 2D materials, graphane and carbides

of Group XIV elements show distinct behavior compared to other 2D crystals as the

new electronic states emerge upon Li adsorption on these 2D crystals. Explanation

for this specific behavior together with the classification of 2D crystals based on the

structural deformation of surface and the changes in the electronic structure of 2D

crystal upon Li adsorption are provided in the following sections.
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5.2 Modeling of 2D crystal surfaces

The selection of 2D crystals made in this work was motivated by the necessity of

having a large diversity of structures which carry out distinct electronic properties

needed for unambiguous conclusions on general binding trends. Thus, our study

includes transition metal dichalcogenides (MoS2, MoSe2, CrS2 and CrSe2), transi-

tion metal oxides (MoO2 and CrO2), MXene (Ti2C monolayer), Group XIV carbide

monolayers (SiC, GeC, SnC), hydrogenated silicene (Si-H), germanene (Ge-H) and

graphene (Gra-H), fluorinated graphene (Gra-F) as well as black phosphorus mono-

layer – phosphorene (BP).

2D crystals were modeled with a supercell with periodic boundary conditions

within the layer and the open boundary conditions in the direction perpendicular to

layer with at least 8 Å of vacuum on each side of the surface. The imposed periodic

boundary conditions affect Li binding energy (EB), as Li atoms from the neighboring

cells interact with each other. Consequently, for the correct values of EB the supercell

must be sufficiently large. We performed test calculations for Li atom adsorbed

on SnC and CrO2 for various supercell sizes ranging from 3 × 3 to 6 × 6 (Table

5.1) and concluded that the best choice is a 4 × 4 surface unit cell, as it provides

well-converged binding energies with a modest computational cost. Therefore, 2D

Table 5.1: Binding energy of Li adatom on SnC and CrO2, calculated for rombo-
hedral surface unit cells of different size.

2D crystal SnC CrO2

cell size (eV)
3×3 1.87 4.06
4×4 1.88 4.22
5×5 1.90 4.26
6×6 1.91 4.28

crystals were modeled with a 4×4 rhombohedral cell containing 16 atoms per atomic

layer (transition metal oxides and dichalcogenides) or 16 atoms per sublattice of

honeycomb structure (carbides of Group XIV elements, fluorinated graphene as well

as graphane, silicane and germanane). Phosphorene was modeled with a rectangular

unit cell with 36 phosphorus atoms. For all investigated surfaces we carried out the

calculations with theoretically optimized lattice constants (Table 5.2). The sampling

of Brillouin zone was done according to the Monkhorst-Pack scheme [47] with 16

k-points.

Majority the structures listed in Table 5.2 are semiconducting, except Ti2C which

shows metallic behavior. One of the guidelines for this particular choice of 2D
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structures was the position of their lowest unoccupied states relative to the value of

the electrostatic potential far from the surface. We will refer to it as the electrostatic

vacuum. For the sake of shortness, as fourteen of fifteen listed 2D crystals are

semiconducting we shall refer to the lowest unoccupied states as the conduction

band minima (CBM).1

Table 5.2: Structural and electronic properties of pristine 2D crystals selected in
this work: lattice constants, position of the conduction band minimum (CBM) and
midgap states calculated with respect to the electrostatic vacuum. Also, binding
energies (EB) of Li atom on 2D crystals with the corresponding distance from the
nearest atom from the surface d(Li-X). Energies are in eV and distances are in Å.

Lattice Midgap Li binding
2D crystal constant CBM state d(Li-X), X energy (EB)

1 Graphane (Gra-H) 2.52 −1.30 −2.87 2.45, H 0.01
2 SiC 3.10 −2.51 −3.91 2.32, Si 1.00
3 GeC 3.26 −2.75 −4.21 2.31, C 1.43
4 Silicane (Si-H) 3.86 −2.87 − 2.07, H 0.64
5 SnC 3.59 −3.56 −4.19 2.32, C 1.88
6 Germanane (Ge-H) 4.04 −3.71 − 2.11, H 0.93
7 MoSe2 3.32 −3.89 − 2.49, Se 1.43
8 Phosphorene 4.42, −4.17 − 2.46, P 1.98

(BP) 3.43
9 MoS2 3.18 −4.25 − 2.38, S 1.79
10 Fluoronated 2.62 −4.48 − 1.88, F 1.78

graphene (Gra-F)
11 Ti2C 3.04 −4.52 − 3.07, Ti 2.31
12 CrSe2 3.22 −4.57 − 2.49, Se 2.06
13 CrS2 3.05 −4.98 − 2.38, S 2.45
14 MoO2 2.83 −5.79 − 2.01, O 2.99
15 CrO2 2.65 −6.99 − 2.00, O 4.23

In our study, for every 2D crystal we firstly checked if Li binds to its surface,

i.e. if EB is positive, and made a choice of 2D crystals with the intention to cover

the large interval of CBM on energy scale. For example, h-BN has the CBM of

−1.16 eV which is the highest value of all considered 2D crystals (see Table 5.2),

but we found no binding of Li to its surface. Thus, we excluded h-BN from further

considerations.

1But, bearing in mind that the notion of CBM does not apply for metals, as the lowest unoc-
cupied states in metals lye just above the Fermi level.
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5.3 Li adatoms on 2D crystals

We begin our investigation of Li adsorption at 2D crystals with an individual Li

atom adsorbed at different sites of selected 2D crystal. Only the most stable ad-

sorption geometries, i.e. sites with the highest EB value, are further considered.

DFT calculations reveal that Li adsorption geometries of 15 selected 2D crystals

c) MX2

(7,9,12,13,15)

b) carbides

(2,3,5)

a) X-Y

(1,4,6,10)

d) BP

(8)

e) Ti2C

(11)

X=C, Si, Ge
Y=H, F

X

Y

X

C

X=Si, Ge, Sn

M

X

M=Cr, Mo
X = O, S, Se

P C

Ti

f) MoO2

(14)

Mo

O

Figure 5.1: Top and side view of the most stable adsorption geometries of Li atom
(green sphere) on 2D crystals. Materials are classified into groups according to their
structural similarity: a) graphane, silicane, germanane and fluoronated graphene;
b) carbides of Group XIV elements – SiC, GeC and SnC; c) MX2 structures – TMOs
and TMDs ; d) phosphorene; e) Ti2C; f) MoO2. MoO2 is depicted separately as Li
adsorption geometry on this 2D crystal is different from all the rest of the MX2 group.
The numbers in the upper left corner of images correspond to the enumeration of
2D structures in Table 5.2 and in Fig. 5.2.

can be classified into six different groups as depicted in Fig. 5.1.

The most favorable adsorption sites of Li atom at hydrogenated monolayers of C,
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Si and Ge, known as graphane, silicane and germanane as well as at fully fluorinated

graphene is depicted in Fig. 5.1a. At each of these surfaces Li binds in the hollow site

between three H or F atoms. The second group of adsorption geometries, depicted

in Fig. 5.1b, encompasses carbides of Group XIV elements – namely SiC, GeC and

SnC. They have in common that Li atom binds atop of metal atom which becomes

largely displaced from the surface plane. The third group of 2D crystals (Fig. 5.1c)

contains majority of MX2 monolayers, where the preferred binding site is atop metal

atom and between three O, S or Se atoms. The most stable adsorption sites of Li

atom on BP and Ti2C are depicted in Fig. 5.1d and Fig. 5.1e, respectively. On

the contrary to other MX2 structures shown in Fig. 5.1c, Li atom adsorbed on

MoO2 monolayer displays different behavior as it binds in the threefold hollow site

between O atoms without metal atom underneath (Fig. 5.1f). The corresponding

binding energies together with the distances of Li atom from its nearest neighbors

are presented in Table 5.2.

When Li is adsorbed on 2D crystal, it shows strong tendency to transfer the 2s

electron to the surface. This behavior is shared by all alkaline adsorbates due to

their low electronegativity. At semiconducting or insulating surfaces the electron is

transferred from the atomic Li-2s state to the states near the CBM, which are the

lowest unoccupied states in the system. Thus, it is likely to expect a correlation

between the energy gain due to charge transfer from Li adatom to the surface and

the position of the CBM. Moreover, this energy gain of the system can be identified

as Li binding energy, EB.

Following these arguments, we plotted EB as a function of CBM for fifteen 2D

crystals considered in this work, as shown in Fig. 5.2. The plot indeed demonstrates

a strong correlation between Li binding energy and the position of CBM of pristine

2D crystals. The highest EB of 4.23 eV was calculated for Li adatom at CrO2 and

is accompanied with the lowest energy of the CBM among studied 2D crystals of

nearly −7 eV below the vacuum level.2 On the other hand, graphane has the highest

CBM position of -1.30 eV below vacuum and the lowest Li binding energy of only

0.01 eV. For other 2D crystals the values of EB and CBM are between these two

limits (Table 5.2). The only metal among studied materials is Ti2C, thus instead of

the CBM position the Fermi level of Ti2C is plotted in Fig. 5.1 as it represents the

bottom of the lowest unoccupied states of the metallic system.

From the plot in Fig. 5.2 one can clearly differentiate between two groups of

materials showing distinct Li adsorption behavior:

2When expressing CBM position the zero of the energy scale is set to the electrostatic potential
at the cell boundary in the z-direction, i.e. electrostatic vacuum.
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Figure 5.2: Correlation between Li atom binding energy (EB) and conduction band
minimum (CBM) for selected 2D crystals; surfaces without and with midgap state
are marked with blue circles and red triangles, respectively. Open triangles indicate
the CBM positions of pristine 2D crystals, while the filled triangles correspond to
the midgap states, which are the lowest unoccupied states of deformed 2D crystals.
Horizontal arrows between the open and filled triangles indicate energy shifts from
CBM of pristine 2D crystal to its midgap state induced upon Li adsorption. The
numbering of materials is the same as in Table 5.2. The dashed blue line serves as
a guide to eyes.

1. the materials which closely follow the correlation graph of Li binding energy

and the CBM position. Majority of the studied 2D materials belong to this

group. They are represented with blue circles in Fig. 5.2. For the sake of

brevity, we will refer to them as the materials from the blue group;

2. the materials whose dependence of Li binding energy on CBM position is

shifted from the correlation graph. They are represented with red triangles in

Fig. 5.2. This group of materials will be referred to as the red group.

To substantiate the differences in structural and electronic properties of Li ad-

sorbates on the two groups of materials, we further inspect the Li adsorption on the

groups’ representatives – CrO2 from the blue group and SnC from the red group.

This particular choice is made based on the CBM position of materials, as CrO2

and SnC show the strongest Li binding among all 2D materials from their respec-

tive groups. Thus, we expect the most pronounced changes in their structural and

electronic properties upon Li adsorption.

The adsorption geometry of Li atom on CrO2 monolayer is shown in Fig 5.1c.

As Li atom is adsorbed, the positions of Cr and O atoms are slightly changed as

the largest displacement does not exceed 0.06 Å. The effect of Li adsorption on
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the electronic structure of CrO2 can be rationalized from the DOS plots shown in

Fig. 5.3. Total DOS of a pristine CrO2 is also plotted in Fig. 5.3a for comparison.

Figure 5.3a clearly demonstrates that Li adatom donates its only valence 2s electron

to the conduction band of CrO2 and shifts the Fermi level of a pristine monolayer

by 0.44 eV. Apart from the change in the occupation, CrO2 electronic states near

EF are barely affected by Li adsorbate. This observation is confirmed by the plot of

DOS projected on relevant atomic orbitals, that is 3d orbitals of Cr, 2p orbitals of

O and 2s orbitals of Li (Fig. 5.3b). Most of the Li-2s states are located within the

Figure 5.3: a) Total DOS of pristine CrO2 monolayer and the monolayer with
adsorbed Li atom; b) DOS of the CrO2 monolayer with adsorbed Li atom, projected
on 3d orbitals of Cr (blue), 2p orbitals of O (red) and 2s orbitals of Li (green).

peak which lies 0.8 eV above EF (Fig. 5.3b), and the contribution of Li-2s states to

the total DOS near EF is negligible. The states near the top of the valence band

and the bottom of the conduction band are predominately of Cr-3d character with

the small contribution from O-2p orbitals. Thus, upon adsorption of an Li atom on

CrO2, 2s electron is transferred to the 3d orbitals of Cr atoms and delocalized across

surface as shown in plot of the accumulated electron charge density (Fig. 5.4a).

For the sake of completeness, we show the plots of the total DOS of pristine

BP and graphane monolayers as well as DOS of these surfaces with added Li atom

(Fig. 5.5). Though the structure of these 2D crystals are different compared to

MX2 materials, the Li adsorption behavior is the same, as the only effect of Li

adsorbate on the electronic structure of BP and graphane is in the filling of the

lowest unoccupied states.

Compared to majority of 2D crystals belonging to the blue group, graphane

and carbides of Group XIV elements, i.e. 2D crystals from the red group display

completely different Li binding picture. Though the general trend in Li binding to

2D crystals from the red group is still observable as the binding energy increases

when the CBM position is deeper on energy scale, the points in Fig. 5.2 which
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Figure 5.4: Electron density induced upon Li adsorption at (a) CrO2 and (b) SnC
monolayer. Only isocontours corresponding to charge accumulation are plotted.
Thermographic scale (in e/Å3) in the middle of the figure applies to both graphs.

Figure 5.5: Total DOS of (a) BP and (b) silicane monolayer with and without Li
adatom. Total DOS of pristine 2D crystals are shifted on energy scale to match the
total DOS of Li atom adsorbed on the 2D crystals. Zero of the energy scale is set
to the Fermi level of Li atom adsorbed on 2D crystal.

correspond to graphane, SiC, GeC and SnC (open red triangles) show a pronounced

deviation from the dashed line.

Considerable differences can be found in the structural properties of Li atom

adsorbed on 2D materials belonging to distinct groups. In a sharp contrast to the

materials from the blue group where the adsorption of Li atom only slightly changes

the positions of the surface atoms, the Li adsorption induces large deformations in

the surfaces of SiC, GeC and SnC (see Fig. 5.1b). After Li atom is adsorbed at the

position above the Si, Ge and Sn atoms of SiC, GeC and SnC, the host atoms are

moved downwards as much as 0.75, 0.90 and 1.13 Å, respectively. The increase in

the deformation in the sequence SiC−GeC−SnC is accompanied with the increase

in Li binding energy, as the corresponding EB values are 1.00, 1.43 and 1.88 eV

(Table 5.2). On the other hand, the binding of Li on graphane is very weak as the

EB is only 0.01 eV (Table 5.2) and the presence of Li atom in the system does not
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alter the positions of the surface atoms. Thus, for materials from the red group, the

deformation of surface upon Li adsorption is well correlated to the strength of Li

binding. This correlation is not documented for any of the 2D materials from the

blue group, as the surface deformation after Li adsorption is modest even for CrO2

which has the highest EB value of all considered materials.

Closer inspection reveals that after the adsorption of Li atom midgap states

appear on each of the four surfaces from the red group. To shed light on the origin

of midgap states we compared the total DOS of ideal SnC monolayer to that of

deformed SnC monolayer in Fig. 5.6a. The positions of Sn and C atoms in deformed

Figure 5.6: a) Total DOS of pristine SnC monolayer calculated for the ideal sheet
(brown curve) and deformed monolayer (blue line) where Sn and C atoms are fixed
at the positions as in SnC with Li adatom. δE indicates the position of the midgap
state relative to the CBM of ideal SnC monolayer; b) Total DOS obtained from
spin-polarized calculations of SnC monolayer with adsorbed Li atom on top of Sn
atom; c) Isosurface plot of Kohn-Sham orbital of the midgap state at Γ point. Two-
color scheme corresponds to the regions with different sign of wavefunction. The
number on the left indicates the displacement of Sn atom (in Å) from the SnC plane,
induced by Li adsorbate.

SnC monolayer are the same as that of the SnC monolayer with Li adatom. From

Fig. 5.6a we conclude that the emergence of midgap states is triggered by the large

displacement of the atom which lies below Li adatom.
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As the midgap state lies above the valence band maximum and below the conduc-

tion band minimum, it plays the role of the lowest unoccupied state in the system.

Thus, after the Li atom is adsorbed on the surfaces of graphane, SiC, GeC and SnC,

Li-2s electron is transferred to the midgap states instead of the CBM. Moreover,

spin-polarized DFT calculations reveal that the total magnetic moment of 1µB is

induced upon the adsorption of Li atom on each of these four surfaces. Total DOS

of SnC monolayer with Li adatom calculated for separate spin channels in Fig. 5.6b

confirms that only spin-up midgap state is filled. High degree of localization of the

midgap state in SnC favors the spin polarization of the system.

Comparison of the charge density induced upon Li adsorption on the blue group

representative CrO2 (Fig. 5.4a) to that of SnC (Fig. 5.4b) which represents the red

group clearly portraits the differences in redistribution of the electronic charge in

these materials after the Li atom is deposited on their surfaces. When Li atom is

adsorbed on SnC, Li-2s electron is transferred to the midgap state mainly localized

around Li adatom and at Sn atom below, with the small contribution from the few

C atoms nearby (Fig. 5.4b). This is markedly different from the corresponding plot

of the charge transferred from Li to CrO2 monolayer, where the Li-2s electron is

completely spread across surface.

When Li atom is adsorbed on any of the surfaces from the red group, the midgap

state becomes the highest occupied state in the system. To expose the degree of

localization of this state, we plotted the isosurface of the highest occupied Kohn-

Sham orbital at Γ point of Li atom adsorbed on SnC (Fig. 5.6c).3 This plot confirms

that the wavefunction that corresponds to the midgap state is of localized character,

as its lobes are located at the Sn atom below the Li atom and at the nearest C atoms.

To conclude this section, we present the plots of the total DOS of Li atom

adsorbed on SiC and GeC monolayers (Fig. 5.7). Comparison of these plots to the

plot in Fig. 5.6b of the Li atom adsorbed on SnC confirms that the appearance of the

midgap state is characteristic for all the materials from the red group. Interestingly,

trend in the change of the position of midgap state can be observed in the sequence

SiC−GeC−SnC as it is moving from the CBM closer to the VBM, while the splitting

between the spin-up and spin-down midgap states is becoming less pronounced.

5.4 High Li coverage on 2D crystals

Rapid development of various customer electronic devices generated the urgent need

for further improvements in energy storage. Among all characteristics of LIBs of

3Γ point in BZ is at k = 0. Hence, the Kohn-Sham orbital is a real function.
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Figure 5.7: Total DOS of (a) SiC and (b) GeC monolayer with and without Li
adatom. Total DOS of pristine 2D crystals are shifted on energy scale to match the
total DOS of Li atom adsorbed on the 2D crystals. Zero of the energy scale is set
to the Fermi level of Li atom adsorbed on 2D crystal. Vertical arrows indicate the
spin polarization of the midgap states.

particular importance is their storage capacity, the property correlated to the quan-

tity of lithium contained inside the battery. Thus, for technological application of

2D materials in cathode or anode electrodes they must be able to accommodate

densely packed Li adsorbates without serious material expansion.

So far we studied the properties of 2D crystals with low coverages of Li adsorbed

on their surface. Based on the nature of interaction of 2D crystal with an individ-

ual Li atom, in Section 5.3 we classified 2D crystals into two groups carrying out

qualitatively different interaction with Li adsorbates. Here we examine the ability

of Li to form densely packed structures at (1) SnC monolayer, representative of the

group of materials where the interaction of Li adatoms with the surfaces is well

localized, and (2) CrO2 monolayer, representative of the group of materials with

fairly delocalized charge transfer from Li adatoms.

5.4.1 High coverage Li structures on SnC

We start the investigation of high Li coverage structures at 2D materials with the

study of interaction between two Li adatoms, adsorbed closely to each other. Based

on the interaction between metal atoms in their dimer configuration, one can draw

conclusions on the preference of metal atoms to form ordered densely packed struc-

tures at 2D materials. Similar study has been conducted in Section 4.3 for various

dimer configurations of Li, Ca and Ti adsorbed on graphene.

DFT study of various Li2 adsorption geometries on SnC revealed the structure

depicted in Fig. 5.8a as the most stable one. The binding energy of 2.06 eV per

atom is larger than 1.88 eV found for an individual Li on the same surface.4 The

4The same rhombohedral 4× 4 surface unit cells has been used for both calculations.
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increase of 0.18 eV in EB indicates that the interaction between two Li atoms in

their dimer configuration is attractive. This is completely opposite to the long-range

repulsion between Li adatoms on graphene thoroughly examined in Subsection 4.3.1.

The stability of Li dimers adsorbed on SnC originates from the midgap state which

can accommodate two electrons. DOS of an individual Li atom adsorbed on SnC

presented in Fig. 5.6b clearly demonstrates that the midgap state is half-filled, as

its spin-down component is completely empty.

Figure 5.8: The most stable adsorption geometry of (a) Li dimer, (b) Li tetramer
and the most stable ordered structures on SnC monolayer at Li coverages of (c)
Θ = 1/2 ML and (d) Θ = 1 ML. A full monolayer (1 ML) represents the coverage
where the number of Li atoms equals that of Sn atoms. Sn, C, and Li atoms
are represented by large yellow, small gray, and green spheres, respectively. The
numbers bellow images indicate Li binding energy in eV per atom. Surface unit
cells of ordered structures are marked with dashed black lines.

When two Li adatoms are adsorbed above the same Sn atom, two Li-2s electrons

are transferred to the surface giving rise to the completely filled midgap state. This

is confirmed with the plot of total DOS presented in Fig. 5.9a. DOS projected on

2p orbitals of C atoms and on 5p orbitals of Sn atoms presented in Fig. 5.9b reveals

that the midgap state is of predominately Sn-5p character. The preference of dimer

adsorption configuration in comparison to the configuration where two individual

Li atoms are adsorbed at different sites can be explained with the simple argument:

when both Li atoms are adsorbed at the same site, the energy penalty for structure

deformation is shared by two adatoms.
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Figure 5.9: Total and atom-projected DOS of (a), (b) Li2 dimer and (c), (d) Li
monolayer on SnC.

Structures presented in Fig. 5.8b-d have similar binding energies, with the re-

ported values close to that of an individual Li dimer. Small increase in EB found in

tetramer (Fig. 5.8b) and structures with high Li coverage of 1/2 ML (Fig. 5.8c) and

1 ML (Fig. 5.8d) is the firm evidence of their stability. Thus, instead of the highly

ordered structures where Li atoms are uniformly spread across SnC surface the fa-

vorable adsorption geometries are the ones where Li atoms form chains of dimers as

depicted in Figs. 5.8c and 5.8d. In all of these adsorption structures from Fig. 5.8

the number of Li atoms is twice the number of created midgap states.

With the increase of Li coverage the midgap states start to overlap. The broad-

ening of the peak in DOS presented in Fig. 5.9c is due to hybridization of the midgap

states located on neighboring Sn atoms. Even for the highest Li coverage, the sys-

tem stays in its semiconducting state but with the substantial decrease in bandgap

size due to merging of the midgap states with the states from the valence band

(Fig. 5.9c).

High density of Li on 2D materials can cause substantial changes in their struc-

ture, e.g. in their lattice constant or the layer corrugation. The expansion of ma-

terials upon Li adsorption used in cathode and anode electrodes presents a major

issue in the construction of LIBs. Thus, we examined the volume expansion effect
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in lithiated 2D materials with Li coverage of 1/2 and 1 ML. DFT calculations reveal

that the lattice constant decreases 1% in fully lithiated SnC (coverage of 1 ML)

compared to the pristine sheet. However, Li adsorption causes large corrugation of

the SnC layer, as the Sn atom is pushed down upon Li atom adsorption by as much

as 1.13 Å (Fig. 5.6c). Thus, the average metal-metal distance in structure with Li

coverage of 1 ML is 2% larger compared to the value found for pristine SnC sheet.

These calculations indicate modest changes in the lattice constants of lithiated SnC,

which should not significantly deteriorate its structural stability.

5.4.2 High coverage Li structures on CrO2

In this subsection we examine the preference of Li to form clusters on CrO2 and

exploit the ability of this 2D crystal to accommodate Li structures with high cover-

ages.

The most favorable Li dimer structure adsorbed on CrO2 monolayer is depicted

in Fig. 5.10a. We relaxed the structure where the Li atoms are placed above the

Figure 5.10: Atomic structure of a) Li dimer and the most stable ordered structures
at CrO2 monolayer at Li coverage b) Θ=1/4 ML c) Θ=1/3 ML and d) Θ=1/2 ML.
Crosses in a) indicate the initial position of Li atoms prior to structural optimization.
The numbers indicate Li binding energy in eV per atom; Cr, O and Li atoms are
represented by light blue, red and green spheres, respectively. A full monolayer (ML)
refers to the coverage where the number of Li and Cr atoms are equal. Surface unit
cells are marked with black dashed lines.

adjacent Cr atoms as indicated by black crosses in Fig. 5.10a. Yet, this structure
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is not stable as the Li atoms move further away from each other in the directions

indicated with black arrows. As the Li adsorption on CrO2 is not accompanied with

the emergence of midgap states, strong Li-Li repulsion is not suppressed on this

surface. The Li binding energy of 4.00 eV per atom is 0.23 eV smaller compared

to that of the individual Li atom at the same surface. Thus, Li adatoms on CrO2

do not show tendency towards clustering. Similar behavior is already discussed in

Section 4.3.1 for Li adatoms on graphene, another 2D crystal where the Li binding

is dominated by charge transfer from the adsorbed atoms to the surface.

The ordered Li structures on CrO2 monolayer, as well as the corresponding

binding energies for coverages Θ of 1/4, 1/3 and 1/2 ML are given in Fig. 5.10b-

d, respectively. In a sharp contrast to SnC where the binding energy is nearly

independent on Li coverage, we found the monotonic decrease of EB with an increase

in Li coverage Θ, reaching the value of 2.81 eV per atom at Θ = 0.5 ML. This

is as much as ∼ 1.5 eV less than the binding energy of a single Li atom on the

same surface. An increase of Li coverage at CrO2 gives rise to the unfavorable

accumulation of electrons in the conduction band of CrO2 monolayer, and thus

weakens lithium binding. This is completely opposite to the adsorption of Li on

SnC. Thus, we expect that the CrO2 is unsuitable substrate for the formation of

densely packed Li structures.

5.4.3 Work function dependence on Li coverage

Throughout the Chapter, we examined the Li adsorption on 2D materials and pro-

vide the description of this phenomenon based on the electron charge transfer from

Li to the surface. To conclude this discussion, we investigate the energy cost of

electron removal from the lithiated surfaces of SnC and CrO2, the feature which is

quantified by the work function of the system.

To study the evolution of the work function with Li coverage we assumed the

adsorption geometries as depicted in Figs. 5.1b and 5.1c and increased the unit cell

size to simulate the decrease of Li coverage. Therefore, the unit cells with sizes in

the range from 2 × 2 (1/4 ML) to 4 × 4 (1/16 ML) were used.

The results presented in Table 5.3 show that at both surfaces the workfunction

decrease with an increase in Li coverage, but the degree of decrease is different. The

work function of CrO2 decreases from 7.33 eV to only 1.40 eV when Li layer with

coverage of 1/4 ML is adsorbed on the pristine sheet. The corresponding change

of work function of SnC is less drastic, as it decreases from 4.54 to 3.18 eV. As

the Li coverage increases, the Fermi level of 2D crystal shifts closer to vacuum level

which partially contributes to the decrease of work function. However, only a half
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Table 5.3: Evolution of SnC and CrO2 monolayer work functions with Li coverage.
For both surfaces the calculations were performed using rhombohedral unit cells of
different sizes. All energies are in eV.

Coverage (ML) SnC CrO2

0 4.54 7.33
1/16 4.07 5.28
1/9 3.84 4.11
1/4 3.18 1.40

of the decrease of the CrO2 work function is due to the change of the position of

Fermi level as this shift is around 3 eV. Upon adsorption of Li on CrO2 the electrons

transferred from Li are uniformly spread across surface. Thus, the dipole layer of

positively charged Li ions and negatively charged surface generates strong electric

field which considerably reduces the work function. The strength of the field rapidly

increases with the Li coverage. The effect on SnC sheet is less pronounced due to

different Li adsorption geometry and localized character of the charge transfer.
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Chapter 6

Adsorbate-induced structural
phase transition in MoS2

Since the fabrication of the first single-layer MoS2 transistor in 2011 [13], large fam-

ily of 2D materials known as transition metal dichalcogenides (TMDs) emerged as

an important players in the development of ultrathin field-effect transistors (FETs).

These 2D materials, which were in their bulk form extensively used for decades as

lubricants, have been brought back to the spotlight of both academic and techno-

logical research for completely different applications.

In this Chapter we explore the adsorption of two different metals, namely lithium

and calcium, as the viable routes for triggering the structural phase transition in

MoS2. The structural phases of MoS2 are explained thoroughly in Section 3.5. Here

we present the structural and electronic properties of Li and Ca adsorbed on two

most stable phases of MoS2 at various coverages, ranging from single adatoms to

a half a monolayer. Binding pictures of Li and Ca on two phases of MoS2 will

be compared, and the simple model of Li adsorption on 2D materials explained in

Chapter 5 based on the charge transfer from adsorbate to the surface will be tested

also on Ca, where one can distinguish the boundaries of its validity.

6.1 Introduction

Far the most widely studied 2D crystal is graphene [1, 162], a material which dis-

plays various peculiar phenomena. Although it features ultrahigh electron mobility

[163], graphene lacks a bandgap, the property which is crucial for applications in

transistor nanotechnology. Various attempts of bandgap engineering turned out to

be challenging due to the increase of fabrication complexity. Those endeavors led to

the unfavorable deterioration of electron mobility in single-layer graphene [164, 165]

or ended with the fabricated FETs based on bilayer graphene that require high



voltages to operate properly [166]. The lack of bandgap in graphene brought the

spotlight to the transition metal dichalcogenides (TMDs), large family of 2D semi-

conductors which become the most widely studied channel materials in transistor

nanotechnology.

Monolayer TMDs, whose structural and electronic properties are described in

Chapter 3, are both fundamentally and technologically intriguing. The fact that the

single-layer MoS2 was used in the first operating 2D transistor as a channel material

gained a renewed interest to the family of TMDs [13]. The bandgap of MoS2 changes

from indirect (∼ 1.2 eV) to direct (∼ 1.8 eV) as the thickness decreases from bulk

to single layer [167, 123, 73]. However, apart from the change in size and the type

of the bandgap with the decreasing thickness, the room-temperature mobility of

charge carriers suffers a sharp decrease from bulk values of 200 − 500 cm2 V−1 s−1

to the values of only 0.5 − 3 cm2 V−1 s−1 in monolayer MoS2 [168]. Ghatak et al.

proposed that the charge traps present at the interface between the the MoS2 layer

and the SiO2 substrate are the main reason for such degradation of mobility [169].

Often, disorder in 2D electron systems arises from extraneous sources, such as in

modulation-doped III–V semiconductors where the remote dopant ions generate

a random Coulomb potential which causes the localization of carriers due to weak

screening at low carrier densities [170]. These are the indications that understanding

the nature of the electronic states at the MoS2/substrate interfaces as well as the

charge transfer between the MoS2 layer and the substrate or the dopant atoms/ions

can be crucial for the improvement of MoS2-based FET devices.

It is shown by Radisavljević et al. that gating MoS2 with the high-κ dielectric

HfO2 recovers the room-temperature mobility of charge carriers back to the bulk

values of 200 cm2 V−1 s−1, which is also comparable to that of graphene nanoribbons

[13]. Further efforts in the engineering of mobility in MoS2 focused on the so-called

dual-gated FETs [171]. The additional top gate allows higher doping up to the

concentrations of n2D ∼ 3.6 × 1013 cm−2, which led to the observation of metal-

insulator transition (MIT) [172], the first of its kind in a 2D semiconductor. For

gate voltages corresponding to charge densities lower than n2D ∼ 1 × 1013 cm−2,

monolayer MoS2 displays semiconducting behavior as the conductance decreases at

lower temperatures, whereas for higher gate voltages the conductance increases as

the temperature is decreased, which is the hallmark of metallic state. This particular

MIT is the direct consequence of quantum interference effects of weak and strong

localization corresponding to metallic and insulating state, respectively [173].

MIT can also be achieved as the consequence of the structural change in MoS2.

In Section 3.5 we explained that MoS2 can undergo the structural phase transition
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from hexagonal (2H) phase to the metastable trigonal (1T) phase (see Fig. 3.9) by

various manipulations, thus giving rise to the drastic change in electronic structure

from semiconducting to metallic state. The 2H → 1T structural phase transition

can be achieved by mechanical deformation [8] thus exploiting the experimentally

demonstrated strength of monolayer TMDs [174], by using an electron beam on the

layer of 2H phase [175] or by changing the electron count as both n- and p-type

doping drastically reduce the energy barrier of the transformation [77].

In practice, the p-type doping of MoS2 can be achieved via the introduction of

sulfur vacancies [176] and the n-type doping is commonly realized by intercalation

with alkali metals such as lithium and sodium [177, 15, 178]. In the n-type doping

scenario the electrons are transferred from adsorbate to the MoS2 layer. Gao et

al. [15] found that four electrons injected per MoS2 unit reduce the barrier for the

phase transition from 1.59 to 0.27 eV. However, this requires high coverage of Li,

which can be very unfavorable due to electrostatic Li-Li repulsion and accumulation

of electrons in the conduction band. Similar effects on Li binding to 2D crystal

in the high-coverage regime is found for adsorption of Li on CrO2, as explained in

Subsection 5.4.2. On the other hand, adsorption of calcium can be a viable route to

achive 2H → 1T phase transition as Ca atom has two valence electrons which can

be donated to the substrate. Moreover, regarding Ca adsorption on graphene where

we found very stable Ca-Gra-2D structure (see Section 4.4) the interaction between

Ca atoms that are adsorbed on 2D crystals can be attractive at certain distances,

in a sharp contrast to Li adsorbates on 2D crystals.1

Further, 1T phase is found to be unstable under ambient conditions as it spon-

taneously undergoes another phase transition due to occurrence of a charge-density

wave (CDW). Zhuang et al. [77] reported that of all possible distorted structures

derived from the 1T phase the so-called 1T′ structural phase (Fig. 3.9b) is the most

stable one.2 The corresponding energy difference as obtained from DFT calculations

between the 1T and the 2H phase of 0.84 eV per MoS2 unit is reduced to 0.54 eV

after the emergence of 1T′ phase [77]. However, scanning tunneling transmission

microscopy (STEM) imaging performed on chemically exfoliated MoS2 single layers

showed that all three 2H, 1T and 1T′ phases coexist within the single-crystalline

nanosheets [118]. Similar hybrid structures are already synthesized from chemically

different lattice-matched compounds such as that of graphene and h-BN [179], but

the realization of in-plane heterostructures via the structural change of only one

compound opens new possibilities. With the 2H → 1T phase transition the lattice

1Both MoS2 and CrO2 belong to the group of materials where the Li binding picture is domi-
nated by the simple charge transfer from Li to the 2D crystal. See Chapter 5.

2For other possible structural phases see Fig. 1 of [77].
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constant changes only slightly which enable mechanical stability of structures where

three MoS2 phases coexist within the same sheet. The mechanism of stabilization

of 1T phase remains unclear and requires further investigation.

Motivated by previous studies of the role of adsorption of alkaline metals on

the structural phase transition in TMDs [14, 15], we performed DFT calculations

to reveal the structural and electronic properties of Li and Ca adsorbates on two

structural phases of monolayer MoS2. Simple picture of Li binding on 2D materials

explained in Chapter 5 is valid for both phases of MoS2 and also holds for the

adsorption of Ca on the 1T′ phase at low coverages, but it breaks for Ca adsorption

on 2H phase as well as for higher Ca coverages of the 1T′ phase. In this Chapter

we rationalize this behavior and identify Li and Ca coverages needed to trigger the

structural phase transition in MoS2.

6.2 Modeling of the MoS2 structural phases

We begin our discussion with the comparison of different phases of pristine MoS2.

The MoS2 surfaces are modeled with the imposed periodic boundary conditions

within the MoS2 plane and open boundary conditions in a direction orthogonal to

the plane with 10 Å of vacuum from both sides of the sheet. Calculated lattice

constants of 2H and 1T phases are 3.18 Å and 3.20 Å, in good agreement with the

values reported in previous studies [115, 77]. For additional computational details

see Appendix C.

Zhuang et al. [77] showed that the optimizations of the same structures that

starts from different geometries and sizes of the unit cell can lead to various deriva-

tions of the metastable 1T phase. Thus, one needs to perform calculations with

different unit cells to find all possible distortions of 1T phase. We tested rhom-

bohedral and rectangular unit cells and found that the usage of rhombohedral cell

has a disadvantage because 1T′ phase (see Fig. 3.9), which is reported to be the

most stable 1T derivation [77], cannot be obtained with rhombohedral cell due to

specific geometry constraints related to the shape of the cell. Therefore, we chose

a rectangular
√

3a × 2a cell with 4 Mo atoms, doubled it in both x and y direc-

tions to get the unit cell with 16 Mo atoms and performed structural optimization

using BFGS algorithm [?]. Unit cells of both phases are depicted in Fig. 6.1. This

size of the unit cell ensures at least 11 Å between the neighboring metal adatoms

when an individual atom is adsorbed. Brillouin zone is sampled according to the

Monkhorst-Pack scheme on a 5 × 4 × 1 grid [47].

Relaxed 1T′ structure as found from our calculations is depicted in Fig. 6.1b.

103



Structural deformation of metastable 1T structure are followed with the dimerization

of Mo atoms and formation of chains as two types of Mo−Mo bonds occur – shorter

ones with the length of 2.74 Å and longer ones which are 3.69 �A long. The out-

of-plane displacement of Mo atoms is modest and does not exceed 0.12 Å. On the

other hand, the out-of-plane displacement of S atoms compared to positions in the

1T phase are much larger as the differences in heights of S atoms within the same

S-layer are around 0.4 Å. Interestingly, the length of S−S bonds stays the same as

it was in the 1T phase and equals 3.20 Å.

Figure 6.1: Top and side view of (a) 2H-MoS2 and (b) 1T′-MoS2 structures. Surface
unit cells are marked with black dashed lines. Mo and S atoms are depicted as blue
and yellow spheres, respectively.

From the total energy calculations we found that the energy difference of 0.83

eV per MoS2 unit in favor of the 2H and compared to the undistorted 1T phase

is reduced to 0.58 eV upon the emergence of 1T′ phase, in a good agreement with

previous reports [77]. It is worth noting that the phase transition from the 1T′

phase to the most stable 2H phase does not happen at the room temperature as it

requires very unfavorable sliding of the whole S plane. This process is hindered not

only because of the artificial constraints that stem from the cell geometry but also

because of the high energy barrier of this structural transition [77].

6.3 Adsorption of Li and Ca on MoS2

We start our account on the adsorption of Li and Ca on 2H and 1T′ phases of

MoS2 with the identification of the most stable adsorption geometries of individual
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adatoms. These structures are depicted in Fig. 6.2 and the results are summarized

in the Table 6.1.

6.3.1 Li and Ca adatoms on MoS2

When adsorb on 2H structure, both Li and Ca adatoms prefer to bind atop Mo atom

and between three S atoms as depicted in Fig. 6.2a,c. The Li binding energy of 1.72

eV is accompanied by the charge transfer of 0.89 electrons from Li adatom to the

2H-MoS2 surface as found from Bader analysis. These values are given in Table 6.1.

Figure 6.2: Adsorption geometries of individual (a-b) Li and (c-d) Ca adatoms on
2H (left) and 1T′ (right) phases of MoS2. Coloring scheme of atomic spheres is as
follows: Mo-blue, S-yellow, Li-green, and Ca-purple.

Atom-projected DOS of Li adatom on 2H surface plotted in Fig. 6.3 further supports

this finding as the only Li valence electron is transferred from the Li-2s state mainly

to the Mo-4d states located just above the CBM. This agrees well with the general

Table 6.1: Binding energy of Li and Ca adatoms on 2H and 1T′ phases of MoS2,
distances d from metal adatom to its nearest neighbors (S atoms) and electronic
charge transfer ∆Q (in electrons) from metal adatom to the MoS2 layer as calculated
via Bader method.

Structure EB(eV) d(Å) ∆Q

Fig. 6.2a 1.72 2.39 0.89
Fig. 6.2b 3.28 2.34 0.90

Fig. 6.2c 1.26 2.72 1.21
Fig. 6.2d 4.41 2.55 1.47
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trend explained in Chapter 5 for adsorption of Li on materials belonging to the blue

group, where the Li binding picture is dominated by the simple charge transfer from

Li to the surface.

The same analysis performed on Ca adatom adsorbed on 2H-MoS2 reveals dif-

ferent binding picture compared to that of Li. The Ca binding energy of 1.26 eV

is nearly 0.5 eV lower than the EB of Li atom. In this case binding to the surface

cannot be characterized solely by the charge transfer due to the hybridization of Ca

and Mo states. This can be substantiated from the atom-projected DOS presented

in Fig. 6.3 as the Ca-4s and Mo-5d states largely overlap in the vicinity of EF .

Figure 6.3: Atom-projected DOS of relevant atomic orbitals of Li (top panel)
and Ca (bottom panel) adatoms adsorbed on 2H-MoS2 in positions depicted in
Fig. 6.2a,c. Zero of the energy scale is set to the Fermi level.

The 4s orbitals of Ca, still partly occupied upon the adsorption, are hybridized

with the Mo-4d orbitals. Bader analysis reveals that 1.21 electrons are transferred

from adatom to the surface, which is much less than the total number of 2 valence

electrons that Ca adatom can donate to the surface. Furthermore, calculations

performed on isolated Li and Ca atoms showed that Ca-4s state lies 0.52 eV below

Li-2s state.3 Thus, when electron is transferred from Li-2s state to the CBM of

2H-MoS2 located at −4.25 eV below the vacuum level (see Table 5.2) the energy

gain is greater than the gain following the transfer from Ca-4s state. This together

3As compared to the electrostatic vacuum, Li-2s and Ca-4s states lie at -3.17 eV and -3.69 eV,
respectively.
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with nearly one transferred electron in both cases partly explain why the Li binding

energy is 0.46 eV larger than the Ca binding energy.

When Li and Ca atoms are adsorbed on 1T′ phase the most stable adsorption

site is slightly displaced from the three-fold hollow position towards the closest Mo

atom as depicted in Fig. 6.2b,d. As of Li adsorption, Bader analysis reveals 0.90

transferred electrons and atom-projected DOS plotted in Fig 6.4 confirms that Li-2s

state is empty. Compared to the binding to 2H phase, both Li and Ca adatoms bind

Figure 6.4: Atom-projected DOS of relevant atomic orbitals of Li (top panel)
and Ca (bottom panel) adatoms adsorbed on 1T′-MoS2 in positions depicted in
Fig. 6.2b,d. Zero of the energy scale is set to the Fermi level.

much stronger to the 1T′ phase. Increase in Li binding energy of 1.56 eV is due to

the position of EF of metallic 1T′ phase. In fact, the EF of 1T′ phase is located

at −5.77 eV below the vacuum level, which is 1.52 eV lower than the position of

CBM of 2H phase. This energy difference is well correlated with the difference in Li

binding energies on the corresponding phases.

When Ca atom is adsorbed on 1T′-MoS2 the binding picture is very similar to

that of Li. There is no hybridization of Ca atomic states with the states from the

surface as the energy of the highest occupied Mo-4d orbital is far from that of Ca-4s.

Further, atom-projected DOS shows that Ca-4s state is completely empty, which is

in a sharp contrast to the occupation of the same state when Ca is adsorbed on 2H

phase. Charge transfer is 1.47 electrons and is much larger than the charge transfer

from Ca adatom to the 2H phase. We report huge increase in the Ca binding energy,
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as the corresponding value of 4.41 eV greatly exceeds EB of Ca adatom on 2H phase

which is only 1.26 eV. Moreover, it is also larger than the binding energy of Li

on 1T′ phase. Compared to EB of Ca adatom on 2H phase the vast increase in

Ca binding energy on 1T′ phase is due to (1) the greater electron charge transfer

from Ca adatom and (2) the position of the lowest unoccupied states of 1T′ phase

which lie much deeper on energy scale than the CBM of 2H phase. Manifestations of

stronger Ca binding are also visible in the distances between Ca atom and its nearest

neighbors. This distance is 2.72 Å for 2H phase and is reduced to 2.55 Å when Ca

is adsorbed on 1T′ phase. Thus, Ca atom is more immersed into the 1T′ structure

and this fact can elucidate the results from Bader analysis which does not give the

number of 2 transferred electrons because the charge basins of Ca largely overlap

with those of its neighbors.

6.3.2 Effect of increase in adsorbate coverage on the relative
stability of MoS2 phases

Previous studies of MoS2 structural stability propose different methods for fabrica-

tion of 1T and 1T′ phases of MoS2 from the 2H phase. For instance, the adsorption

of alkali metals on 2H-MoS2 [177, 15] or the deposition of 2H-MoS2 on suitable sub-

strates [77] are often proposed strategies. We showed in Subsection 6.3.1 that the

binding of a single Ca adatom to the 1T′-MoS2 is much stronger than the Li binding

to the same phase. Thus, the adsorption of Ca atoms on 1T′-MoS2 leads to greater

stabilization of this phase. Here we argue about the Li and Ca adsorption on MoS2

as the viable routes for stabilization of 1T′ phase.

In order to investigate the effect of adsorbate coverage on the relative stability

of Li- and Ca-adsorbed MoS2 phases, we calculated the total energies of structures

at very low coverage of Θ = 1/16 ML (Fig. 6.2) and gradually increase the number

of adatoms in the unit cell to compare the most stable 2H and 1T′ structures at

coverages of Θ = 1/8, 1/4, 3/8, 1/2 ML as depicted in Fig. 6.5. Energy differences

are calculated per MoS2 unit as follows

∆E =
1

16

(
E(nM/1T′) − E(nM/2H)

)
, (6.1)

where M is either Li or Ca and n is the number of adatoms in the unit cell. Therefore,

the positive values of ∆E correspond to the coverages at which 2H phase is the most

stable one while the negative ∆E values are evidence that the relative stability of

phases is reversed.

An increase in Li coverage stabilizes the 1T′ phase. The initial total energy

difference of 0.58 eV per MoS2 unit of pristine 2H and 1T′ phases reduces to 0.39 eV
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Figure 6.5: The most stable structures of 2H- and 1T′-MoS2 at various coverages
of Li and Ca. Upper panels: Li (Ca) adatoms on 2H-MoS2 at coverages of (a) 1/8,
(b) 1/4, (c) 3/8, and (d) 1/2 ML. Lower panels: Li (Ca) adatoms on 1T′-MoS2 at
coverages of (e) 1/8, (f) 1/4, (g) 3/8, and (h) 1/2 ML. The numbers between the
upper and the lower panel are the differences in total energies of the 2H and 1T′

structures at corresponding coverages (in eV per MoS2 unit). Coloring scheme of
atomic spheres is as follows: Mo-blue, S-yellow, and Li/Ca-red.

at Li coverage of Θ = 1/4 ML and finally the relative stability of phases is reversed

at Θ = 1/2 ML as the total energy of 1T′ phase becomes 0.10 eV lower than that of

2H phase. The difference in total energies of 2H and 1T′ phases drops linearly with

increasing Li coverage as depicted in Fig. 6.6a. As stated in Subsection 6.3.1, when

Li is adsorbed on MoS2 the Li-2s electron is transferred to the lowest unoccupied

states of the surface. This is a favorable process for both structural phases of

MoS2, because the CBM of 2H phase as well as the EF of 1T′ phase are at lower

energies as compared to the energy of the atomic Li-2s state. To substantiate the

effect of an additional charge on the electronic states of the surface, we plotted the

atom-projected DOS of Li adsorbed at coverages Θ = 1/16, 1/4, 1/2 ML on the 2H

and 1T′ phases in Fig. 6.7. From these plots we rationalize that the main effect

of coverage increase is in the progressive filling of empty Mo-4d and S-3p states.

Additionally, Fig. 6.7a shows that at coverage Θ = 1/2 ML not all of the Li valence

electrons are transferred to the surface as the Li-2s states are still partly occupied

upon adsorption. This does not happen when Li is adsorbed at the same coverage

on 1T′-MoS2, as the atom-projected DOS plot in Fig. 6.7b shows completely empty

Li-2s states.

On the other hand an increase in coverage strengthens the electrostatic repulsion
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Figure 6.6: Evolution of (a) the total energy difference (∆E, see eq. (6.1)) of 2H
and 1T′ phases of MoS2 and (b) the binding energy (per atom) of Li and Ca with
the adsorbate coverage.

Figure 6.7: Atom-projected DOS of relevant atomic states of lithiated (a) 2H-MoS2

and (b) 1T′-MoS2. Atomic states are labeled in the legend and Li coverage (in ML)
is displayed in each panel.
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between Li adatoms, which further increases the total energy of the system. Thus,

the relative stability of phases is the consequence of the interplay of these oppo-

site contributions. To estimate the contribution of electrostatic Li-Li repulsion, we

performed Bader analysis and revealed that the electron charge transfer from Li to

the surface depends only slightly on the structural phase of MoS2, as the obtained

values range from 0.85 to 0.90 electrons for all studied coverages. Furthermore, the

distances between Li adatoms at particular coverages are similar for both phases

due to the nearly equal lattice constants of two phases. Similar amount of trans-

ferred charge and nearly equal distances between Li adatoms on both phases at the

same coverage are indicators that the contribution of electrostatic repulsion to the

total energy of 2H- and 1T′-MoS2 is comparable. This is further supported by the

fact that the rate of decrease in Li binding energy with the increase in coverage

(Table 6.2) is similar for both phases as depicted in Fig. 6.6. This decrease is almost

Table 6.2: Binding energies in eV/atom of Li and Ca on 2H and 1T′ phases of
MoS2 at in the range from Θ = 1/16 to Θ = 1/2 ML.

Θ (ML) 1/16 1/8 1/4 3/8 1/2

Li on 2H 1.72 1.67 1.61 1.52 1.42
Ca on 2H 1.26 1.24 1.34 1.65 1.79

Li on 1T′ 3.28 3.22 3.07 2.91 2.79
Ca on 1T′ 4.41 4.18 3.68 3.17 2.92

entirely due to electrostatic repulsion between Li adatoms. Hence, an increase in

coverage benefits to the 1T′ phase as its EF is as much as 1.52 eV lower than the

CBM of 2H phase (Subsection 6.3.1). We identified that Li coverage of Θ = 1/2 ML

is sufficient to stabilize the 1T′ phase (Fig. 6.6a).

Another viable route towards the stabilization of 1T′ phase is the adsorption of

Ca. The binding energy of Ca adatom on 1T′ at low coverage of 1/16 ML is 4.41 eV,

which is more than 3 eV higher than the binding energy on the 2H phase at the same

coverage. With an increase in Ca coverage the difference between the total energies

of 2H and 1T′ phases diminishes rapidly and finally at coverage of Θ = 1/4 ML the

total energy of 1T′ matches that of 2H phase, as depicted in Fig. 6.6a. However, an

additional increase in Ca coverage does not lead to further stabilization of 1T′ phase

and from the coverage of Θ = 1/4 ML up to the Θ = 1/2 ML the total energies of

two phases are very similar (Fig. 6.6a).

The Ca binding energy at various coverages is presented in Table 6.2. Inter-

estingly, it shows distinct behavior on two phases of MoS2 – with the increase in

coverage on 1T′ phase the EB decreases while on the 2H phase it grows slowly, as
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depicted in Fig. 6.6b. This is very different from the trends in Li binding energy,

indicating that the Ca binding to the MoS2 cannot be described solely by the simple

charge transfer from the adsorbate to the surface.

To further inspect the differences in Ca binding on two phases of MoS2, we

plotted the atom-projected DOS for coverages Θ = 1/16, 1/4, 1/2 ML as presented

in Fig. 6.8. From these plots we can explain why the increase in coverage have

Figure 6.8: Atom-projected DOS of relevant atomic states of (a) 2H-MoS2 and (b)
1T′-MoS2 covered with calcium. Atomic states are labeled in the legend and Ca
coverage (in ML) is displayed in each panel.

the opposite effects on the Ca binding energy on two phases. On both 2H and

1T′ phases the increase in coverage leads to the broadening of the Ca-4s states as

depicted on plots that correspond to Θ = 1/2 ML in Fig. 6.8. This is a clue that

from the coverage of Θ = 1/4 ML the neighboring Ca-4s states start to overlap,

which leads to the formation of Ca-4s bands. As of 2H phase, with the increasing

coverage the Ca-4s half-filled peak located at EF moves to the region of (former)

energy gap, where no electronic states existed prior to Ca adsorption. This lowers

the total energy of the system as the filled electronic states move to lower energies.

On the other hand, the increase in Ca coverage on 1T′ phase from Θ = 1/16

ML to Θ = 1/2 ML (Fig. 6.8b) has two main effects on the electronic structure of

the system. Firstly, the pronounced peak belonging to the Ca-4s state that was

completely empty at coverages Θ = 1/16 ML and Θ = 1/4 ML is broadens and
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partly fills at coverage of Θ = 1/2 ML. Moreover, Bader analysis reveals that the

charge transfer of 1.47 electrons from Ca to the surface at coverage Θ = 1/16 ML

is drastically reduced to 0.96 electrons when the coverage is increased to Θ = 1/2

ML. This confirms that the simple binding picture build upon the charge transfer

from adsorbate to the 1T′ surface does not hold for coverages higher than Θ = 1/4

ML due to formation of Ca-Ca bonds which hinders the charge transfer. Secondly,

an increase in Ca coverage destabilizes filled Mo-4d states as the peak located at

−0.6 eV below EF emerges. This gives rise to an increase in the total energy of the

system as this peak is higher in energy than the rest of filled d states.

To conclude this Chapter, we present in Fig. 6.9 the plot of work function of

Li- and Ca-adsorbed 1T′-MoS2. From this plot one can substantiate the difference

Figure 6.9: Work function of pristine 1T′-MoS2 as well as of Li- and Ca-adsorbed
1T′-MoS2 at coverages Θ = 1/16, 2/16, 4/16, 8/16 ML.

between the Li- and Ca-covered 1T′ phase. The work function of Li-covered 1T′-

MoS2 monotonically decreases with the increase in coverage, as the Mo-4d and S-3p

states from the conduction band are being gradually filled. Therefore, the energies of

the highest occupied states are coming closer to the vacuum level and work function

slowly reduces. On the other hand, the work function of 1T′-MoS2 steeply drops

off when Ca is adsorbed up to the coverage Θ = 1/4 ML but then starts to grow

as coverage is further increased. This is an evidence that the nature of the MoS2

surface changes at high Ca coverages due to the formation of Ca layer.

Though we found no clear evidence that Ca adsorption can trigger the 2H→1T′

phase transition as the total energies of two phases are similar for coverages higher

than Θ = 1/4 ML, we suspect that Ca adsorption can be a viable route to stabilize

1T′ phase at much lower coverages than the adsorption of Li. Previous studies
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reported that the choice of a suitable substrate can stabilize the 1T′ phase [77] and

in experimental conditions the MoS2 layer must be suspended. Thus, the joined

effect of the suitable substrate and of the charge transfer from the Ca adsorbate can

be used as a possible strategy for the stabilization of the 1T′ phase.
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Conclusions

”The final result of our efforts as scientists is, after all, not a table of data, a set of

equations or the output of a computer. It is an essay, a piece of expository prose.

That’s what grant officers, promotion committees and biographers care about and for

once they’re right.” , (N. David Mermin, What’s wrong with this prose? )

In a broad sense, the discussion presented in this dissertation addresses the problems

of paramount scientific and technological importance, such as the cutting edge tran-

sistor nanotechnology and advanced energy storage. More precisely, in this thesis we

applied the ab initio computational methods based on DFT to study the structural

and electronic properties of metals adsorbed on 2D materials. Special attention has

been paid to graphene, as the growth modes of different metals on this 2D crystal

have been rationalized from the description of the adsorption of their adatoms and

small clusters. The conclusions drawn from the behavior of Li on graphene served

as a firm basis for further research on the adsorption of this alkaline metal on other

2D crystals, where the general Li binding trend is successfully explained by a simple

charge transfer. Once again, lithium ability to donate electrons to the substrate

is exploited for another role – as an initiator of the structural phase transition in

MoS2. The Li coverage of MoS2 that sufficient enough to trigger the phase transition

is determined, where it is shown that the same effect can be achieved with the usage

of calcium adsorbates at smaller coverages.

Owing to its remarkable mechanical and electronic properties, graphene is a 2D

crystal that bears a burden of high expectations. Fortunately, various methods of

graphene’s functionalization are paving the way towards reaching its full potential

in electronic devices, and for that cause, the understanding of the interaction of

graphene with metals is of ultimate importance. Considering this, we investigated

the adsorption of Li, Ca and Ti atoms and small clusters on graphene by means

of DFT in order to describe their contacts with this 2D crystal at the fundamental

level. From the study of dimer adsorption on graphene, we found that the interaction

between metal adatoms plays a critical role in the shape of nanostructures formed
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on graphene. In line with the previous studies, we demonstrated the tendency

of alkaline metals to arrange in sparse monolayers due to long-range electrostatic

repulsion between adatoms.

The cohesive energies of transition metals are significantly larger than the binding

energies of their adatoms on graphene. Thus, in order to minimize the total energy of

the structure, transition metal atoms adsorbed on graphene gather into 3D clusters.

On the other hand, the modest attraction between Ca adatoms causes the formation

of 2D nanostructures with a rather high density of states at Fermi level. Upon

intercalation with a monoatomic Ca layer, we found a nearly three-fold increase

in the adhesion energy between graphene sheets as compared to that of a pristine

graphene bilayer. With the help of Bader analysis, the inspection of charges on Ca

and C atoms proved that the electrostatic attraction between graphene layers and

Ca adsorbate is the origin of such enhancement in adhesion. Moreover, as opposed to

2D layers of alkaline metals, Ca monolayer on graphene is thermodynamically a very

stable structure and thus could be potentially used either as an ultra-thin electrode

or to improve contacts between 2D materials in their vertical heterostructures.

We further examined Li binding at fifteen different 2D crystals, with the par-

ticular choice of materials motivated by their relevance in the ongoing researches

of LIBs. The expectation that at low coverage Li binding to 2D crystals causes

only minor changes in their structural properties, while the effect of the adsorbate

on the electronic properties of surfaces is limited to a simple charge transfer, was

confirmed for the majority of studied 2D structures. Employing the position of the

CBM of studied surfaces as a single parameter describing their electronic properties,

for the majority of considered 2D materials we found an excellent correlation be-

tween CBM and the binding energy of Li adatom. Yet, a much more complicated Li

binding picture which involves considerable structural deformation alongside with

the qualitative changes in electronic properties of 2D crystals was found in four of

investigated 2D crystals – graphane, SiC, GeC, and SnC.

The discrepancy observed in carbides of Group XIV elements and graphane was

explained in terms of midgap states that emerge from Li adsorption. Due to localized

nature of the interaction between Li and these surfaces, they can preserve the nearly

constant value of Li binding energy for adsorbates varying from single adatoms to

ordered structures with Li coverage of up to 1 ML. From DFT studies we identify

SnC as a particularly promising 2D crystal for applications as the electrodes of

LIBs, since it displays high structural stability, together with a modest variation in

Li binding energy over a wide range of Li coverage. These results indicate that sheets

of SnC combined with other 2D materials in multilayers or vdW heterostructures
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could serve as building blocks of materials able to easily store and release a large

amount of Li. However, the energetics of Li binding in multilayers of 2D materials is

different from the binding on single layers and further studies are needed to confirm

this assumption.

Finally, we investigated the structural and electronic properties of two different

phases of MoS2, namely the most stable semiconducting 2H phase, and the metallic

1T′ phase which is spontaneously obtained from the undistorted 1T phase. Differ-

ences in Li and Ca adsorption on two phases of MoS2 are substantiated by applying

DFT to calculate the charge transfer from adsorbate to the surface and also to re-

veal the character of the electronic states in the vicinity of Fermi level. Following

the explained trend in Li adsorption on 2D crystals, we found that Li binding to

both MoS2 phases is fully described by the simple charge transfer. Moreover, the

difference in Li binding energy on 2H and 1T′ phase is governed by the distinct

positions of the corresponding lowest unoccupied states of pristine surfaces on the

energy scale.

As expected, the Ca interaction with MoS2 does not follow the same trend as Li.

This discrepancy is due to the combined effect of the hybridization of Ca-4s states

with Mo-4d states and the partial formation of Ca monolayer due to moderate Ca-

Ca attraction at higher coverages. However, the adsorption of Ca on 2H-MoS2 can

be efficiently utilized to trigger the 2H→1T′ phase transition, with an additional

advantage that this is achived at Ca coverage that is twice lower than that of Li.

Differences in electronic structure of Li- and Ca-covered MoS2 result in a very dis-

similar behavior of the corresponding work functions.

We believe that the results presented in this thesis will contribute to the full

understanding of microscopic mechanisms governing the adsorption of metals on 2D

materials. As a particularly interesting research field we consider metal contacts

with vdW heterostructures of 2D crystals where the proper choice of 2D building

blocks enables designing of synthetic materials with targeted properties thus showing

great technological promise.
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Appendix A

Adiabatic approximation

In Chapter 1 we stated that degrees of freedom of nuclei and electrons for a great

deal of systems can be separated thus greatly simplifying the treatment of such

systems. This appendix is devoted to the theoretical foundation of the adiabatic

approximation and closely follows the discussions in references [181, 25].

The hamiltonian for a system of nuclei and electrons (1.1) can be written as

Ĥ = T̂N + T̂e + Û({r,R}), (A.1)

where T̂N = −1
2

∑

J ∇2
J/MJ and T̂e = −1

2

∑

i ∇2
i are kinetic energies of nuclei and

electrons, respectively. The term Û contains all the potential interaction in the

system and depends on the sets of all the electronic positions and spins {r} =

(r1σ1, . . . rNσN) as well as the positions of all the nuclei {R} = (R1, . . . ,RP ), where

N(P ) is the number of electrons (nuclei).1 We argued that the kinetic energy of

nuclei is much smaller than the other terms hence it can be treated as a perturbation

upon a family of electronic hamiltonians Ĥe({R}) = T̂e+Û({r,R}) parameterized by

the set of fixed nuclear positions {R}. Let us rewrite the original time-independent

Schrödinger equation for a coupled system of nuclei and electrons

ĤΨs({r,R}) = EsΨs({r,R}), (A.2)

where s = 0, 1, 2 . . . labels the states of a coupled system. The first step is to

fix nuclei at their instantaneous positions {R} and define the eigenvalues ǫi({R})

and wavefunctions ψi({r} : {R}) for the electrons. In this sense, eigenvalues and

wavefunctions of electrons depends parametrically upon nuclear positions {R} and

the Schrödinger equation for electrons can be written as:

Ĥe({R})ψi({r} : {R}) = ǫi({R})ψi({r} : {R}). (A.3)

1It is implicitly assumed that the system is electroneutral.
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For each nuclear configuration {R} wavefunctions ψi({r} : {R}) span the entire

state space of electrons. Accordingly, each wavefunction for the coupled system

can be written as a linear combination of electronic wavefunctions with expansion

coefficients depending upon nuclear positions as parameters:

Ψs({r,R}) =
∑

j

χsj({R})ψj({r} : {R}). (A.4)

In order to find equations for χsi({R}) we need to insert expansion (A.4) into (A.2),

multiply on the left by ψ∗
i ({r} : {R}) and integrate over all electron positions {r}.

Then, applying the orthogonality condition for the electronic states 〈ψi|ψj〉 = δij we

get:
[
T̂N + ǫi({R}) − Es

]
χsi({R}) =

∑

j

Λijχsj({R}). (A.5)

where the matrix elements of the non-adiabatic operator are given by Λij({R}) =

αij({R}) + βij({R}) where

αij =
∑

J

1

MJ

∫

d3{r}ψ∗
i ({r} : {R})

(
∇Jψj({r} : {R})

)
∇J ,

βij =
∑

J

1

2MJ

∫

d3{r}ψ∗
i ({r} : {R})

(
∇2

Jψj({r} : {R})
)
.

(A.6)

The adiabatic or Born-Oppenheimer approximation [182] is to ignore the off-diagonal

terms of the non-adiabatic operator Λ̂, i.e. the terms which include wavefunctions

of different electronic states. In other words, electrons remain in a given state as the

nuclei move. There is no net energy transfer between nuclear and electronic degrees

of freedom. In addition to this, as the electronic wavefunctions are normalized and

consequently ∇J 〈ψi|ψi〉 = 0, it is easy to show that the diagonal terms of α vanish,

αii = 0. Moreover, the diagonal terms of matrix β can be grouped with ǫi({R}) into

a modified potential for nuclei ǫ̃i({R}) = ǫi({R})+βii({R}). Hence, in the adiabatic

approximation, the motion of nuclei are governed by a purely nuclear equation for

each electronic state i,

[

−
∑

J

∇2
J

2MJ

+ ǫ̃i({R})

]

χni({R}) = Eniχni({R}), (A.7)

where n = 0, 1, 2, . . . labels the nuclear states. Within the adiabatic approximation,

the system is decoupled but the price is that the full state space is restricted to a

direct product of the nuclear and electronic state subspaces, that is S = SN ⊗ Se.

In other words, as nuclei are frozen in their instantaneous positions, the evolution

of electronic states is confined to a fixed Born-Oppenheimer surface. Actually, the
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exact wavefunction for the electronic-nuclear system is an appropriate linear com-

bination of the products belonging to different Born-Oppenheimer surfaces. Physi-

cally, this means that when the nuclei are in motion, the electronic-nuclear system

cannot be strictly confined to a given adiabatic surface. Still, this approximation

works well except for cases where there is (near) degeneracy of the electronic states.

When there is a gap in the electronic spectrum much larger than the typical energies

for nuclear motion then the nuclear excitation spectrum is well determined by the

adiabatic terms. Though, one must be careful when dealing with metals which lacks

an energy gap or molecules whose electronic transition states become degenerate.

For in-depth coverage of this topic, we refer to [181].
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Appendix B

Electronic bands of graphene in
tight-binding approach

This appendix is a complement to Chapter 3. Within the tight-binding model, we

will derive the expressions for the bands near the Fermi level, π bands, which are

responsible for many distinct electronic properties of graphene.

B.1 Tight-binding model

The eigenstates for electrons in crystals, as explained in Chapter 2, are described

by Bloch functions with periodicity of the crystal lattice. The Bloch functions are

constructed from the atomic orbitals φi(r) as follows

Φi,k(r) =
1√
N

∑

R

eik·Rφi(r−R) (B.1)

where N is the total number of unit cells in the crystal, R are lattice vectors and i

labels atomic orbitals in the unit cell. If we have n relevant orbitals, the wavefunction

for electrons in crystal can be represented as a linear combination of Bloch functions,

ψj,k(r) =
n∑

i=1

Cji(k)Φi,k(r). (B.2)

The coefficients Cji(k) are to be determined from the variational principle (1.11),

εj(k) =

∑n
i,l=1C

∗
jiCjl

〈
Φi

∣
∣Ĥ

∣
∣Φl

〉

∑n
i,l=1C

∗
jiCjl

〈
Φi

∣
∣Φl

〉 =

∑n
i,l=1C

∗
jiCjlHil(k)

∑n
i,l=1C

∗
jiCjlSil(k)

, (B.3)

where Ĥ is the crystal hamiltonian, Hil(k) = 〈Φi|Ĥ|Φl〉 are elements of the transfer

integral matrix H and Sil(k) = 〈Φi|Φl〉 are the elements of the overlap integral matrix

S.
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For a given k, by varying εj(k) with respect to C∗
jm (which are also k dependent),

the local minimum condition yields

∂εj(k)

∂C∗
jm

=

∑n
l HmlCjl

∑n
i,l SilC∗

jiCjl

−
∑n

i,lHilC
∗
jiCjl

∑n
l SmlCjl

(∑n
i,l SilC∗

jiCjl

)2 = 0. (B.4)

From expressions (B.2) and (B.3) we obtain

n∑

l=1

HmlCjl = εj

n∑

l=1

SmlCjl, m = 1, 2, . . . , n ⇔ [H− εj(k)S]Cj = 0, (B.5)

where we have introduced a column vector Cj = (Cj1, . . . , Cjn)T . The energies

εj(k) can be obtained from the condition that the determinant for the homogeneous

system of equations (B.5) must be zero,

det[H− εj(k)S] = 0. (B.6)

The equation (B.6) is called secular equation. It is an equation of degree n, thus its

solution gives all n eigenvalues εj(k), j = 1, 2, . . . , n for a given k.

B.2 π bands of graphene

Graphene elementary cell contains two atoms, A and B (Fig. 3.2a). Thus we need

to include two 2pz atomic orbitals in the tight-binding for the π bands, one for each

atom. The band energy is obtained from the secular equation of the system,

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)(
ψA,k

ψB,k

)

= ε(k)

(
SAA(k) SAB(k)
SBA(k) SBB(k)

)(
ψA,k

ψB,k

)

. (B.7)

The matrix elements of H and S must be calculated for each k from expressions

HAA(k) =
1

N

N∑

i,j=1

eik(RA,j−RA,i) 〈φA(r−RA,i)|Ĥ|φA(r−RA,j)〉 ,

HAB(k) =
1

N

N∑

i,j=1

eik(RB,j−RA,i) 〈φA(r−RA,i)|Ĥ|φB(r−RB,j)〉 ,

SAA(k) =
1

N

N∑

i,j=1

eik(RA,j−RA,i) 〈φA(r−RA,i)|φA(r−RA,j)〉 ,

SAB(k) =
1

N

N∑

i,j=1

eik(RB,j−RA,i) 〈φA(r−RA,i)|φB(r−RB,j)〉 .

(B.8)

The rest of the matrix elements related to (B.8) as HBB = HAA, SBB = SAA,

HBA = H∗
AB and SBA = S∗

AB.
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The expression for HAA in (B.8) includes a double summation over all the sites

of the A sublattice. In the approximation of the nearest neighbors all the terms in

HAA must vanish, except those which contain the orbitals from the same site, i.e.

those for which i = j. The reason is that the nearest neighbors to the atoms from

the sublattice A are from the sublattice B (see Fig. (3.2a)). Hence, HAA will not

depend on k and can be found as follows

HAA ≈ 1

N

N∑

i=1

〈φA(r−RA,i)|Ĥ|φA(r−RA,i)〉 ≈
1

N

N∑

i=1

ǫ2p = ǫ2p (B.9)

where ǫ2p is nearly equal to the energy of the free 2pz orbital.1 Similarly, as overlap

of the atomic orbitals from the different A sites is negligible, the diagonal elements

of the matrix S will contain only the terms for which i = j

SAA ≈ 1

N

N∑

i=1

〈φA(r−RA,i)
∣
∣φA(r−RA,i)〉 = 1, (B.10)

as atomic orbitals are orthonormal.

The k dependence of ε(k) comes from the off-diagonal matrix elements HAB and

SAB. In the nearest neighbor approximation, for every atom A (i.e. for every i in

the sum (B.8)) there are three nearest neighbors from the sublattice B (Fig. 3.2a).

Their positions relative to the atom A are

δ1 =

(

0,
a√
3

)

, δ2 =

(
a

2
,− a

2
√

3

)

, δ3 =

(

− a

2
,− a

2
√

3

)

. (B.11)

Neglecting all the other terms, the expressions for HAB and SAB become

HAB(k) ≈ 1

N

N∑

i=1

3∑

l=1

eik·δl 〈φA(r−RA,i)|Ĥ|φB(r−RB,l)〉 = −γf(k),

SAB(k) ≈ 1

N

N∑

i=1

3∑

l=1

eik·δl 〈φA(r−RA,i)|φB(r−RB,l)〉 = sf(k),

(B.12)

where γ = −〈φA(r−RA,i)|Ĥ|φB(r−RB,l)〉 and s = 〈φA(r−RA,i)|φB(r−RB,l)〉
are transfer and overlap integrals, respectively, which can be determined from ab ini-

tio calculations. All the k-dependence of energy bends originates from the complex

function which can be easily calculated from (B.11)

f(k) =
3∑

l=1

eikδl = eikya/
√
3 + 2 cos

(kxa

2

)

e−ikya/2
√
3. (B.13)

1ǫ2p is not strictly equal to the energy of the free 2pz orbital as the hamiltonian Ĥ contains
also the crystal potential.
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Transfer and overlap integral matrix are

H =

(
ǫ2p −γf(k)

−γf ∗(k) ǫ2p

)

, S =

(
1 sf(k)

sf ∗(k) 1

)

. (B.14)

Secular equation for this system of equations

(
ε(k) − ǫ2p

)2 −
(
(E − ǫ2p)s+ ǫ2ps+ γ

)2|f(k)|2 = 0 (B.15)

yields the solution - the energy dispersion of π band (− sign) and π∗ band (+ sign)

of graphene within the tight-binding model

ε±(k) =
ǫ2p ± γ|f(k)|
1 ∓ s|f(k)| . (B.16)

π bands along the high symmetry directions of BZ are presented in Fig. B.1.

In a like manner the σ bands of graphene can be obtained if we include from

orbitals 2s, 2px and 2py. As elementary cell contains two atoms, the six σ bands

can be obtained from the 6 × 6 transfer and overlap integral matrices. Solution of

this problem can be found in [85], p. 29-33.

Figure B.1: Energy bands of graphene calculated within the tight-binding model.
Parameters used in calculations are given in Table 2.1 of [85].
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Appendix C

Computational details

Here we gather the computational details which are common for all DFT calculations

that yielded the results presented in Chapters 4–6.

Atomistic structures considered in this work, that is pristine 2D crystals as well

as 2D crystals with atoms and/or molecules/clusters adsorbed on their surface, are

set up using the Atomic Simulation Environment (ASE) [183]. This is a set of

tools and Python modules for setting up, manipulating, running, visualizing and

analyzing atomistic simulations.

DFT calculations are carried out using GPAW code [17] based on the real-space

projector augmented wave method [63, 66]. The basics of PAW method can be found

in Chapter 2. The wavefunctions, i.e. Kohn-Sham orbitals, within this approach

are represented on a real space grid with the spacing of 0.15 Å.

The convergence criteria during the self-consistency cycle are as follows: the en-

ergy between the last three consecutive iterations changes less than 0.5 meV, the

change in integrated absolute value of electron density is less than 0.0001 electrons

per valence electron and the integrated value of the square of residuals of the Kohn-

Sham equations is less than 1.0 × 10−6 eV2 per valence electron. Eigenstates are

converged up to the 1× 10−7 eV. During the self-consistency cycle, we used the Pu-

lay scheme [184, 185] to construct the input electron density for the next iteration

by mixing the densities from several previous iterations. To improve the conver-

gence, we used the smearing of the occupation numbers according to Fermi-Dirac

distribution, with smaller temperatures in the range of 0.01 − 0.03 eV for spin-

polarized calculations (as magnetic moments are sensitive to smearing) and larger

temperatures of 0.05 − 0.1 eV for non-magnetic structures.

The exchange and correlation effects in the electron gas are treated within the

generalized-gradient approximation using the parameterization provided by Perdew,

Burke, and Ernzerhof (PBE) [186]. The GGA approximation as well as this partic-

ular parametrization of XC functional are explained in Chapter 1. The exceptions
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for usage of PBE functional were systems which contain two or more layers that are

close to each other, e.g. bilayer graphene whose intercalation with calcium is studied

in Chapter 4. In cases like this the van der Waals interaction between layers, not

included in standard GGA approximations, becomes essential. Thus we used the

optB88-vdW functional which combines the opt-B88 exchange functional form with

the vdW functional approach [187, 145].

In order to simulate the adsorption of adatom or cluster on 2D crystal surfaces we

used the supercell approach with imposed periodic boundary condition within the

crystal plane and open boundary conditions in the perpendicular direction with at

least 8 Å of vacuum on each side of the surface. Equlibrium lattice constants of 2D

crystals are calculated with PBE functional by fitting the total energy dependence on

lattice constant to the Birch-Murnaghan equation of state [188, 189, 190]. Sampling

of the BZ are done according to the Monkhorst-Pack scheme [47], using nx × ny ×
1 grid. The convergence of relevant physical quantities such as atomic positions,

binding energies, spin magnetic moments, charge transfer etc. with the number of k-

points were tested for each structure before the final choice of k-grid was made. The

k-grid used for self-consistent total energy calculations and structure optimization

was refined when DOS or electronic bands are calculated.

The geometry optimization was performed by means of Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [180] assuming that the equilibrium structure was found

when the maximal atomic forces were smaller than 0.05 eV/Å.
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An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8,

4033–4041 (2014).

[96] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs,

Tunable transport gap in phosphorene, Nano Lett. 14, 5733–5739 (2014).

[97] V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layer-controlled band gap and

anisotropic excitons in few-layer black phosphorus, Phys. Rev. B 89, 235319

(2014).

[98] P. Chen, N. Li, X. Chen, W.-J. Ong, and X. Zhao, The rising star of 2D

black phosphorus beyond graphene: synthesis, properties and electronic ap-

plications, 2D Mater. 5, 014002 (2017).

[99] A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y.-W. Zhang, Large

electronic anisotropy and enhanced chemical activity of highly rippled phos-

phorene, J. Phys. Chem. C 120, 6876–6884 (2016).
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