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PREFACE

Tekst je i ove godine dopunjavan delovima predavanja, delimicno reorganizovan. Jedan
deo zadataka sa vežbi je promenjen, pre svega zbog promene asistenta na predmetu (Marko
Milivojević), ali i zbog načina selekcije. I dalje se ovo može smatrati samo pratećim
materijalom predavanja, a nikako ne kompletnim i pročǐsćenim odrazom ispredavanih
lekcija. To će, nadamo se, postati sledećih godina. Tekst dobrim delom nije proveravan
nakon pisanja, a posebno ne lektorisan. Stoga treba biti skeptičan prema formulama (!),
pa čak i nekim formulacijama, jer prilikom elektronskog editovanja svaka nepažnja može
da bude vrlo kreativna. Dalje, nekompletan je: mada su sva predavanja obradjena, i
u tom smislu tekst pokriva kurs, česte indikacije podnaslova ukazuju na projektovana
proširenja neophodna za potpunije sagledavanje pojedinih tema, otkrivajući najvažnije
konceptualne celine koje kursom nisu obuhvaćene. Slike i primeri koji treba da ilustruju
sadržaje krajnje su redukovani. Zato molim studente da tekst bude pre svega podsetnik
za ono sto treba uraditi, a da za konačnu pripremu ispita koriste dopunsku literaturu.

3.10.2015, M.D.
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Chapter 1

Quantum Kinematics

1.1 Measurement: System, State, Observable

This section introduces fundamental notions of quantum formalism, such as system, state,
ensemble, measurement, etc. All these notions are common ingredients of any physical
theory, but it turns out that their thorough analysis is not really necessary for classical
mechanics. Further, we try to emphasize that these basic notions cannot be introduced
independently, i.e. to define one of them the other ones should be also clarified. So,
we start with intuitive analysis, being not essentially related to quantum mechanics, in
order to single out the main features of the introduced notions. Their rigorous quantum
definition will be given in the next section within three postulates, which are also mutually
dependent and, together with definition of measurement, they should be understood as a
whole.

1.1.1 Intuitive analysis

System (quantum) is an object S having some previously defined set of properties. This
set is exhaustive enough to make distinction between various systems. E.g., each electron
has same mass, charge, spin etc., and other particles are differing by some of them. This
characterization by well defined properties is time (meaning technology) dependent: a
hundred years ago, when mass and charge were the only known characteristics distin-
guishing elementary particles, many of them would be considered the same. Therefore,
recognition of a particular system consists of a sufficient set of measurements of its prop-
erties.

The set of properties defining a system still leave some non-uniqueness: systems of the
same type differ by some additional characteristics. Thus, one can gather systems with
certain given values of some (or all) of these additional properties into ensemble ρ. We
usually say that various ensembles appearing this way differ by the state (characterizing
included systems). In this sense, the notions of ensemble and its state are synonyms: one
says ”state of the ensemble” and ”ensemble in the state” (although the misleading phrases
”state of the system”, or ”system in the state” are often used instead). An example may
be an ensemble of electrons with given momentum, i.e. electrons in a state with given
value of momentum. Note that this notion is based on the set of measurements of some

1



2 CHAPTER 1. QUANTUM KINEMATICS

properties, as well as the primary notion of the system. Consequently, two ensembles are
in the same state if all the measurements performed on them give the same results. Again,
the notion of the state is dependent on our knowledge of the possible properties of the
system. Important example is that before discovery of the spin, ensembles (i.e. states)
differing only in the value of the spin were considered the same.

Intuitively, measurement is any process of determining of some property of an ensem-
ble. In fact, the very idea of a property of the system is that it is observable, i.e. measur-
able. This means that for each property (observable) A there is at least one measuring
device (in this sense, the notions of the physical quantity and of the device measuring
it may be identified), apparatus A, capable to distinguish between various values of A:
each value corresponds to a particular position of the apparatus’ pointer. In other words,
in the course of the interaction of the apparatus with the measured system some of these
values is realized. Two important facts should be emphasized in this context. Firstly,
various members of the same ensemble may produce different pointer positions. There-
fore, measurements on the ensemble necessarily have statistical nature. Secondly, before
measurement is performed nothing can be said about the measured property. This may
be interpreted such that the measured property does not exist without the apparatus, or
even that the property is realized or imposed by measurement.

The statistical nature of the measurement is well known even within the classical
framework: a measurement does not give the result with certainty, but many measure-
ments are performed, and the result is obtained by statistical analysis. Therefore, a
single measurement is meaningless. Further, since the measurement is an interaction of
apparatus and system, it may change, or even destruct the system (this is particularly
important for small systems), and it may be impossible to repeat the procedure on the
same system. Therefore, in general, measurements are performed on the ensembles of
systems. Nevertheless, as it will be stressed out in the analysis of double slit experiment
(Subsection 1.1.2), the necessity for the statistical approach and ensembles in quantum
mechanics stems from additional, quite substantial reason.

To summarize, measurement means measurement of some physical observable A on
the ensemble (in the state) ρ, giving as the result probability distribution of the possible
values of A. Precisely, let σ(A) = {a1, a2, . . . } be the set of the possible values of A (i.e. of
the positions of the pointer of the apparatus, defined independently of ρ); each particular
system from the measured ensemble ρ interacts with apparatus successively, and due to
this interaction the pointer gets a series of values ai from σ(A). Let in the course of this
measurement each value ai is pointed to altogether Ni times. Obviously, N =

∑
iNi is the

number of systems in the ensemble. Then the result of this measurement is the probability

distribution v(ai, A, ρ)
def
= Ni/N . Since the only criterion of the validity of any physical

theory (and particularly quantum mechanics) is the comparison with the experiment, the
fundamental task of such a theory is to give prediction for v(ai, A, ρ) for each ρ and A in
terms of its formalism. Before proceeding further in this direction, several remarks should
be made.

Firstly, we note here that the (quantum) theory can be well founded only with infinite
ensembles, and in the rest of the text this will be always assumed. However, in the real
experiments N must be finite, but large enough to provide reliable statistics, i.e. the
statistics enabling comparison to the theoretical N = ∞ limit.
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Secondly, since only the results of the measurements are verifiable, thus being the
only objective of quantum mechanics, the quantum mechanical statements always refer to
them. The underlying logic (this is not classical Boolean logic, as it will be clarified soon)
is therefore completely subdued to this fact, with all the statements based on the results
of the measurements. Considering the statements as the answers to the corresponding
questions, the above formulated task of a physical theory means its ability to give the
answers (i.e. predictions) to the questions which can be at least in principle answered
in terms of the experimental results. Together with the elementary statements about
probabilities of results, also the statements which can be reduced to the elementary ones
are legitimate. For example, besides the question about probability of a single value ai,
one can search for the probability v({ai, aj, . . . }, A, ρ) to get any of the values from the
subset {ai, aj, . . . } of σ(A); obviously, this must satisfy

v({ai, aj, . . . }, A, ρ) = v(ai, A, ρ) + v(aj, A, ρ) + . . .

Similarly, mean value of the observable A in the state ρ

⟨A⟩ρ =
∑
i

aiv(ai, A, ρ) (1.1)

may be looked for.
For further convenience, in the case when v(ai, A, ρ) = 1 for some particular value ai

and consequently v(aj, A, ρ) = 0 in all other cases i ̸= j, we will say that the state ρ is
with the sharp value ai of the observable A.

Further, it is easy to understand that due to its infinity, each ensemble ρ can be
partitioned into (also infinite!) subensembles ρ1, ρ2, . . . in many ways. The weight wI of
the subensemble is defined as its relative part in the ensemble. Considering the process of
the partition as putting one system after another from ρ into one of ρI , in theN -th step one
can find the numbers Ni of the systems in subensembles, and define wI = limN→∞NI/N .
Obviously, wI is finite, positive and

∑
I wI = 1. Also, having ensembles ρ1, ρ2, . . . (with

the same type of the system) one can make their mixture just joining all of them into single
ensemble ρ. Immediately after this, it cannot be reconstructed how the total ensemble is
constructed, i.e. the corresponding partition is by no means singled out.

Being also ensemble, each subensemble is suitable for measurements. Of course, the
results of the subensemble measurements are in general mutually different, and also differ
from the results of the ensemble measurement. In fact, the results of the subensemble
measurements v(ai, A, ρI) are to the ensemble one related only by

v(ai, A, ρ) =
∑
I

wIv(ai, A, ρI). (1.2)

Still, there are ensembles giving for any observable A the same results v(ai, A, ρI) =
v(ai, A, ρJ), and therefore v(ai, A, ρ) = v(ai, A, ρI) in the all subensembles. These are
called homogeneous ensembles or pure states. All other ensembles are called inhomoge-
neous, or mixed states. Pure states characterize maximally prepared ensembles. In fact,
recall that the measurements required to define a particular system leave some freedom
for different states which are distinguished between by some additional measurements.
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Figure 1.1: Double slit experiment. (a) Device: C is source of collimated photons, s1 and
s2 are slits on the screen, X is detector of the particles (e.g. photo plate); D1 and D2

are detectors of the particles on the slits. (b) Results, being the probability distributions
(intensities) v(x) obtained by X: vi (i = 1, 2) is obtained when only si is opened, v1<2 is
their normalized sum, while curve v is obtained when both slits are opened.

If all the possible additional measurements are performed, and ensemble is made only
of the systems possessing the wanted values of measured observables, the homogeneous
ensemble is obviously obtained. Despite we used here the intuitive notion of the possible
(additional) measurements, it is quite nontrivial, and will be neatly reconsidered within
quantum mechanical formalism, yielding to the one of the most striking differences of
classical and quantum physics.

1.1.2 Superposition: Experiments and Phenomenology

Let us consider neatly well known double slit experiments. At first we discuss only the
simplest scheme, but later on it will be stressed out that this is in a sense the most general
experimental situation.

The experimental device is given in Fig. 1.1, panel (a). The source (C) prepares
homogeneous ensemble ψ directed toward the plate. Starting from the source, systems
pass through slits s1 and s2, and come to the detector. Obviously, detector is measuring
device showing position X of the incoming systems, i.e. the result of this measurement is
the probability distribution v(x,X, ψ).

If only slit s1 is opened, the result is distribution v1 (Fig. 1.1, panel (b)), and similarly
with only slit s2 distribution v2 is obtained. Now, we make two experiments with both
slits open. In the first one detectors D1 and D2 are switched on, providing thus the
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information which slit (i.e. path) is chosen. The resulting distribution1 is v1<2 = v1 + v2.
On the contrary, in the second experiment the detectors D1 and D2 are turned off. Now,
when the path of the system is not known, the experimental distribution is v.

In the terms of classical theory, the first distribution v1<2 corresponds to the ensemble
of corpuscules, when intensity is sum of the intensities obtained with one slit closed. The
second one v is like interference of waves (of course, we did not analyze here the condi-
tions enabling distribution v, like distance between slits, etc.), when the intensities are
proportional to the square of fields: v1 ∼ |E1|2, v2 ∼ |E2|2, meaning that v ∼ |E1 +E2|2.
However, two experiments show that the same system exhibits both corpuscular and wave
behavior, depending on the experimental situation. This wave-corpuscle dualism essen-
tially means that system is neither corpuscle nor wave, but some of its properties, being
manifested in appropriate circumstances, can be interpreted in terms of these classical
(perhaps intuitive, or, more likely, familiar after courses of classical mechanics) proto-
types of behavior. More important is to realize that the interference corresponds to the
lack of information on the path of systems. In fact, we can say that the resulting proba-
bility is caused by the interference of possible paths, and not particles (which is excluded
by the experiments in which one particle comes out after another from source). Thus, if
it not measured (by D1 and D2 in the above experiment), even the trajectory of a par-
ticle does not exist; only superposition of all possible paths corresponds to experimental
results. Finally, note that the path is not known without additional measurement (by
D1 and D2) because the prepared initial state does not prefer either of two possibilities
allowed by the slits on the screen. Thus, for such a state and such screen there are two
equally probable paths. However, quite different situations may be easily constructed:
e.g. initial state allows only one path (beam directed toward one slit only), the paths are
not equally probable, or more than two possible paths.

1.1.3 Pure States

The described experiments, and many others performed with pure states can be explained
consistently only if the superposition principle is introduced: if two pure states of a system
are detected, then any linear combination of these states can be realized, too. Obviously
this implies that the pure states are vectors in some vector space, which will be called
state space. Moreover, the superposition of the states with the same sharp value of some
particular property, will be the state with the same value of that property. Otherwise
even the notion of the system would be lost, since the superposition of the states of the
same system (defined by the fixed values of the system defining properties) could change
the value of these properties, and hereby the system.

POSTULATE 1. – STATES

Each pure state of the system S is represented by a unit vector in the state space
S of S, and each such a vector represents a pure state of S. All the vectors
differing by a phase factor only correspond to the same physical state.

1Here the opposite of equivalence < emphasizes that exactly one of two possible paths is realized.
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1.1.4 Observables

To complete the description of the measurement process, one must include the property
which is measured. Intuitively, it can be assumed that all the directly measured quantities
are real, despite the fact that we can combine them to get complex or tensor quantities
convenient for some specific purpose. This is to be understood in the sense that outcomes
of the measurements are reals.

Further, let us single out some particular value a of the physical property A. Recall
that any superposition of the pure states with the sharp value a of A results in the state
with the same sharp value of A. This means that in the state space S there is a subspace
Sa(A) including all such pure states. Consequently, taking into account all the possible
measured values of A, the observable A introduces a decomposition of the state space
into these subspaces: S = ⊕aSa(A). These two entities (real values and subspaces) can
be interpreted as the spectrum and eigen decomposition of S, i.e. they define uniquely a
hermitian operator in S by its spectral form:

A =
∑
a

aPa(A); (1.3)

Pa(A) denotes the eigenprojector of A for the eigenvalue a, i.e. the projector onto the
eigenspace Sa(A).

POSTULATE 2. – OBSERVABLES

Each observable biuniquely corresponds to a hermitian operator in the system
state space S.

Thus, within the quantum formalism, physical observables are represented by the
hermitian operators. On the other hand, this also means that whatever hermitian operator
is considered (and in the infinite dimensional Hilbert spaces there are really strange ones),
there is at least in principle possibility to construct the measuring device corresponding
to it.

It is obvious that the eigenvectors of the various physical observables play an important
role in the quantum formalism, as well as in the concrete calculations. It is convenient
to denote the eigenvector corresponding to the eigenvalue a of A as |a, λ⟩, where the
counter λ distinguishes between various (linearly independent) eigenvectors for the same
eigenvalue. Thus an eigenbasis of A is

{|a, λ⟩ | a ∈ σ(A), λ = 1, . . . , |Sa(A)|}.

Having an eigenbasis of A, one can use it to represent vectors and operators in S by the
columns and matrices. Such a representation will be called A-representation.

Particularly, if A is complete or nondegenerate observable, i.e. if its eigenspaces are
one-dimensional, |a⟩ uniquely determines the physical state. If A is incomplete, since the
commuting observables have common eigenbasis, the notation can be refined using instead
of λ the eigenvalues of another commutative observable B. In fact, let us consider a basis
|a, λ⟩ in Sa(A), which is also an eigenbasis of B (such a basis exits): B |a, λ⟩ = bλ |a, λ⟩.
The eigenvalues a and bλ characterizing the common eigenvectors are called compatible. If
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all the corresponding eigenvalues bλ are different, then these eigenvalues completely char-
acterize this basis, and dropping the redundant label λ, the vectors are naturally denoted
as |a, b⟩. If this is the case for all the eigenvalues of A, the common eigenbasis is unique. In
general, the set of the observables {A(1), . . . , A(N)} having uniquely determined common
eigenbasis |a(1), . . . , a(N)⟩ is called complete set of compatible observables (CSCO). This
means that these vectors are unique ones satisfying the system of eigenequations:

A(i) |a(1), . . . , a(N)⟩ = a(i) |a(1), . . . , a(N)⟩ , i = 1, . . . , N.

1.1.5 Probability distribution

To complete the quantum formalism, it remains to interrelate states and observables
(already incorporated into formalism) to get the prediction for result of the measurement
of a particular observable on the system in some particular state. To this end we use
spectral decomposition (1.3) to find the components from the eigenspaces of A of the
pure state |ψ⟩: |ψ⟩ =

∑
a Pa(A) |ψ⟩ =

∑
a |ψa⟩. Since |ψ⟩ is unit vector, the square

norms of these components are summed in 1:
∑

a ∥ |ψa⟩ ∥2 = 1, as it is expected from
any probability distribution. This hints that the probability to find a is ∥ |ψa⟩ ∥2. A
straightforward generalization is that the probability of the results from the interval [a1, a2]
is
∑

a∈[a1,a2] ∥ |ψa⟩ ∥
2, giving a justification of:

POSTULATE 3. – PROBABILITIES

When the measurement of the observable A is performed on the system in the
pure state |ψ⟩, the value from the interval [a1, a2] is obtained with the probability

v([a1, a2], A, |ψ⟩) = ∥P[a1,a2](A) |ψ⟩ ∥2.

Later on this expression will be used also in the equivalent forms:

v([a1, a2], A, |ψ⟩) = ⟨ψ|P[a1,a2](A) |ψ⟩ = TrP[a1,a2](A) |ψ⟩ ⟨ψ| . (1.4)

For the observables with purely discrete spectrum within considered interval, P[a1,a2](A)
is sum

∑
a∈[a1,a2] Pa(A) of the eigenprojectors related to the enclosed eigenvalues. However,

if [a1, a2] encloses only continual spectrum of A, there is no eigenvector for a particular
continual ”eigen-value” a (precisely, the point of the continual spectrum) and therefore
Pa(A) vanishes, as well as the related probability, v(a,A, |ψ⟩) = 0. Still, the projec-
tor P[a1,a2](A) is well defined with help of the spectral measure Ea(A) associated to A:
P[a1,a2](A) = Ea2(A) − Ea1(A); in terms of the (generalized) eigenvectors, for a com-
plete observable A (generalization is obvious), this is P[a1,a2](A) =

∫ a2
a1

da |a⟩ ⟨a|. This
corresponds to the intuitively expected finite probability to obtain result in some finite
interval, and naturally invokes probability density at any point a ∈ [a1, a2]. Indeed, us-
ing A-representation |ψ⟩ =

∫
daψ(a) |a⟩ of the state |ψ⟩, the first of (1.4) gives for the

interval around a the probability: v(a − ∆a/2, a + ∆a/2], A, |ψ⟩) =
∫ a+∆a/2

a−∆a/2
|ψ(a′)|2 da′.

Its differential defines the probability density in a:

ṽ([a,A, |ψ⟩) = lim
∆a→0

v([a−∆a/2, a+∆a/2], A, |ψ⟩)
∆a

= |ψ(a)|2. (1.5)
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The postulate clearly introduces the basic elements of quantum logic. Since it involves
the state which is measured, and the projector defining the expected event, one can
generalize the notion of the postulate: referring to the projector as to the event (thus
the subspaces are events, while the elementary events are one dimensional subspaces, i.e.
rays) the expression v(P, |ψ⟩) = ∥P |ψ⟩ ∥2 is the probability of that event when the system
is prepared in the state |ψ⟩.

Note that each pure state |ϕ⟩ defines ray projector P = |ϕ⟩ ⟨ϕ|. Then, there exists
observable A with the spectral decomposition A = αP +

∑′
a aPa(A) (summation over

the eigenvalues different from α). The probability of the result α in the measurement
of A in the initial state |ψ⟩ is easily found by (1.4). Since it can be interpreted as the
probability to find state |ϕ⟩ when the system is prepared in the state |ψ⟩, it is called
transition probability from |ψ⟩ to |ϕ⟩:

v(1, |ϕ⟩ ⟨ϕ| , |ψ⟩) = v|ψ⟩→|ϕ⟩ = | ⟨ϕ |ψ⟩ |2. (1.6)

1.1.6 Mixed State

Immediately after introducing the notion of the ensemble, it has been pointed out that
besides the homogeneous ones, there are also the inhomogeneous ones. While the former
are described by the state vectors, the latter have not been incorporated into the formal-
ism. To describe mixed states, we again rely on the obvious facts concerning the results
of measurements.

We consider an inhomogeneous ensemble ρ obtained by mixing, i.e. joining, of the
homogeneous ensembles: Ni replicas of the homogeneous ensemble described by |ψi⟩ is
taken together, for i = 1, . . . , n. Denoting by N =

∑
iNi the total number of the joined

ensembles, the weight of each homogeneous component is given by ωi = Ni/N ; naturally,
weights ωi satisfy 0 ≤ ωi ≤ 1 and

∑
ωi = 1. The probability distribution resulting

in the measurement of the observable A is obviously the average of the distributions
v([a1, a2], A, |ψi⟩) obtained in the measurements on the involved pure states:

v([a1, a2], A, ρ) =
∑
i

ωiv([a1, a2], A, |ψi⟩) = TrP[a1,a2](A)ρ, (1.7)

where

ρ =
∑
i

ωi |ψi⟩ ⟨ψi| . (1.8)

Comparing with (1.4), one finds that again P[a1,a2](A) comprises the information on the
measuring observable, while the remaining part, ρ, gives all available information about
the system, i.e. ensemble. Hence, ρ is the entity describing the ensemble. For example,
using A instead of its eigenprojectors in (1.7) one finds the meanvalue:

⟨A⟩ = Tr ρA. (1.9)

Being a convex linear combination of the ray projectors |ψi⟩ ⟨ψi|, ρ is obviously her-
mitian, positive and with unit trace. Thus any mixed state is described by a statistical
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operator. Note that the orthogonality of the states |ψi⟩ has not been assumed, and there-
fore (1.8) is not a spectral form of ρ. Nevertheless, for any statistical operator there is an
orthonormal eigenbasis |r, λ⟩. However, the spectral decomposition

ρ =
∑
rλ

r |r, λ⟩ ⟨r, λ| (1.10)

has the same form as (1.8), revealing that any statistical operator describes some mixture.
In addition, we see that the same mixture is obtained in at least two different ways from
pure states: spectral form and (1.8). Consequently, it cannot be reconstructed how the
mixture is made, and the question of the pure components of a mixture is in general
meaningless. Instead, one can show (see Exercise 1.1) only that the involved pure states
are from the range of ρ.

Exercise 1.1: Show that the states |ψi⟩ of (1.8) span the range of ρ.

From the construction it is obvious that the mixtures are most general states of physical
systems. In addition, Gleason’s theorem [?] shows that in any separable Hilbert space
(with dimension greater than 2) the probability measures over the subspaces2 biuniquelly
correspond to the statistical operators by (1.7). Particularly, pure states are also mixtures
with a single homogeneous ensemble involved, i.e. the statistical operator corresponding
to the pure state |ψ⟩ is according to (1.8) the ray projector |ψ⟩ ⟨ψ|. The ray projectors are
exactly the intersection of the sets of the projectors and statistical operators: projectors
are positive operators, and their trace is the dimension of their range (thus, only the ray
projectors are statistical operators); on the other hand, a statistical operator is idempotent
if and only if it has one nondegenerate eigenvalue 1, and the other one 0, with degeneracy
|S| − 1 (thus, it is ray projector). For any ray projector P there is a state |ψ⟩ such that
P = |ψ⟩ ⟨ψ|, and all the vectors eiϕ |ψ⟩ differing by an arbitrary phase give the same ray
projector. This means that the pure physical states are in biunique correspondence to the
ray projectors, i.e. idempotent mixtures. We see that the statistical operator description
is free of the phase ambiguity characteristic for the vector notation.

The sharp value a of the observable A in the mixed state ρ is by definition obtained
when TrPa(A)ρ = 1. Using any basis |a, λ⟩ in Sa(A), the eigenprojector becomes Pa(A) =∑

λ |a, λ⟩ ⟨a, λ|, and 1 = TrPa(A)ρ =
∑

λ ⟨a, λ| ρ |a, λ⟩. Since ρ is positive operator,
this means that the trace over the eigenspace Sa(A) is equal to the complete trace, and
further that for any vector |ψ⟩ orthogonal to Sa(A) one has ⟨ψ| ρ |ψ⟩ = 0, i.e. that
orthocomplement of Sa(A) is a subspace in the null-space S0(ρ) of ρ. In other words, the
sharp value a of A means that ρ is some mixture of the eigenstates of A for the eigenvalue
a. Particularly, if a is nondegenerate, then the mixture ρ = |a⟩ ⟨a| is in fact the pure state
|a⟩.

For each pure state there is a CSCO for which it is a common eigenvector. Therefore,
the measurement of these observables reveal their sharp values. On the contrary, there
is not proper mixed state with this property. Therefore, pure states correspond to the

2Probability measure µ over the subspaces is a function µmapping each subspace of S into nonnegative
real number, such that

∑
i µ(Si) = 1 for any orthogonal decomposition S = ⊕iSi.
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maximal possible information about system. This can be seen also with help of the
entropy, which is defined by:

S = −kTr ρ ln ρ, (1.11)

with k being Boltzman constant. Calculating trace in the eigenbasis of ρ, with help of
the spectral form (1.10) one finds S = −k

∑
i ri ln ri. Since 1 ≥ ri ≥ 0, this expression

is always nonnegative. It takes its minimal value S = 0 for all the states with a single
nonvanishing (and automatically nondegenerate) eigenvalue r1 = 1. Obviously, these
states are pure states. In accordance with the fact that the pure states are maximally
prepared ones, this shows consistency of the above definition of entropy.

In the equilibrium statistical physics of special importance is canonical distribution
described by the canonical state

ρcan
def
= Z−1e−H/kT , Z = Tr e−H/kT . (1.12)

Here, T is temperature of the ensemble, H is hamiltonian (operator of energy) and Z is
called statistical sum or partition function.

1.1.7 Measurement

Since all notions of quantum formalism are based on the results of measurements, a precise
consideration of the measurement process itself is necessary.

Intuitively, measurement process is a series of acts of interactions of the apparatus
with the members of ensemble, each of them resulting in a particular position of the
pointer of apparatus. Such positions correspond to various eigenvalues of the measured
observable, and the distribution of these outcomes over ensemble coincides with the pos-
tulated quantum prediction (1.4). Besides these characteristics which must be satisfied by
any measurement device, various measurements may affect measured system in different
ways (even destroy it!) depending on the type of the involved interaction. However, it is
convenient to extract only the minimal process leading to the results, and ignore all other
details of the particular measurement.

According to the instant to which the results refer, measurements may be classified
into retrospective and predictive. In the former one, the obtained results are valid imme-
diately before measurement, giving no information about the future (and even existence)
of the system. On the contrary, a predictive measurement is not related to the history of
the system, and the obtained results refer to the forthcoming instant. Of course, a mea-
surement may be simultaneously retrospective and predictive. Particularly important
predictive measurements are selective measurements, enabling to separate subensembles
corresponding to different outcomes. Such measurements are unavoidable in the prepa-
rations of the ensembles with wanted properties. Also, this type of measurement is used
in the following idealization, necessary to understand the mentioned minimal change that
ensemble undergoes in any measurement.

Definition 1.1 Ideal measurement of the observable A is an interaction of the apparatus
with ensemble in the arbitrary state |ψ⟩ such that:
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(i) Each eigenvalue a of A is obtained with the quantum probability:

v(a,A, |ψ⟩) = ⟨ψ|Pa(A) |ψ⟩ ;

(ii) Immediately after the measurement the subensemble selected by the eigenvalue a has
sharp value a of A;

(iii) If any observable B compatible with A had sharp value b in |ψ⟩, this sharp value is
retained immediately after the measurement.

In fact, the requirement (i) assures that the considered process is really a quantum
measurement, while (ii) formalize the intuitively necessary property of selective measure-
ment: in the repeated measurement of A the selected subensembles show only the value
by which they are selected. However, (iii) enables to follow the change of state during the
ideal measurement.

Theorem 1.1 (Collapse of the state, Projection postulate) The ideal measurement
of the observable A =

∑
a aPa(A) is performed. Then:

(i) If the initial state of the system is |ψ⟩, the state of the subensemble corresponding to
the selective measurement of the eigenvalue a is

|ψ′
a⟩ = Pa(A) |ψ⟩ /

√
⟨ψ|Pa(A) |ψ⟩. (1.13a)

(ii) If the system is initially in the state ρ, its state immediately after the (nonselective)
measurement is

ρ′ =
∑
a

Pa(A)ρPa(A). (1.13b)

Proof: (i) We expand the initial state in the form |ψ⟩ =
∑
a Pa(A) |ψ⟩, and use the normalized com-

ponents Pa(A) |ψ⟩ /
√
⟨ψ|Pa(A) |ψ⟩ to construct the projector Q =

∑
a
Pa(A)|ψ⟩⟨ψ|Pa(A)

⟨ψ|Pa(A)|ψ⟩ . Note that the

denominator is v(a,A, |ψ⟩). Obviously, Pa(A)Q = QPa(A) = Pa(A)|ψ⟩⟨ψ|Pa(A)
v(a,A,|ψ⟩) , i.e. Q commutes with

each spectral projector of A, and the product is the ray projector on the corresponding component of |ψ⟩.
The first conclusion also means that Q is compatible with A. Further, in the initial state it has sharp

value 1: v(1, Q, |ψ⟩) =
∑
a

⟨ψ|Pa(A)|ψ⟩⟨ψ|Pa(A)|ψ⟩
v(a,A,|ψ⟩) = 1. According to the third characteristics of the ideal

measurement, after the ideal measurement Q retains this sharp value, meaning that in each subensemble

its eigenvalue 1 value is detected with certainty. Particularly, in the subensemble selected by the eigen-

value a of A, it has this sharp value, as well as Pa(A). Altogether, this subensemble has sharp value 1 of

QPa(A). As this is the ray projector, the corresponding state is necessarily (1.13a).

(ii) Let ρ =
∑
i ωi |ψi⟩ ⟨ψi| be one of the decompositions of the mixed state onto the pure compo-

nents. This means that the ensemble ρ one can be divided into the subensembles |ψi⟩, each weighted

by ωi. After the selective measurements of different eigenvalues of A on the pure components |ψi⟩,
one gets the subensembles Pa(A)|ψi⟩√

v(a,A,|ψi⟩)
for each a and each i. The number of subsystems in each of

these subensembles is ωiv(a,A, |ψi⟩)N , where N is the total number of systems in the ensemble ρ and

v(a,A, |ψi⟩) = ⟨ψi|Pa(A) |ψi⟩. Hence, the resulting state is the mixture of all the subensembles, with

weights ωiv(a,A, |ψi⟩), i.e. ρ′ =
∑
i ωi

∑
a v(a,A, |ψi⟩)

Pa(A)|ψi⟩⟨ψi|Pa(A)
v(a,A,|ψi⟩) =

∑
a Pa(A)ρPa(A).
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The theorem determines the change of state during the ideal measurement. Any other
nonideal measurement may be understood as the minimal one followed by some dynamical
process which is essentially irrelevant for the results, but cannot be avoided due to the
specific interaction of the system with concrete equipment.

Exercise 1.2: The space of all linear operators in S is the direct product S ⊗S∗, with naturally defined

scallar product (A,B)
def
= TrA†B. This space is usually called superspace, while the operators acting in

it are called superoperators. Show that for each A the mapping ΠA : ρ → ρ′ defined by (1.13b) is a
superprojector.

Exercise 1.3: Find the states that are not changed in the ideal measurement of A.

The subensemble resulting in the selective measurement of an eigenvalue of an ob-
servable (or some set of compatible observables) is homogeneous for any pure or mixed
measured state, if and only if this eigenvalue is nondegenerate. Such measurements are
called complete.

1.1.8 Interference: Superposition and Mixture

Now the formalism is built up sufficiently to enable interpretation of the phenomena
observed in the double-slit experiments. The source has prepared state with a sharp value
of non-degenerate observable A, so that the emitted beam is a pure state |ψ⟩. However,
screen with slits serve as a measuring device of an observable B, with two emphasized
eigenvalues (corresponding to slits). This observable is again assumed complete thus the
slits correspond to pure eigenstates |ψ1⟩ and |ψ2⟩. However, A and B are not compatible,
and particularly, initial state is not eigenstate of B, but has equal projections ⟨ψ1 |ψ⟩ =
⟨ψ2 |ψ⟩, meaning by Eq. (1.6) that the probabilities to detect two paths after screen are
equal. Finally, we measure position of the particles, which means the third complete
observable X.

Thus, in the case of switched off D1 and D2, the state after screen is superposition
|ψ′⟩ = (|ψ1⟩+ |ψ2⟩)/

√
2. The resulting probability (1.4) is

v(x,X, |ψ′⟩) = | ⟨x |ψ1⟩+ ⟨x |ψ2⟩ |2

2
=
ψ∗
1(x)ψ1(x) + ψ∗

2(x)ψ2(x) + ψ∗
1(x)ψ2(x) + ψ∗

2(x)ψ1(x)

2
,

When the detectors are switched on, each chosen path effectively makes a subensemble
(|ψ1⟩ or |ψ2⟩), and the state after screen is, according to (1.13b), mixture: ρ = (|ψ1⟩ ⟨ψ1|+
|ψ2⟩ ⟨ψ2|)/2. In this case (1.7) gives

v(x,X, ρ) = ψ∗
1(x)ψ1(x) + ψ∗

2(x)ψ2(x).

Thus we see that v1<2 is obtained directly in this case, while in the previous one there
are additional two terms describing the interference.

Of course these results may be easily generalized. Let |ψ⟩ =
∑

i ψi |i⟩. Then, the
probability to detect value a of the observable A is

v(a,A, |ψ⟩) =
∑
i

|ψi|2v(a,A, |i⟩) +
∑
i̸=j

ψiψ
∗
j ⟨a | i⟩ ⟨j | a⟩ . (1.14)
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The first sum is exactly the probability obtained with help of the mixture ρ =
∑

i |ψi|2 |i⟩ ⟨i|,
while the second describes the interference. Also, v(a,A, |ψ⟩) = |

∑
i ψi ⟨a | i⟩ |2 shows that

the probability amplitude ⟨a |ψ⟩ is superposition of the contributing probability ampli-
tudes ⟨a | i⟩. In other words, when the path is not known, the probability amplitudes of
the possible paths are superposed, while for known paths we combine their probabilities.

When a mixed state ρ =
∑

k ωk |ψk⟩ ⟨ψk| is expressed as matrix in the eigenbasis |a⟩ of
an arbitrary complete observable A, then the matrix elements ρab =

∑
k ωk ⟨a |ψk⟩ ⟨ψk | b⟩

relate the mixed pure states to the measurement of A. At first, the diagonal elements
ρaa =

∑
k ωkv(a,A, |ψk⟩) obviously show probability to detect system in the state |a⟩, with

clear contributions from the mixed pure states. Therefore they are called populations (of
the states |a⟩). The nondiagonal elements, according to (1.14), are the averaged (over the
mixed pure components) interference terms of the states |a⟩ and |b⟩ for the system being
in each of the pure component |ψk⟩. Thus their nonvanishing values reveal that although
the state is mixture, there is some remained interference from the coherent subensembles;
this explains why these elements are called coherences.

1.2 Quantization and State Spaces

1.2.1 Canonical Quantization

Classical description of any physical system is easily established, despite possibly unsat-
isfactory predictions. It is therefore natural to attempt to build the quantum description
using the same ideas, or more precisely, to incorporate somehow the classical notions
within quantum formalism, i.e. to find an algorithm to construct quantum formalism
starting from the classical theory. To this end, the notions of the classical states and
variables should be carefully reconsidered, and compared to their quantum analogues.

Within classical theory a system is described in terms of phase space and the space of
variables. The states are points in the phase space, which is a manifold factorized onto the
configuration space (generally, this is not vector space) and the momentum space. Usually,
the dimensions of the both factors are the same, and proportional to the number of the
particles in the system (mathematically precise, the phase space is cotangent bundle of
the configuration manifold). Any physical quantity, called classical variable, is a function
over the state space, f(q,p). Thus, all the variables are functions of the coordinates
and momenta, which are therefore called fundamental variables. In accordance with the
profound continuity principle of physics, these functions are differentiable. Note that
in each point of the phase space, all the variables have well defined values, or, using
quantum vocabular, each variable f has the sharp value f(q,p) in any classical state.
Therefore, for each pair of classical states there are variables having different values in
them, i.e. distinguishing between these states. A particular choice of such variables is the
fundamental set {q,p}.

Structurally, the variables form a vector space, since linear combination of differen-

tiable functions is also differentiable. In addition, pointwise multiplication h(q,p)
def
=

f(q,p)g(q,p) of variables defines a commutative multiplication h = fg, and the space of
variables becomes an abelian associative algebra. It is also a Lie algebra, with the Poisson
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bracket [a, b]
def
=
∑

i(
∂a
∂qi

∂b
∂pi

− ∂a
∂pi

∂b
∂qi

) as the Lie product.

On the other side, the set of quantum observables is real space of all the hermitian
operators acting in the state space S. It is associative algebra with respect to the operator
multiplication (composition). However, the crucial difference is noncommutativity of this
algebra, implying that no state is a common eigen state for each observable, i.e. there is
no state with a sharp value for any observable. To understand the difficulty and get a
hint how to override it, we start with coordinate. If the corresponding observable q̂ has
to retain the basic idea of the classical coordinate, it must have the continual spectrum
σ(q) = R. The corresponding eigenvectors |q⟩ (i.e. q̂ |q⟩ = q |q⟩), being the states with the
sharp value q of q̂, resemble to the classical states with well defined coordinate. However,
there a is continuum of the classical states with sharp value q, distinguished by the value
of the momentum. In analogy with the phase space, one may try to assume that each
eigenvalue q of q̂ is degenerate, and that all the degenerate vectors should be labelled
by an additional value of the momentum. Accordingly, the complete characterization of
these eigenvectors would be |q, p⟩, with the simultaneously satisfied q̂ |q, p⟩ = q |q, p⟩ and
p̂ |q, p⟩ = q |q, p⟩, implying that q̂ and p̂ commute. But this contradicts to the experiments,
showing that well collimated beam of particles, although having more or less sharp value
of momenta, is far from having sharp position and classical trajectory. Thus, the idea
of definition of the state by the values of the observables on them must be weaken: we
have to build the state space with either coordinate or momentum eigenvectors only. This
opens the question if these observables are complete.

Further, it seems natural to retain the functional relations between the classical vari-
ables in the quantum formalism, since these are well established experimentally and there-
fore formalism independent. In fact, this cannot be avoided, since the variables, like the
angular momentum, are even defined as the functions of the fundamental ones. Thus, the
quantum observables that are meaningful in the classical physics (like angular momentum,
energy, etc.; in the Section 4.5, spin as a nonclassical degree of freedom, will be discussed)
should be the same functions of the observales of coordinates and momenta. However,
the product of the hermitian operators is hermitian if and only if they commute, implying
that incompatibility of the observables suppress this simple analogy. In addition, commu-
tation relations between the operators has already proved to be essential in the view of
the simultaneous measurements. Since the commutator (multiplied by imaginary unit) is
a Lie product in the space of observables, it has to be related to the classical Lie product,
i.e. to the Poisson bracket.

Thus, the quantization procedure has to resolve the described problems, but also to
provide the uniqueness of the quantum formalism.
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POSTULATE 4. – QUANTIZATION

The quantum description of a physical system is obtained from the classical one
by the following correspondence rules:

1. Linear combination of the variables corresponds to the same linear combi-
nation of the observables;

2. The product AB of two variables corresponds to the symmetrized product
(ÂB̂ + B̂Â)/2 of the observables;

3. The quantization is continual: any series {Âi} of observables corresponding
to the convergent series {Ai} of variables with limit A, is convergent with
the limit Â being the quantized variable A.

4. The basic set of variables corresponds to the basic set of observables, in
a way that Poisson bracket [A,B]PZ of any variable A with each basic
variable B becomes the commutator 1

i~ [A,B].

The first rule is obvious, while the second one introduces the minimal change of the
product to the symmetrized product, to regain the hermitian observable. Next rule,
asserting that the limit and the quantization are mutually commuting operations, enables
to quantize the variables which are transcendent functions of the fundamental set, using
their series over the fundamental set.

The last rule is more subtle. Its role is to enable algebraic construction of the state
space. To this end, the fundamental set of observables should be defined first, and the
set of observables of coordinates and momenta is a natural choice by the analogy with
the classical mechanics. Though this is not sufficient for the theories involving non-
classical degrees of freedom (such as spin or other interior degrees to be introduced much
later), as far as quantization of the classical theories is considered, this approach is effec-
tive. Namely, in such situations all quantum observables are functions of coordinates and
momenta. Accordingly, possible degeneracy of the observable of the coordinate would
introduce another observables completing it to a CSCO. However, the last rule requires
that classical analog A of an opservable Â from such a CSCO, thus compatible with Q̂,
satisfies [A,Q]PZ = − dA

dP
= 0. This means that A is a function of Q only, A = A(Q),

and therefore Â is the same function Â(Q̂) of Q̂, which is a contradiction: no function of
Q̂ can lower the degeneracy of Q̂. Imaginary unit in front of the commutator has been
anticipated as a way to obtain the hermitian Lie product, while the Planck’s constant ~
with the dimension of action is necessary to compensate the dimension of the product of
the coordinate and the momentum in the Poisson bracket. Its value ~ = 1.0545710−34 Js
is determined by many very precise experiments. Note that for the coordinates and the
momenta this reads:

[Q̂i, Q̂j] = 0, [P̂i, P̂j] = 0, [Q̂i, P̂j] = i~δij. (1.15)

In general, canonically conjugate observables Â and B̂ satisfy [Â, B̂] = i~.
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Nevertheless, to enable later inclusion of the nonclassical degrees of freedom, the fun-
damental set of observables is to be defined in a more general way.

Definition 1.2 The fundamental set is any set F = {Â1, . . . , Âf} of observables such
that:

1. the state space S is irreducible with respect to F , i.e. besides the trivial ones in S
there is no other common invariant subspaces;

2. There is at least one subset in F being CSCO, such that the whole common eigen
basis of this CSCO can be generated from a single common eigen vector by the
functions of the fundamental observables;

3. the space S in which such fundamental set is defined is unique up to isomorphism.

The first requirement is necessary since if the fundamental set is reducible with S1 and
S2 being the common invariant subspaces, then the formalism can be completely developed
in the two invariant subspaces independently. More striking is the consequence that the
dynamics of the system, i.e. the change of the state during the time would be restricted
to these subspaces, meaning that there would be in fact two physical descriptions of the
same system. This intuitive paradox is prevented by the last requirement.

The second requirement is essential for the construction of the state space. This will
be enlighten in the next section, when the state spaces of the elementary systems will be
explicitly constructed as the Lebesgue space over the classical configuration space, with
help of the family of the operator functions mapping one coordinate eigen vector into the
others.

CORRESPONDENCE Q2C FOR ~ → 0

1.3 Construction of the state space

In this section the postulate of quantization will be utilized to construct the state space of
the systems with classical analogs. Here come systems with N particles in D dimensions.

1.3.1 Single one-dimensional particle

This simplest system classically is described by the two-dimensional phase space with
the coordinates {x, p} being the fundamental variables with the commutators [x, x]PZ =
[p, p]PZ = 0 and [x, p]PZ = 1. According to the quantization postulate, in the quantum for-
malism there is unique state space H with the opservables of coordinate x̂ and momentum
p̂, such that [x̂, x̂] = [p̂, p̂] = 0 and [x̂, p̂] = i~.
Exercise 1.4: Show that the differential operator p = −i~ d

dx is linear and Hermitian in the space of all
differentiable wavefunctions, which vanish at both ends of an interval (a, b).

Exercise 1.5: Show that [x, p] = i~, [xn, p] = i~nxn−1, [A, p] = i~dAdx , [x, p
n] = i~npn−1, [x,B] = i~dBdp ,

where p = −i~ d
dx , A = A(x) and B = B(p) are differentiable functions in x and p, respectively.

An immediate consequence of these relations is:
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Theorem 1.2 The observable x̂ has pure continual spectrum Cσ(x̂) = R.

Proof: Let us define the one-parameter family of the unitary operators Û(q)
def
= e−

i
~ qp̂, for each real q.

Using the exercise 1.5, it is easy to show that [x̂, Û(q)] =
∑∞
n=0

(− i
~ q)

n

n! [x̂, p̂n] =
∑∞
n=0

(− i
~ q)

nni~
n! p̂n−1 =

qÛ(q). Further, if x ∈ R is in the continual spectrum of x̂, then the (generalized) eigen vector |x⟩
exists such that x̂ |x⟩ = x |x⟩. But then, x̂(Û(q) |x⟩) = ([x̂, Û(q)] + Û(q)x̂) |x⟩ = Û(q)(q + x̂) |x⟩ =

(x+ q)(Û(q) |x⟩). This means that Û(q) |x⟩ is also eigen vector for the eigenvalue x+ q. Therefore, if any

real number x is in the spectrum, then all reals are also in the spectrum, since q is arbitrary.

This is in accordance with the intuitive notion of coordinate (and momentum also):
the sharp value x of the particle coordinate, i.e. completely localized particle, should
be described by the vector |x⟩, corresponding thus to the continual spectrum. Note
the appearance of the translational operator family Û(q), which, as mentioned in the
definition of the FSO generates the whole eigen basis of x̂ from each of its vectors. In
fact, the nonuniqueness of the phase factor is resolved by convention

|x⟩ = U(x) |0⟩ , ∀x ∈ R. (1.16)

Hence, one can start with the basis |x⟩, make the space over it, and check the other
parts of the quantization procedure. At first, recall that x̂ is complete observable; if not, it
could be completed to CSCO, but then the canonical commutator rules would allow only
functions of x̂ as the compatible with x̂ observables. And such observables cannot be used
to complete x̂. Further, the uniqueness of the obtained space follows from the fact that the
Heissenberg Lie algebra (vector space over {x̂, p̂, Î} with the commutators [x̂, p̂] = const
and [x̂, Î] = [Î , p̂] = 0) is solvable, meaning that its irreducible representations are either
one-dimensional or infinite dimensional one.

Coordinate representation

Thus, the task of the construction of the space is fulfilled. Each vector can be ex-
panded over the obtained basis |ψ⟩ =

∫
R ψ(x) |x⟩ dx. The corresponding Fourier coef-

ficients ψ(x) = ⟨x |ψ⟩ give the coordinate representation of the state, which is called
wave function. Instead of the point in the phase space, the state is therefore described
by the functions. The density of probability to find the particle at x is ψ∗(x)ψ(x).
The finite norm functions, i.e. the functions over R satisfying

∫
R |ψ|

2 dx < ∞ form
the Lebesgue space L(R). Note that the vectors |x⟩ are not from this space, since
their coordinate representation is Dirac δ-function: |x′⟩ =

∫
R δ(x − x′) |x⟩ dx. In the

coordinate representation the observable x̂ becomes the multiplicative operator: since
x̂ |ψ⟩ =

∫
R ψ(x)x̂ |x⟩ dx =

∫
R(xψ(x)) |x⟩ dx, the function ψ(x) is mapped by x̂ to xψ(x).

Therefore, the domain of the coordinate x̂ is the subspace in L(R) with the functions

satisfying that also
∫
R x

2|ψ|2 dx < ∞. Finally, since p̂ = i~
[

dÛ(q)
dq

]
q=0

, the coordinate

representation of p̂ is found to be the derivative operator

p̂ = −i~
d

dx
. (1.17)

Namely, p̂ |ψ⟩ = i~
[

dÛ(q)
dq

]
q=0

∫
R ψ(x) |x⟩ dx = i~

[
d
dq

∫
R ψ(x) |x+ q⟩ dx

]
q=0

=

i~
∫
R

[
dψ(x−q)

dq

]
q=0

|x⟩ dx = −i~
∫
R

dψ(x)
dx

|x⟩ dx. Its domain is comprised by the functions
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from L(R) for which also the image is in L(R), i.e. such that
∫
R |

dψ(x)
dx

|2 dx <∞.

Momentum representation

The eigenproblem of the momentum operator (1.17) is easily solved. Its spectrum is con-
tinual and nondegenerate, Cσ(p̂) = R, with the corresponding eigenvectors (generalized,
distributions) normalized to Dirac’s δ-function

|p⟩ =
∫
R
⟨x | p⟩ |x⟩ dx, ⟨x | p⟩ = ψp(x) =

1√
2π

eipx, ⟨p | p′⟩ = δ(p− p′) (1.18)

known as plane waves.

As the spectrum is nondegenerate, momentum operator is itself a CSCO, enabling to
represent vectors and operators in momentum representation. As for the states, they are
again represented by functions, ψ(p) = ⟨ψ | p⟩. While the momentum operator in this
representation is the multiplicative operator, p̂ψ(p) = pψ(p), the coordinate operator is
the derivative, x̂ψ(p) = i~ d

dx
ψ(p).

Clearly, the form of the plane waves reveals that the transition between coordinate
and momentum representation is realized by the Fourier transformation:

ψ(p) =
1√
2π

∫
R
e−ipxψ(x) dx, ψ(x) =

1√
2π

∫
R
eipxψ(p) dp. (1.19)

1.3.2 Three dimensional particle, many particles

According to the Fatu-Fubini theorem, Lebesgue space over Rn is direct product of the
Lebesgue spaces over each R: L(R ⊕ · · · ⊕ R) = L(R) ⊗ · · · ⊗ L(R). Thus, each degree
of freedom described by the real axis contributes by its Hilbert space L(R), and the
total state space is product of these. For the discrete degrees of freedom, like spin, the
corresponding space is finite dimensional.

This gives straightforward algorithm to construct state spaces of arbitrary systems.
For a single particle, as its configurational space is three-dimensional (corresponding to
three degrees of freedom) state space is S = L(R3) = L(R) ⊗ L(R) ⊗ L(R) = L3(R).
Analogously, for N such particles, the state space becomes S = L(R3N) = L3N(R).

In analogy to the single one-dimensional particle, according to (1.15), there is common
eigenbasis |Q11, . . . , Q13, . . . , QN3⟩ of all the coordinate operators Qni (n = 1, . . . , N , i =
1, 2, 3). This basis defines the coordinate representation. Momentum operators of the
n-th particle, expressed in the convenient vector form, are represented as:

pn = −i~∇n = −i~(
∂

∂Qnx

ex +
∂

∂Qny

ey +
∂

∂Qnz

ez).

Exercise 1.6: The translation operator U(a) is defined to be such that U(a)ψ(r) = ψ(r − a). Show
that U(a) is unitary and express it in terms of p = −i~∇.
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1.3.3 Relative particles

1.3.4 Subsystems: reduced states and correlation

As discussed in subsection 1.3.2, the system consisted of two subsystems (particles, degrees
of freedom like coordinates) is described by the state space S = S1 ⊗ S2, where S1 and
S2 are the subsystems’ state spaces. This space is spanned by the states being direct
products of the single-particle states, which are called non-correlated or separable states,
to distinguish from the correlated states, being their nontrivial linear combinations.

It is intuitively plausible that when such composite system is in the non-correlated
state |ψ⟩ = |ψ(1)⟩ ⊗ |ψ(2)⟩, the subsystems are in the factor states |ψ(1)⟩ and |ψ(2)⟩,
respectively. However, it is not obvious what is the subsystem state in the case of the
correlated composite state.

As usual, these questions will be clarified through analysis of measurements. Particu-
larly, as a state of a subsystem is manifested only in subsystem measurements, it should
give correct results (1.4) in all the measurements of the first subsystem observables A(1). In
the composite space, such observables induce composite observables A(1) ⊗ 1(2). Suppose
that A(1) is a complete observable in S(1), with the eigenbasis |a⟩, while |b⟩ is an arbitrary
basis in S(2). Then, any composite state |ψ⟩ may be expanded over non-correlated basis
|a⟩ ⊗ |b⟩ as

|ψ⟩ =
∑
ab

ψab |a⟩ ⊗ |b⟩ =
∑
a

|a⟩ ⊗ |ψa⟩ , |ψa⟩ = ⟨a |ψ⟩ =
∑
b

ψab |b⟩ . (1.20)

Here, ⟨a |ψ⟩ is the partial scalar product of the composite state |ψ⟩ and the first subsystem
state |a⟩, giving a state of the second subsystem. In the selective measurement of A(1)⊗1,
the state of the subensemble corresponding to the pointer value a is obtained by the
projection with P

(1)
a ⊗ 1, since no requirement on the second subsystem is imposed. The

result is |a⟩ ⊗ |ψa⟩, i.e. the product of the chosen eigenvector with the partial scalar
product of the state with that eigenvector.

Of course, the partial scalar product may be defined also with the states of the second
system. Using it, one further defines the partial trace of an operator. In fact, if the
composite operator has in the Dirac notation the form A =

∑
aa′bb′ A

ab
a′b′ |ab⟩ ⟨a′b′|, than

its partial traces over two spaces, called the reduced operators, are:

A1 = Tr 2A =
∑
b

⟨b|A |b⟩ =
∑
aa′

(
∑
b

Aaba′b) |a⟩ ⟨a′| , (1.21a)

A2 = Tr 1A =
∑
a

⟨a|A |a⟩ =
∑
bb′

(
∑
a

Aabab′) |b⟩ ⟨b′| . (1.21b)

It is easy to show that like the usual trace, the partial ones are independent on the used
bases. Further, if A is hermitian, positive or statistical operator, both its partial traces
are of the same types.

Exercise 1.7: Show that partial trace of the hermitian operator is hermitian. Analogously for positive
and statistical operators.
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After this technical preparation, we come back to the question of subsystem states.
On the composite system in the most general (mixed) state ρ, the subsystem observable

A(1) =
∑

a P
(1)
a is measured. The probability of the results is

v(a,A(1) ⊗ 1, ρ) = Tr (P (1)
a ⊗ 1)ρ =

∑
a′b

(⟨a′| ⊗ ⟨b|)(P (1)
a ⊗ 1)ρ(|a′⟩ ⊗ |b⟩) (1.22)

=
∑
a′

⟨a′|P (1)
a (
∑
b

⟨b| ρ |b⟩) |a′⟩ = TrP (1)
a ρ1 = v(a,A(1), ρ1). (1.23)

This shows that the reduced density matrix ρ1 (and analogously defined ρ2) completely de-
termines the results of the subsystem measurements. In this sense, the reduced statistical
operators describe the states of the subsystem.

It is important to note that even in the case of the pure composite state |ψ⟩ (i.e. ρ =
|ψ⟩ ⟨ψ|, the reduced states are not pure. The obtained mixed states in these cases are called
the mixtures of the second kind to distinguishes from the usual mixtures obtained by the
mixing of the different ensembles. Only for non-correlated composite states |ψ(1)⟩⊗ |ψ(2)⟩
reduced states are pure states ρi = |ψ(i)⟩ ⟨ψ(i)|.

When initial state is separated, ρ′ = ρ1 ⊗ ρ2, the reduced states are just the factors
ρ1 and ρ2 (this includes also the pure states: for |ψ⟩ = |ψ(1)⟩ ⊗ |ψ(2)⟩, the subsystems are
in the factor states |ψ(1)⟩ and |ψ(2)⟩) as intuitively guessed at the beginning. This is the
reason that such states sometimes are called classical.

Note that the reduced operators ρ1 and ρ2 do not completely describe the whole
composite system. Indeed, they do not determine the composite state ρ, since different
composite states ρ and ρ′ may have the same both reduced states. For example, for
each ρ giving ρ1 and ρ2, also the separable (or noncorrelated) state ρ′ = ρ1 ⊗ ρ2 has
the same reduced operators. The difference between ρ and ρ′ reflects the interrelation of
the subsystem states in the composite state, and it is erased by the partial traces. In
general, this interrelation is called correlation or entanglement, and the information on it
is contained in ρ−ρ′, although there are some other derived quantities which can be used
to measure it.

SCHMIDTOVA FORMA
TWINS

1.4 Uncertainty relations

Every observable has a sharp value in each of its eigenstates, but this is not the case
otherwise. Dispersion of the observable is statistical measure of the non-sharpness:

∆ψ(A) =
√

⟨A2⟩ψ − ⟨A⟩2ψ =
√
⟨(A− ⟨A⟩ψ)2⟩ψ, (1.24)

vanish in the eigen states of A, and the eigen states are the only nondispersive states
for A. On the other hand, observable A has nonvanishing dispersion in a general state,
pointing to the nontrivial probability distribution, i.e. to an uncertainty of the prediction
of particular values of the pointer.
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For the pair of observables, A and B, the product of the dispersions ∆ψ(A)∆ψ(B) may
be considered as a measure of the uncertainty of the prediction of the pairs of the two
pointers (for A and B) values in the state ψ. Both observables have sharp values only if
ψ is their common eigen state. Thus, if they are incompatible, such states may not exist
at all. So, it becomes obvious that in general there is an uncertainty of the measurement
results of the two observables, and that it is related to their compatibility.

Theorem 1.3 (Heisenberg uncertainty relation) For any state (pure or mixed) ψ
and any pair of observables A and B the uncertainty of the probability distributions v(A,ψ)
and v(B,ψ) has lower bound:

∆ψ(A)∆ψ(B) ≥ 1

2
| ⟨[A,B]⟩ψ |. (1.25)

Proof: For a pure state |ψ⟩ define the auxiliary operators A′ = A− ⟨A⟩ψ, B′ = B − ⟨B⟩ψ, and vectors

|u⟩ = A′ |ψ⟩, |v⟩ = B′ |ψ⟩. In the Schwartz inequality ∥ |u⟩ ∥∥ |v⟩ ∥ ≥ | ⟨u | v⟩ |, on the left is ∆ψ(A)∆ψ(B),

while on the right there is the mean | ⟨A′B′⟩ψ | = | ⟨A
′B′+B′A′

2 ⟩
ψ
+⟨A

′B′−B′A′

2 ⟩
ψ
|. Recall that the obtained

symmetrized and antisymmetrized products are hermitian and scew-hermitian operators, and their means

are real and pure imaginary, respectively. Thus, the absolute value of the whole expression is greater

than that of its imaginary part. Altogether, ∆ψ(A)∆ψ(B) ≥ | ⟨A′B′⟩ψ | ≥ 1
2 | ⟨[A

′, B′]⟩ψ | = 1
2 | ⟨[A,B]⟩ψ |.

Exercise 1.8: Prove (1.25) for the mixed states.

In particular, canonically conjugated observables A and B satisfy Heisenberg relation:

∆ψ(A)∆ψ(B) ≥ ~
2
. (1.26)

The states realizing the minimal uncertainty | ⟨[A,B]⟩ |/2 are called minimal wave
packets. To find them it should be examined when the inequalities used in the proof
are equalities. Thus, the first one, the Schwartz inequality, degenerates into equality if
and only if the related vectors are collinear, that is when A′ |ψ⟩ = αB′ |ψ⟩. The second
inequality becomes an equality when the mean of the symmetrized product vanishes, i.e.
when 0 = ⟨ψ| (A′B′ +B′A′) |ψ⟩ = (α∗ + α) ⟨B′2⟩. Thus, α must be pure imaginary.

Exercise 1.9: Show that the coordinate-momentum minimal wave packet is the Gaussian ψ(x) =

e−( x−a
2f )2+ i

~ bx. What are the a, b and f?

Using the uncertainty relation, one can estimate delocalization of a free particle hav-
ing mean energy ⟨H⟩. Hamiltonian of such a particle has kinetic part only, H = p̂2

2m
.

Therefore, for the one-dimensional particle: ⟨H⟩ = ⟨p̂2⟩
2m

= (∆p̂)2

2m
+ ⟨p̂⟩2

2m
≥ ~2

8m(∆x̂)2
, while

for three dimensional particle this gives ⟨H⟩ ≥ ~2
8m

( 1
(∆x̂)2

+ 1
(∆ŷ)2

+ 1
(∆ẑ)2

). Obviously, for
better localization, more energy is needed.

For commutative observables ∆ψ(A)∆ψ(B) ≥ 0. In fact, ∆ψ(A)∆ψ(B) = 0 for the
common eigenstates, being nondispersive for both observables, in accordance with the
introduced notion of compatibility. In addition, noncommutative observables may have
some common eigenstates (but not a common eigen basis!). In such states ∆ψ(A)∆ψ(B) =
0.



Chapter 2

Quantum Dynamics

The main task of the physics is to predict events in the future on the basis of the known
facts in the past. Unlike to the kinematics, which hardly relate the system itself but only
the geometry of the neighboring space, the dynamics dominantly involve the system itself,
its structure, mutual interactions of its components and possible external influences.

2.1 A classification of the physical systems

The classical mechanics solves the dynamical problem within canonical formalism. The
obtained canonical equations involve the hamiltonian variable. It arises as the quantity
governing the dynamics: through the variational principle, it singles out the geodesic of
the motion. Therefore, to enable the direct canonical quantization, one should under-
stand the domain of validity of the classical canonical formalism, and particularly the
conditions enabling the hamiltonian approach. To this end we briefly classify physical
systems according to their relationship to the surrounding. In fact, just the possibility to
define, i.e. recognize, a particular physical system is neatly related to the interaction of
the system with its surrounding.

Starting from the simplest, and increasing the physical complexity of the systems we
point out the following classes:

(i) System of free particles: there is no interaction between the subsystems (parti-
cles), i.e. classical Hamiltonian is sum of the one particle hamiltonians; the other
properties are the same as for the next class.

(ii) Isolated system: although the subsystems interact mutually, they do not interact
with the surrounding; thus the hamiltonian involves only system coordinates and
momenta, preserving space-time homogeneity.

(iii) Conservative system: it may interact with the surrounding, and the Hamiltonian
may involve also some parameters characterizing the surrounding (external field
breaking space homogeneity); still it cannot exchange the energy, and the hamilto-
nian is time independent, i.e. time is homogeneous (e.g. particles in the conservative
fields).

22
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(iv) Dynamically separated system: this is a system which interact with the surrounding
in a very general manner, but still its dynamic may be singled out from the dynamics
of the surrounding; the Hamiltonian is dependent both on the time and on the
external field parameters, but the system parameters are not involved in the equation
of motion of the surrounding (no feedback), which allows the separation from the
surrounding (e.g. electron in the accelerator).

(v) Kinematically separated system: only some degrees of freedom in some large system
are used to single out kinematically independent subsystem; the dynamical equa-
tions may not be written independently for this part (e.g. atom as a subsystem in
a molecule).

Obviously hamiltonian approach may be formulated for the classes (i)-(iv), which are
idealized to some extent. While negligible feedback may be very realistic approximation
of (iv), isolated systems and free particles models are applicable only when some aspects
of dynamics are relevant (note that such ideal systems could not be even detected).

2.2 Postulate of Evolution

The states of physical systems are changed during the time (in fact, not only the state,
but also the system itself may be changed, but such generalizations will not be studied
here). Just these changes are the motion or the evolution of the system, and the task of
the dynamics is to find the law of the motion. According to the experience (this means
experiments) and elementary intuition, there are some basic properties of the evolution
of the quantum systems, which are comprised in the following

POSTULATE 5. – EVOLUTION

The evolution of the physical system during the time interval t ∈ [ti, tf ] is a
process in which the initial state |ψ, ti⟩ is transformed to the final state |ψ, tf⟩
such that:

(i) the change is causal, meaning that to each initial state |ψ, ti⟩ uniquely cor-
responds single final state |ψ, tf⟩;

(ii) the superposition of the states is conserved, i.e. if |ψ, ti⟩ = α1 |ψ1, ti⟩ +
α2 |ψ2, ti⟩, then |ψ, tf⟩ = α1 |ψ1, tf⟩+ α2 |ψ2, tf⟩;

(iii) the number of systems within ensemble is conserved;

(iv) the change is continual with respect to time.

The properties of the evolution emphasized in the postulate are sufficient to describe
it formally. Indeed, the causality means that the evolution is a map U : |ψ, ti⟩ → |ψ, tf⟩,
i.e. an operator in the state space H. Then the next property essentially means that this
operator U is linear. To understand the importance of the third property, recall that the
probability to get the value a of the observable A in the state at ti is v(a,A, |ψ, ti⟩) =
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N
(i)
a /N = ⟨ψ, ti|Pa(A) |ψ, ti⟩. All these probabilities are summed in 1, giving that |ψ, ti⟩

is normalized. Assuming that this measurement is predictive, it is possible to measure
A on the same ensemble but in tf . The result v(a,A, |ψ, tf⟩) = N

(f)
a /N , with unchanged

N implies that again ⟨ψ, tf |ψ, tf⟩ = 1, i.e. that the evolution does not change the norm
of the state. Note that this property characterize non-relativistic systems. Hence, the
linear operator U has to conserve the norm of the vectors. The last condition significantly
restricts the operators suitable for the description of the evolution: the Wigner’s theorem
shows that such operators may be either unitary or antiunitary. Bearing in mind the
already established linearity, it turns out that U is unitary operator, or precisely the
family of the operators U(ti, tf). To include the last natural continuity principle, we
reparameterize this family in the form U(t − ti, ti), gaining the explicit function of the
elapsed time t− ti for t ∈ [ti, tf ]. Of course the continuity is to be understood in the very
broad sense, i.e. as the differentiability of some sufficient order.

Summarizing all the consequences of the postulate, we obtain the law of the motion:

|ψ, t⟩ = U(t− ti, ti) |ψ, ti⟩ . (2.1)

The evolution operator U(t − ti, ti) completely governs the dynamics of the system,
and therefore it comprises all the relevant dynamical characteristics. In the classical
mechanics, the Hamiltonian is the variable defining the dynamics, and therefore it is
expected to relate the evolution operator with the Hamiltonian observable obtained by
the quantization postulate. To establish this relation, we use some obvious properties of
the evolution. At first, for t = ti evolution is the identity map: U(0, ti) = I. Further,
if an arbitrary instant t1 in the interval (ti, tf) is singled out, the evolution may be seen
as the composition of the evolution from ti to t1 and from t1 to tf : U(tf − ti, ti) =
U(tf − t1, t1)U(t1 − ti, ti). Finally, let us fix the initial time ti and find the infinitesimal
increment dU(t − ti, ti) of U in t = ti. By definition this is the difference dU(0, ti) =
U( dt, ti)−U(0, ti). On the other side, as a differential, it is proportional to dt; this way the
observable H(ti) is defined by dU(0, ti) = − i

~H(ti) dt. Hence, − i
~H(ti) dt = U( dt, ti)− I.

The differential at some later instant t > ti can be found with help of the composition
rule of the evolutions from ti to t and from t to t+ dt: dU(t− ti, ti) = U( dt+ t− ti, ti)−
U(t− ti, ti) = (U( dt, t)− I)U(t− ti, ti). Using the derived expression for the differential
of U at t = ti, one gets that the bracket equals − i

~H(t) dt. This gives the first order
differential equation for U and the initial condition:

i~
d

dt
U(t− t0, t0) = H(t)U(t− t0, t0), U(0, t0) = I. (2.2)

Therefore, this is the equation for the evolution operator U(t − t0, t0), in its differential
form. Note that this two parameter family is defined through the one parameter family
of the operator H(t). Besides it has the dimension of energy, the hermitian operator
function H(t) determines the dynamics of the system; it should be expected that this is
Hamiltonian observable, as it will be shown later on.

The integral form of (2.2) is obtained by formal integration. One gets U(t− t0, t0) =
I − i

~

∫ t
t0
H(t1)U(t1 − t0, t0) dt1, and the iterative substitution on the right of this formal
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solution, gives the Dyson series:

U(t− t0, t0) =
∞∑
n=0

(− i

~
)n
∫ t

t0

dt1 . . .

∫ tn−1

t0

dtnH(t1) · · ·H(tn). (2.3)

Note that the operators from the family H(t) in various instants may be noncommutative,
[H(ti), H(tj)] ̸= 0. Therefore, in (2.3) appears the time ordered product: it is implicitly
assumed that t0 ≤ tn ≤ · · · ≤ t1 ≤ t. Instead, one can use explicit time ordering T , which
rearranges any product of the operators in the product ordered with the increased time:

T [A(ti1) · · ·A(tin)]
def
= A(t1) · · ·A(tn) (t1 ≥ · · · ≥ tn). (2.4)

In (2.3) the time ordering is implicitly given through the upper bound of the integrals
over ti. On the other side, if all the integrations in tn, . . . , t1 were performed from t0 to
t, the total integration domain would be the n-dimensional cube with the length t − t0.
In this cube, the domain t1 ≤ · · · ≤ tn is only one n!-th part; precisely, to any of n!
possible ordering of the instances t1, . . . , tn, i.e. to any permutation of these instances,
corresponds the sub-domain of the same volume. Thus, the integration in (2.3) may be
also performed over the cube, but with explicit time ordering, and in all the sub-domains
the same value is obtained, altogether n! times:

U(t− t0, t0) =
∞∑
n=0

(− i
~)
n

n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT [H(t1) · · ·H(tn)]. (2.5)

In the case when the operators H(t) and H(t′) commute for any instants t and t′, the
time ordering may be omitted; each of the integrals becomes independent, and the last
equation is easily integrated to

U(t− t0, t0) = e
− i

~
∫ t
t0
H(t′) dt′

. (2.6)

For the time independent Hamiltonian H(t) = H, being an example of this type, we get:

U(t− t0, t0) = e−
i
~H(t−t0). (2.7)

2.3 Schrödinger equation

To get explicitly the law of motion of the states, one combine the equations (2.1) and
(2.2) to get the famous time dependent Schrödinger equation:

i~
d

dt
|ψ, t⟩ = H(t) |ψ, t⟩ , |ψ, t⟩t=t0 = |ψ, t0⟩ . (2.8)

This is the first order differential equation, with the initial condition given on the right.
Its coordinate representation

i~
d

dt
ψ(r, t) = H(r,p, t)ψ(r, t), ψ(r, t)t=t0 = ψ(r, t0) (2.9)

is known as the time dependent wave equation.
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2.3.1 Conservative systems

In a conservative system the Hamiltonian is constant with respect to time, and the evo-
lution is described by (2.7). When it acts on a hamiltonian eigen vector |E, t0⟩ (for the
eigen value E), only the time dependent phase factor appears:

|E, t⟩ = U(t− t0) |E, t0⟩ = e−iE(t−t0)/~ |E, t0⟩ .

This means that the eigenvectors of the Hamiltonian are stationary states in the physical
sense, i.e. such a physical state is not changed during the time. On the other side, for any
stationary state, i.e. state such that |ψ, t⟩ = f(t) |ψ, t0⟩, the Schrödinger equation reads
(i~ḟ/f) |ψ, t0⟩ = H |ψ, t0⟩; since the right side is time independent, the bracket must be a
constant, meaning that |ψ, t0⟩ (and therefore |ψ, t⟩) is an eigen state of the Hamiltonian.

This observation suffices to reduce the evolution problem of the conservative systems
to the time independent Hamiltonian eigen problem. Indeed, let |E, λ⟩ be an eigen basis
of H:

H |E, λ⟩ = E |E, λ⟩ . (2.10)

If system in t0 is described by the vector |E, λ⟩, in the later instant t the state vector
is e−iE(t−t0)/~ |E, λ⟩. Then, a quite general state can be expanded over the Hamiltonian
eigen basis at any instant t in the form: |ψ, t⟩ =

∑
E,λ cEλ(t) |E, λ⟩. Note that the time

dependence is completely comprised in the expansion coefficients. On the other hand,
since the evolution preserves the superposition (by the postulate),

|ψ, t⟩ = U(t− t0, t0) |ψ, t0⟩ =
∑
E,λ

cEλ(t0)U(t− t0, t0) |E, λ⟩ =
∑
E,λ

cEλ(t0)e
−iE(t−t0)/~ |E, λ⟩ ,

giving that the evolution is defined by

cEλ(t) = cEλ(t0)e
−iE(t−t0)/~. (2.11)

Hence, solving the eigen problem of the Hamiltonian, the evolution is completely deter-
mined. In other words, the solutions of (2.8) are completely determined (through (2.11))
by the solutions of (2.10), which is therefore called time independent Scrödinger equation.

These conclusions are important for the characterization of the states. In fact, if
H is degenerate observable, then using any CSCO {H,A,B, . . . } containing H and the
observables commuting with H, one gets the stationary basis |E, a, b, . . .⟩, which is called
complete classification of the states. Here, the eigenvalues a, b etc. of the observables
A, B etc. take the role of the degeneracy counter λ from (2.10). Such a states have
sharp values of these observables. Consequently, these values are conserved during the
evolution, i.e. they are integrals of motion, also called good quantum numbers.

2.3.2 Evolution of the mixed states

The evolution of the mixed states is easily derived from the evolution of the pure ones. In
fact, let at t0 a mixed state is given in its most general form ρ(t0) =

∑
i ωi |ψi, t0⟩ ⟨ψi, t0|.

Afterwards mixture evolves together with its pure components |ψi, t⟩, meaning:

ρ(t) = U(t− t0, t0)ρ(t0)U
†(t− t0, t0). (2.12)
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The differential form of this equation is obtained as derivative in t of (2.12), with the
substitution of (2.2) and its adjoint. This analogue of the Schrödinger equation for mixed
states is called Liouville equation:

i~
d

dt
ρ(t) = [H(t), ρ(t)], ρ(t)t=t0 = ρ(t0). (2.13)

Exercise 2.1: Prove Hellman-Feynman Theorem: for the hamiltonian parameterized by a real parameter
a the normalized eigenstates (H(a) |E(a)⟩ = E(a) |E(a)⟩) satisfy

d

da
E(a) = ⟨E(a)| d

da
H(a) |E(a)⟩ . (2.14)

Exercise 2.2: Prove that for any observable A, matrix elements of the commutator [H,A] in the (nor-
malized) stationary basis satisfy

⟨n, λ| [H,A] |n′, λ′⟩ = (En − En′) ⟨n, λ|A |n′, λ′⟩ . (2.15)

In particular, taking the hamiltonian in the formH = T+U(r), find the matrix elements of the momentum
and force (gradient of the potential) proving virial theorem.

2.3.3 Evolution of the probabilities and means

The evolution of the system causes the change of the observable quantities, such as proba-
bilities of the measurement results or mean values. Even for the observables being constant
in time, the measurement results may vary due to the evolution of the states.

Given the observable A(t) which may be explicit function of time (e.g. if it is related
to some variable external field), its mean in the state ρ(t) during the time is given as
⟨A⟩t = Tr ρ(t)A(t). Deriving this in t, and applying again (2.2) one gets: i~ d

dt
⟨A⟩t =

Tr [H(t), ρ(t)]A(t) + i~Tr ρ(t) d
dt
A(t). Expanding commutator, this becomes:

i~
d

dt
⟨A⟩t = ⟨[A(t), H(t)]⟩t + i~ ⟨∂

∂t
A⟩

t
(2.16)

The derivative of a classical variable in t is based on the notion of its value in the close
instants. In the quantum sense, the observable itself may have no particular value, and
obtains it in the measurement process. Therefore the derivatives must refer not only to
the parametric dependence of A of time, but to the both quantities, observable and state,
participating in the measurement process. In this sense, since (2.16) is fulfilled for each
state, it can be used to define the time derivative of the observable, and get the classical
like equation of motion:

⟨ d
dt
A⟩

t

def
=

d

dt
⟨A⟩t , i~

d

dt
A = [A(t), H(t)] + i~

∂

∂t
A. (2.17)

Also, it is straightforward to find how the probability of a particular measurement
result depends on time:

vt(a,A, |ψ⟩) = ∥Pa(A)U(t− t0, t0) |ψ⟩ ∥2.

Analogously, given a state |ϕ⟩ fixed as a common eigenvector of a CSCO, the transition
probability from arbitrary state |ψ⟩ to |ϕ⟩ is

vt(|ψ⟩ → |ϕ⟩) = | ⟨ϕ|U(t− t0, t0) |ψ⟩ |2.
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2.3.4 Probability current and continuity equation

Assuming that the one particle Hamiltonian has the form H = p2/2m + V (r, t), the
Schrödinger equation in the coordinate representation and its complex conjugate are:

i~
d

dt
ψ(r, t) = − ~2

2m
△ψ(r, t) + V (r, t)ψ(r, t),

−i~
d

dt
ψ∗(r, t) = − ~2

2m
△ψ∗(r, t) + V (r, t)ψ∗(r, t).

Multiplying the first of them by ψ∗(r, t) and the second one by ψ(r, t), and summing
them, one gets the continuity equation:

∂ρ

∂t
+ divj = 0. (2.18)

Here, ρ(r) = ψ∗(r, t)ψ(r, t) = ṽ(r, r̂, |ψ⟩) is the density of the probability (1.5) of the
particle occurrence in r, while

j =
~

2mi
(ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)) =

1

m
Re(ψ∗(r, t)

~
i
∇ψ(r, t)). (2.19)

is the probability current.

Exercise 2.3: ◦ Show that the probability current of the free particle in the state ψpw(r) = Ceik·r is

jpw =
~
m
k|C|2. (2.20)

2.3.5 Uncertainty relation time-energy

Time and energy are related to some extent analogously to coordinate and momenta.
Therefore, an uncertainty relation involving these quantities may be expected. Still, since
there is no observable of time, such relation must be derived indirectly.

We say that A is appropriate observable for the state |ψ⟩ if it is not explicitly time
dependent and d

dt
⟨A⟩|ψ⟩ ̸= 0. For such an observable and state, the minimal time

τA = ∆|ψ⟩(A)/| ddt ⟨A⟩|ψ⟩ | must pass until the change of mean overwhelms the dispersion
∆|ψ⟩(A).

Theorem 2.1 (Time-energy uncertainty relation) Any non-stationary state |ψ, t⟩
and any appropriate observable A satisfy:

τA∆|ψ⟩(H) ≥ 1

2
~. (2.21)
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Proof: According to (1.25), ∆ψ(A)∆ψ(H) ≥ 1
2 | ⟨[A,H]⟩ψ | = 1

2 |i~
d
dt ⟨A⟩|ψ⟩ | =

~
2 |

d
dt ⟨A⟩|ψ⟩ |, and the

relation looked for follows when ∆(A) is expressed in terms of τA.

Since this inequality holds for all the appropriate observables, also the infimum τ =
inf{τA | A appropriate} satisfies τ∆|ψ⟩(H) ≥ 1

2
~. Hence, τ is the best estimate indepen-

dent of the particular observable.
In the scattering experiments, the target energy is measured by means of beams of

particles. The latter are free particles, with hamiltonian H = p2/2m, well collimated with
the dispersion ∆p ̸= 0. The beam is in average localized at ⟨x⟩ with the dispersion ∆x,
and the mean value evolves. Hence x is appropriate observable, and the measurement has
duration of at least τx.

Completely different approach to the time-energy uncertainty relation appears on the
context of unstable states. In fact, when the quantum system, like atom, is excited from
the ground state, the interaction with the surrounding results usually in the deexcitation.
Therefore the excited states have their lifetime, and τ1/2 is the half lifetime of such a state.
On the other hand, the excited state energy cannot be exactly found in the experiments,
but with some error ∆E. The phenomenological uncertainty relation τ1/2∆E ≥ ~ is
experimentally found:

2.4 Simple systems

2.4.1 One-Dimensional systems

2.4.2 Harmonic oscillator

The hamiltonian of the one-dimensional harmonic oscillator is

H =
1

2

p2

m
+

1

2
mω2q2. (2.22)

Introducing new observables Q = q
√
mω/~ and P = p/

√
mω~ = −i∂Q (note that P and

Q are not canonically conjugated, since [Q,P ] = i), one gets

H = ~ωH ′, H ′ =
1

2
(P 2 +Q2). (2.23)

Exercise 2.4: (Linear Harmonic Oscillator) Find eigenfunctions and energy spectrum of the Hamilto-

nian H =
p2x
2m + mω2

2 x2.

Besides direct solution (Exercise 2.4) of the appearing hypergeometric equation, the
eigen problem of the hamiltonian may be solved with help of the operators:

a± =
1√
2
(Q∓ iP ) =

1√
2
(Q∓ d

dQ
). (2.24)

The following significant properties of these operators directly follow from the definition:

(a−)† = a+, [a−, a+] = 1. (2.25)
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To this pair of operators the third one, occupancy number operator is accompanied:

n = a+a−. (2.26)

It is manifestly positive, and, since n |x⟩ = 0 iff 0 = ⟨x|n |x⟩ = ∥a− |x⟩ ∥, its kernel is
ker(n) = ker(a−). The following commutator relation is easily verified:

[n, a±] = ±a±. (2.27)

Exercise 2.5: Show that [a∓, (a±)s] = ±s(a±)s−1, and (??? PROVERITI FORMULU)

[(a−)m, (a+)p] =

min{m,p}∑
s=1

p!

(p− s)!

m!

(m− s)!
(a+)p−s(a−)m−s.

Exercise 2.6: Show that any monomial over a+ and a− may be expressed as polynomial with ordered
terms ((a+)x before (a−)y).

The introduced triple of the operators a−, a+ and n is very important in the quantum
theory of many particles. At first we note that a± are by (2.24) biuniquely related to the
fundamental set of observables {x, p}, making possible to express all the opservables in
terms of these two. The Exercise 2.5 then asserts that any observable may be expanded
in the series over a− and a+ with the terms being monomials of the type (a+)p(a−)m, as
shown in the Exercise 2.6. Particularly important are spectral properties of n.

Theorem 2.2 The spectrum of occupancy number operator is purely discrete σ(n) =
{0, 1, 2, . . . } and nondegenerate, with all the eigenvectors |i⟩ determined by the vacuum
state |0⟩ as

|i⟩ = 1√
i!
(a+)i |0⟩ . (2.28)

Proof: As a positive operator, n must have an eigenvalue x > 0. Let |x⟩ be the corresponding
eigenvector: n |x⟩ = x |x⟩. The commutator relation (2.27) gives n(a± |x⟩) = (a±n ± a±) |x⟩ = (x ±
1)(a± |x⟩). Obviously, together with x the eigenvalues are also x−1 (for a− |x⟩), x−2 (for (a−)2 |x⟩), etc.
This series would become negative at some point. The only way to avoid such contradiction is that x is
integer itself: then one eigenvector is (a−)x |x⟩ ∼ |0⟩. The vacuum vector |0⟩ satisfies n |0⟩ = 0, meaning
that it is from the kernel of n, implying 0 = ⟨0|n |0⟩ = ⟨0| a+a− |0⟩ = ∥a− |0⟩ ∥2. Thus, a− |0⟩ = 0, and
for j > x negative part of the spectrum is not generated as (a−)j |j⟩ = 0. The series is then cut here,
since all the remaining members vanish, restricting the spectrum of n to nonnegative integers. Assume
that this spectrum is not simple; the degeneracy can be removed by a compatible observable. As q and p
are functions of a+ and a, any observable has a form A =

∑
pm apm(a+)p(a−)m. The compatibility with

n imposes condition

0 = [A,n] =
∑
pm

apm[(a+)p(a−)m, a+a−] =
∑
pm

(m− p)apm(a+)p(a−)m,

requiring apm = 0 unless m = p. But then A =
∑
s bsn

s, i.e. it is function of n and cannot remove

the degeneracy. Hence, n is complete observable. Finally, it is clear that |i⟩ = ci(a
+)i |0⟩, and only the

normalizing coefficient in (2.28) is to be found. Assuming that the basis {|i⟩} is orthonormal, the squared
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norm of a+ |i⟩ = c |i+ 1⟩ is ⟨i| a−a+ |i⟩ = i+ 1, i.e. a+ |i⟩ =
√
i+ 1 |i+ 1⟩, verifying the proposed result.

Now it is easy to solve the eigen problem of the harmonic oscillator. Namely, since
obviously H ′ = n+ 1

2
, i.e.

H = ~ω(n+
1

2
) (2.29)

the eigen vectors of H are exactly the same vectors (2.28) as for n, while the spectrum
of H is shifted upward for one half, and then multiplied by ~ω. Thus the spectrum
consist of equidistant eigenvalues, the difference between successive ones being ~ω. The
remarkable features of this spectrum allow us to consider that the eigen state |i⟩ describes
a system with i free (noninteracting) quasi-particles: each of them contributes by the
single quantum ~ω. Operator a+, shifting from |i⟩ to |i+ 1⟩, acts as the creation operator
of these quasi particles, while its adjoint a− is the annihilation operator. In this context,
the eigen value i of n is the number of the quanta in the state |i⟩, and n is called occupation
number operator. Usually the annihilation operator a− is denoted by a, while the creation
one a+ is according to the first property simply its adjoint a†.

To get the eigenfunctions in the Q-representation ψi(Q) = ⟨Q | i⟩, we note that the
vacuum state is singled out by a− |0⟩ = 0, which is by (2.24) the differential equation
dψ
dQ

+Qψ = 0, with the solution ψ0(Q) = π− 1
4 e−

1
2
Q2
. Then applying (2.28) one recognizes

Hermite function ψi(Q) of the order i:

ψi(Q) =
1√√
π2ii!

e−
1
2
Q2

Hi(Q). (2.30)

Exercise 2.7: Prove (2.30). Hint: show the operator identity: (Q− d
dQ ) = (−e

1
2Q

2 d
dQe

− 1
2Q

2

).

Exercise 2.8: Generalize the above consideration to the system with d harmonic degrees of freedom;

its hamiltonian is H =
∑d
i=1(

1
2
p2i
mi

+ 1
2miω

2
i q

2
i ).

Exercise 2.9: Find the mixed state describing harmonic oscillator in the thermodynamic equilibrium
with a heat reservoir at temperature T . Discuss the mean energy in the limits of zero and very high
temperature.

2.5 Pictures

The unitary transformations preserve the complete structure of the quantum mechanics.
Mathematically, this refers to the invariance of linear combination and norm of vectors,
as well as of the operator product and commutator. These leads to the physically obvious
independence of the measurement results on the choice of the basis in the state space.
Nevertheless, a particular choice of the basis may be more convenient either for conceptual
or practical reasons. Here we will consider three such possibilities, called pictures, related
to the dynamics of the system, which proved to be important for various purposes.

In fact, the first one has been introduced in the derivation of the dynamical law.
Throughout the section 2.3 it has been tacitly assumed that the states are evolving, while
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the observables remain unchanged at least for the conservative systems. This picture is
used to define the other ones. Indeed, any dynamical picture will be defined by an unitary
operator function T (t) over time; in such a picture state and observable are in the instant
t given by their Scrödinger values (|ψ, t; S⟩ and AS(t)) and the picture operator T (t):

|ψ, t;T ⟩ = T (t) |ψ, t; S⟩ , AT (t) = T (t)AS(t)T
−1(t). (2.31)

Hence, the Schrödinger picture is obtained with T (t) = I, with the evolution law for
states given by (2.1) or (2.8), while the observables are considered time independent as
far as the system evolution is regarded, although an explicit time dependence A(t) may
be imposed by the surrounding (e.g. the apparatus is moving).

2.5.1 Heisenberg’s picture

Within this evolution picture the picture operator is inverse to the evolution: T (t) =
U−1(t). The equations of motion

|ψ, t; H⟩ = |ψ, 0; S⟩ = |ψ, 0;H⟩ , (2.32a)

AH(t) = U−1(t)AS(t)U(t), i~
d

dt
AH(t) = [AH(t), H(t)] + i~

∂

∂t
AH(t) (2.32b)

are easily derived from the Scrödinger’s one. Note that the states are time independent,
while the observables evolve. The observables are changed for two different reasons. The
evolution of the system, incorporated through the picture itself (by the definition on the
right of (2.32b)) results in the first (commutator) term in the differential form at the
right of (2.32b). Possible explicit (external influence) changes of the measuring apparatus
gives the last contribution in (2.32b), where one should be warned that the partial time

derivative is defined as ∂
∂t
AH(t)

def
= U−1(t)

[
∂
∂t
AS(t)

]
U(t).

2.5.2 Dirac’s picture

This picture, also called the interaction picture, gives suitable point of view for the physical
problems with Hamiltonian containing two parts, H = H0 + H ′; in fact, usually it is
assumed that H ′ is small with respect to H0, but for purpose of introducing Dirac picture
this is not important. Then the picture is characterized by the operator T (t) = U−1

0 (t),
where U0 is defined as the evolution realized by the first part of the Hamiltonian, i.e.
satisfying (2.2) for H0; defining the remaining evolution by U = U0U

′, from (2.2) one
gets:

i~
d

dt
U0(t− t0, t0) = H0(t)U0(t− t0, t0), U0(0, t0) = I, (2.33)

i~
d

dt
U ′(t− t0, t0) = H ′

D(t)U
′(t− t0, t0), U ′(0, t0) = I. (2.34)

It must be understood that although these equations apparently decouple the dynamics
related to H0 and H ′, the second one, referring to H ′ implicitly involves H0 through the
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Dirac picture of H ′. Both the evolutions of the states and observables are nontrivial; from
(2.31) follows

|ψ, t; D⟩ = U ′(t) |ψ, 0;D⟩ , AD(t) = U−1
0 (t)AS(t)U0(t). (2.35)

The differential form of these equations is easily found:

i~
d

dt
|ψ, t; D⟩ = H ′

D(t) |ψ, t; D⟩ , (2.36)

i~
d

dt
AD(t) = [AD(t), H0D] + i~

∂

∂t
AD(t), (2.37)

with ∂
∂t
AD(t)

def
= U−1

0 (t)
[
∂
∂t
AS(t)

]
U0(t).

2.6 Propagator and Green function

Retarded propagator is two instance (t2, t1) function derived from evolution operator. It
vanishes for t2 < t1, while otherwise it is matrix element of the evolution operator in the
coordinate representation:

K(r2, t2; r1, t1) = ⟨r2, t2|U(t2 − t1, t1) |r12, t1⟩ θ(t2 − t1) (2.38)

= θ(t2 − t1)
∑
n,λ

ϕ∗
nλ(r1)e

−iEn(t2−t1)ϕnλ(r2)

Using eigenbasis of the Hamiltonian, ϕn(r2) = ⟨r2 |En⟩, satisfying Schrödinger equation(
i~∂
∂t2

−H(r2,p2)
)
e−iEn(t2−t1)ϕn(r2) = 0, one gets (step function of time is a constant

for Hamiltonian operator, its derivative over t2 is δ(t2 − t1), and
∑

n,λ ϕ
∗
nλ(r1)ϕnλ(r2) =

δ(r2 − r1)): (
i~
∂

∂t2
−H(r2,p2)

)
K(r2, t2; r1, t1) = i~δ(t2 − t1)δ(r2 − r1). (2.39)

So, it turns out that propagator is Green function of the Schrödinger equation.
The importance of the (retarded) propagator stems from the fact that knowing wave

function at instance t1, in the later instance t2 the evolved state |ψ, t2⟩ = U(t2 − t1, t1) is
in the coordinate representation obtained as

ψ(r2, t2) =

∫
d r31 ⟨r2|U(t2 − t1, t1) |r1⟩ψ(r1, t1) =

∫
d r31K(r2, t2; r1, t1)ψ(r1, t1).

(2.40)
This resembles classical Huygens’ principle, where each point of the wavefront becomes a
secondary wave source. Note further that the first part of the above is valid even when
t2 < t1; in that case, one can introduce advanced propagator ⟨r2|U(t2−t1, t1) |r1⟩ θ(t1−t2).

The propagator techniques are well developed, and essentially invoke another Feyn-
man’s path integral interpretation of quantum mechanics, introduced in the next section,
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2.7 Feynman’s path integral approach

Feynman showed that the quantum dynamics may be understood in a conceptually simple
way1, giving direct insight to the difference between classical and quantum treatment; in
addition it offers a shortcut to many important techniques of field theory (both in solid
state and particle physics).

The Feynman’s approach is based on the expression for the probability amplitude to
detect a particle, initially being (in t0 = 0) at x0, at x = xN in the later instance t = tN :
⟨qN , tN | q0, 0⟩. The time interval [0, t] may be divided in N equal parts ∆t = tN/N , and
the amplitude becomes:

⟨qN | q0, 0⟩ = ⟨qN |U(∆t) · · ·U(∆t)︸ ︷︷ ︸
N

|q0⟩ .

Namely, assuming that the system is conservative the evolution operator U(t) = e−
i
~Ht

is written as U(∆t)N . Further for each ti = i∆t we introduce identity in the form∫
dqi |qi⟩ ⟨qi|, giving

⟨qN | q0⟩ =

∫
dq1 · · · dqN ⟨qN |U(∆t) |qN−1⟩ · · · ⟨qi + 1|U(∆t) |qi⟩ · · · ⟨q1|U(∆t) |q0, 0⟩

=

∫
dq1 · · · dqNK(N,N − 1) · · ·K(1, 0) (2.41)

(he K(i, i− 1) is short for the propagator K(qi, ti; qi−1, ti−1)).

Further we assume that the potential is coordinate dependent only, i.e. H = p̂2

2m
+

V (q̂), giving ⟨qi + 1|U(∆t) |qi⟩ = ⟨qi + 1| e−
i
~ (

p̂2

2m
+V (q̂))∆t |qi⟩. Note that [p̂∆t, V∆t] ∼

V ′(q̂)∆2t, and in the limit ∆t = 0 (i.e. for infinite N) this comutator vanishes, meaning

that e−
i
~ (

p̂2

2m
+V (q̂))∆t → e−

i
~

p̂2

2m e
i
~V (q̂)∆t. Thus, in the same limit the considered amplitude

becomes: ⟨qi + 1|U(∆t) |qi⟩ = ⟨qi + 1| e−
i
~

p̂2

2m |qi⟩ e
i
~V (q̂)∆t. Introducing the identity in the

form of the momentum eigen decomposition, I =
∫

dp |p⟩ ⟨p|, with plane waves |p⟩ =

1√
2π

∫
dqe

i
~pq |q⟩, one gets ⟨qi + 1|U(∆t) |qi⟩ = 1

2π

∫
dpe

i
~ (p

qi+1−qi
∆t

− p2

2m
)∆te

i
~V (qi)∆t. The last

integral may be calculated2, giving ⟨qi + 1|U(∆t) |qi⟩ =
√

m~e−iπ/2

2π∆t
e
i
~ [

m
2
(
qi+1−qi

∆t
)2−V (qi)]∆t.

It is easy to recognize action
∫ ∆t

0
dtL(q, q̇) in the exponent, where the classical lagrangian

is L(q, q̇) = m
2
q̇2 − V (q) (recall that ∆t is infinitesimal). Altogether, making the product,

the looked for amplitude becomes:

⟨qN | q0, 0⟩ =
∫

Dqe
i
~
∫ t
0 L(q,q̇) dt, Dq = lim

N→∞

(
mN~
2πit

)N/2 N−1∏
i=1

dqi. (2.42)

1On the other hand, this view introduced new mathematical techniques, particularly the Wienner
measures, which are still developing. This resembles to the Dirac’s δ-function, and its influence to
functional analysis.

2It is well known that
∫∞
−∞ ei(αp+βp

2) dp =
√

π
β e

i(π
4 −α2

4β ); it is assumed that β is positive, while in our

case it is imaginary. This will be discussed after (2.42).
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The integral is the sum of the contributions of all possible trajectories. The infinitesimal
volume Dq is up to the phase equal to the mathematically well founded Wienner measure
in the space of trajectories. The discrepancy may be formally cured by so called Wick’s
rotation, making time imaginary (i.e. if it is used instead of t). Anyway, as the proba-
bilities are observable quantities, the phase is not relevant. Therefore, (2.42) is the path
or functional integral formulation of quantum dynamics. It reveals that the probability
amplitude of transition from q0 to qN is sum of contributions over all possible paths con-
necting these two positions. Each path q0 → qN is weighted by its amplitude equal to
e

i
~S(q0→qN ).
In the classical mechanics only the extremal path is realized. On the other hand, in the

quantum mechanics all the paths are realized, but with different weights corresponding to
the action along paths. As the action is in the exponent, the classical path corresponds
to the stationary, i.e. minimal phase. The weights of the other paths are dumped,
as the action is increased, with more emphasized oscillatory character of the integrand.
There is also quasi classical limit (of quantum mechanics), where the paths with the
action

∫ t
0
L(q, q̇) dt much greater than ~ are taken into account only (this corresponds to

retaining of the leading terms in the expansion of the exponent in (2.42)).
Expansion of the action functional around the classical path (being the minimum of the

functional) must be quadratic in the parameters introduced in the space of trajectories.
Therefore, the leading terms in such a perturbative approach (the method of stationary
phase) are Gaussian integrals. This makes the formalism not only conceptually important,
but also efficient in various problems, despite the fact that only Gaussian (besides some
trivial ones) path integrals are exactly calculated.



Chapter 3

Galilean Transformations

The space-time symmetries are important in many aspects of system dynamics. Their
most significant manifestations are the conservation laws in the isolated systems. In fact,
these conservation laws are the evidence of the symmetries. When the conserved quantities
are generators of the Lie-algebra of the symmetry group, they explicitly refer only to the
connected component of the group. The other components give rise to conserved parities.

Non-relativistic and relativistic mechanics assume different geometry of the space-
time. This is manifested through different space-time symmetries, i.e. transformations
leaving space-time unchanged, usually called relativity principle: Galilean one, relevant
for non-relativistic mechanics, assumes space-time invariance with respect to the Galilean
group, in contrast to the Poincare group related to the Einstein relativity.

3.1 Galilean Group

The Galilean group G consists of the space-time transformations g(ϕ,a,v, τ) acting on
the space time point (r, t) as follows:

g(ϕ,a,v, τ)(r, t) = (Rϕr + a− vt, t+ τ). (3.1)

Here, ϕ is the 3-dimensional real vector defining the rotation Rϕ around ϕ for the angle
ϕ equal to the length of ϕ. Also a and v are 3-dimensional real vectors, specifying the
translation and boost, while τ is a real scalar, defining the time translation. The action
on the momentum p = md r

d t
is derived directly:

g(ϕ,a,v, τ)p = Rϕp−mv. (3.2)

All these transformations will be specified more precisely later on, and now we examine
the structural properties of G. The consecutive application of two group elements gives
the multiplication law:

g(ϕ,a,v, τ)g(ϕ′,a′,v′, τ ′) = g(ϕ′′,a+Rϕa
′ − vτ ′, Rϕv

′ + v, τ + τ ′), (3.3)

where ϕ′′ is defined such that Rϕ′′ = RϕRϕ′ . Also, the requirement g(ϕ,a,v, τ)(r, t) =
(r, t) gives the identity element, and then, putting it on the right of the (3.3), one solves
in the primed parameters to get the inverse of g(ϕ,a,v, τ):

36
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e = g(0, 0, 0, 0), g−1(ϕ,a,v, τ) = g(−ϕ,−R−1
ϕ (a+ τv),−R−1

ϕ v,−τ) (3.4)

Galilean group is connected ten dimensional Lie group. It is easy to show that when
all but one arguments are set to 0, one gets the following subgroups, which are themselves
significant in further considerations:

SO(3,R) = {g(ϕ, 0, 0, 0)}, Rotational group; (3.5a)

T S
3 = {g(0,a, 0, 0)}, Spatial translational group; (3.5b)

T B
3 = {g(0, 0,v, 0)}, Boost group; (3.5c)

T T
1 = {g(0, 0, 0, τ)}, Time translational group. (3.5d)

The first two subgroups are built of pure spatial transformations, and together they form
the Euclidean group E(3) = T S

3 ∧ SO(3,R) (semi-direct product, with translations as the
invariant subgroup). The last subgroup of the time translations, i.e. the transformations
connecting systems with different origin of the time scale, is purely related to time. The
third one, subgroups of the boosts, which are transformations interrelating the instantly
coinciding coordinate systems moving uniformly each with respect to another, involves
both time and spatial coordinates.

Besides these transformations which are continual functions of the parameters, there
are also discrete transformations of the spatial, time and total reversal, IS, IT and I =
ISIT:

IS(r, t) = (−r, t), IT(r, t) = (r,−t), I(r, t) = (−r,−t). (3.6)

Together with the continual transformations, they form extended Galilean group Ḡ, with
G being its invariant subgroup (as the connected component of the identity) and three
additional cosets: Ḡ = G + ISG + ITG + IG. It is important to note that there is no pos-
sibility to verify directly the space-time invariance with respect to these transformations,
and therefore they are not a priori involved in the relativity principle.

3.2 Galilean transformations of the classical variables

The Galilean transformations are defined by the action in the space-time, and afterward
the action on the momenta is derived. This action can be extended to the variables, i.e.
functions on the phase space. In the space of variables Galilean group is realized by the
canonical transformations, being themselves functions of the variables. This is important
in the view of the forthcoming quantization procedure. To begin with, we introduce
Poisson bracket action of one variable onto another: to each variable G corresponds the
supervariable G̃, which is the linear operator (in the space of variables) acting on the
arbitrary variable A as

G̃A
def
= [G,A]PZ (3.7)

Consequently, G̃nA = [G, [G, . . . [G,A]PZ . . . ]PZ]PZ. Therefore, to each analytic function
F (G) of G the supervariable F̃ (G) may be associated using Taylor expansion of F . Par-
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ticularly, the exponential function

eγG̃
def
=

∞∑
n=0

γn

n!
G̃n (3.8)

defines one-parameter group of the transformations associated to G. Therefore, G̃ is the
Lie-algebra generator of this group.

The Galilean transformations are in the variable space represented by the following
supervariables:

D̃(g(ϕ, 0, 0, 0) = e−ϕ·l̃, D̃(g(0,a, 0, 0) = e−a·p̃, (3.9a)

D̃(g(0, 0,v, 0) = e−mv·q̃, D̃(g(0, 0, 0, τ) = e−τH̃ . (3.9b)

This is verified by the action on the fundamental variables, i.e. in the phase space:

e−ϕ·l̃r = Rϕr, e−ϕ·l̃p = Rϕp; (3.10a)

e−a·p̃r = r + a, e−a·p̃p = p; (3.10b)

emv·q̃r = r, emv·q̃p = p−mv; (3.10c)

eτH̃r = r +
τ

m
p, e−τH̃p = p. (3.10d)

In the last equations the hamiltonian of the free particle H = p2/2m is assumed, since
the particle in the empty space-time is only considered. Note that all the transformations
are canonical. Therefore the Lie algebra generators are angular momentum l = r× p for
rotations, linear momentum p for translations, coordinates q for boosts and Hamiltonian
for time translations. Note that (3.10) also defines the action on any other classical
variable A(r,p): on the functions of the fundamental variables action is defined by (3.7),
which gives:

D̃(g(ϕ,a,v, τ))A(r,p) = A(D̃(g(ϕ,a,v, τ))r, D̃(g(ϕ,a,v, τ))p). (3.11)

Exercise 3.1: Prove (3.9) in the coordinate form.

Note that although spatial translations and boosts commute, the supervariables cor-
responding to them do not. Therefore, the obtained set of supervariables is not a repre-
sentation of G, despite the fact that each subgroup is correctly represented. In fact, there
is no faithful representation of the Galilean group. Since the faithful representations,
relating transformations and supervariables bijectively are necessary, only the Euclidean
subgroup and time translations can be simultaneously considered. While the pure geo-
metrical invariance results in the conservation laws of the generators (angular and linear
momentum), the time translations are manifested as the conservation of energy. On the
other side, the boost invariance leads to the low of uniform motion of the centre of mass
of the isolated system (since the kinetic energy is not the same in the boosted systems,
the action is also changed, and the Nöther theorem is not applicable [?]).
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3.3 Quantization: Wigner theorem

Being classical space-time symmetry, Galilean group is symmetry group of a single (non-
relativistic probe) particle, or of a centre of mass of any isolated system. Therefore,
observable characteristics of such a system must be same before and after Galilean trans-
formation, i.e. such characteristics are independent on the chosen inertial reference frame.

In the context of quantum mechanics, the observable quantities are various probabil-
ities, which can be reduced to squares of absolute value of scalar products (recall (1.4)).
In other words, if Galilean transformation T transform states |ϕ⟩ and |ψ⟩ into |ϕ′⟩ and
|ψ′⟩, then the space-time symmetry requires that

| ⟨ϕ |ψ⟩ | = | ⟨ϕ′ |ψ′⟩ | = | ⟨ϕ|T †T |ψ⟩ |.

Consequently, T is in the state space represented by an operator D(T ) preserving absolute
value of the scalar products. The famous Wigner theorem shows that such operators are
either unitary or antiunitary.

Note that without absolute value in the above relation, only unitary operators would
be allowed. In addition, due the absolute value together with D(T ) any operator eiχTD(T )
can be used equally well. This reflects the projective structure of the state space, i.e. that
the collinear vectors describe the same state. One can try to use the freedom in the
choice of the phases eiχT to get the set of the unitary and antiunitary operators forming a
representation of the Galilean group. However, this attempt fails, as well as in the classical
physics, because Galilean group has no faithful representation. Still, all the important
subgroups may be independently quantizied, and Euclidean group can be combined with
time translations.

Although Wigner theorem does not specify which operators are represented by unitary
or antiunitary operators, it is obvious by the continuity argument that the connected
component of the identical element must be represented unitary. On the other hand,
product of two antiunitary operators is unitary, meaning that either the whole group or
its halving subgroup is unitary represented. Thus, at most two cosets are antiunitary.

Really, the complex conjugated Schrödinger equation (for a particle in the time inde-
pendent potential) corresponds to the time reversed one with conjugated vectors, meaning
that the time reversal is antiunitary in the state space. As the spatial inversion is obvi-
ously linear, it follows that purely spatial halving subgroup is linear, while time reversal
and total inversion give the cosets having antilinear representations.

KRAMERS

3.4 Quantization of the Galilean group

Since the action of the Galilean transformation in the variable space is well defined in terms
of Poison bracket and variables, the postulate of quantization may be directly applied to
get the Galilean action in the space of the operators (superspace). Analogously to the
supervariables, we define the superoperators with help of the commutator. So, to each

operator Ĝ in the state space H, its superoperator
ˆ̂
G is defined by its action on the
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arbitrary operator Â:
ˆ̂
GÂ

def
= [Ĝ, Â]. (3.12)

Due to the appearance of the term i~ in the canonical quantization, the exponential

function eγG̃ is quantized as e
γ
i~

ˆ̂
G. Indeed, e

γ
i~

ˆ̂
GÂ =

∑∞
n=0

γn

n!
1
i~ [Ĝ,

1
i~ [Ĝ, . . . ,

1
i~ [Ĝ, Â] . . . ]],

which is obviously the quantized exponential supervariable action.

Therefore, the superoperator representation of the Galilean group is directly obtained
from (3.9):

ˆ̂
D(g(ϕ, 0, 0, 0) = e−

1
i~ϕ·ˆ̂l,

ˆ̂
D(g(0,a, 0, 0) = e−

1
i~a·ˆ̂p, (3.13a)

ˆ̂
D(g(0, 0,v, 0) = e−

1
i~mv·ˆ̂q,

ˆ̂
D(g(0, 0, 0, τ) = e−

1
i~ τ

ˆ̂
H . (3.13b)

These superoperators are bijective image of the Galilean group, but the same problem
as for supervariables appears: representatives of the boosts and translations do not com-
mute as they should. Again, the Euclidean group and the time translations only can
simultaneously quantized.

The superoperator representation is not really appropriate for the usual tasks of quan-
tum mechanics, and the operator representation is looked for to realize the group action
in the state space. The Baker-Hausdorff lemma solves this task. It asserts that there is
bijection between the exponential superoperators and exponential operators, i.e. to each

exponential action e
ˆ̂
G in the operator space uniquely corresponds exponential action eĜ in

the state space, such that superoperator essentially acts as the similarity transformation:

e
ˆ̂
GÂ = eĜÂe−Ĝ. (3.14)

Therefore in the state space, the Galilean transformations are represented by:

D̂(g(ϕ, 0, 0, 0) = e
1
i~ϕ·l̂, D̂(g(0,a, 0, 0) = e

1
i~a·p̂, (3.15a)

D̂(g(0, 0,v, 0) = e
1
i~mv·q̂, D̂(g(0, 0, 0, τ) = e

1
i~ τĤ . (3.15b)

Note that the result for the translations is known from the chapter 1. Indeed, the operators
D̂(g(0,a, 0, 0) representing translations are direct three-dimensional generalization of the
translational operator U(a) used in the Theorem 1.2.

Exercise 3.2: Find eiπIψ(r), where I is spatial inversion, i.e. Iψ(r) = ψ(−r).

Exercise 3.3: Find the projectors P± on the subspaces spanned by even (P+) and odd (P−) functions
according to the spatial inversion.

Exercise 3.4: Find the coefficients α and β for which the operator Uαβ = eαx
2+βp2 becomes spatial

inversion, i.e. rotation for π in the phase space.
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3.5 Active and passive interpretations

The Galilean transformations are defined by their action on the space-time points. In
this sense, they actively map one point to another, and therefore this interpretation is
called active interpretation. On the other hand, there is passive interpretation, describ-
ing the same act as the inverse transformation of the referent frame, with no action on
the space-time points. Thus, to each active transformation T on the space time-vectors
represented in the reference frame {e1, e2, e3, et} by the column (r, t), corresponds the
inverse transformation of the frame:

Active : T

(
r
t

)
→
(
r′

t′

)
; Passive : T−1ei → e′

i, (3.16)

such that in the transformed frame the initial point is described as (r′, t′). Obviously,
some of the transformations cannot be really realized actively, e.g. time translations,
and reversal transformations. Also the boosts are even defined with help of the reference
systems. Due to the inversion of the transformation when one comes from active to
the passive interpretation, they are anti-isomorphic. Acting on the variables, being the
functions on the phase space, the supervariables (3.9) are essentially passive interpretation,
and therefore the sign minus appears in the exponents.

Finally, from the action D̂(g) |q⟩ = |gq⟩, it follows that ⟨q| D̂(g) |ψ⟩ = ⟨g−1q |ψ⟩.
Thus, coordinate representation of the Galilean transformations is

D̂(g)ψ(q) = ψ(g−1q). (3.17)
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Figure 3.1: Active and passive interpretions of transformation. Left column (kvadrati I,
III i V i izomorfizmi ι2 i ι6) daje elemente za pasivnu, a desna kolona (kvadrati II, IV i

VI i izomorfizmi ι4 i ι7) za aktivnu interpretaciju grupa E(3) i T
(v)
3 . Antiizomorfizmi α1,

α3, α5 i α8, kao i izomorfizmi ι2, ι4, ι6 i ι7 povezuju osnovne podgrupe Galilejeve grupe

koje deluju u skupovima označenim sa I do VI. Specijalno: ι2
def
= α5 ◦ α3 = α5 ◦ ι4 ◦ α−1

1 ;
α3 = ι4 ◦ ι1 je prevoenje vienja izmeu dva opservera; ι4 je reprezentovanje u fiksiranom
koordinatnom sistemu sa implikacijama u impulsnom prostoru.



Chapter 4

Rotations and Angular Momentum

4.1 Elementary Properties of Rotations

As explained in the Chapter 3, rotations are parameterized by the vectors ϕ, specifying the
angle ϕ and the axis (by the unit vector ϕ̂ = ϕ/ϕ) of each rotation. The defining action
of the rotations in the Euclidean space R3 is given by the special orthogonal matrices,
and therefore the rotational group is identified with the group SO(3,R).

The obvious equality Rϕ = R(2π−ϕ)(−ϕ̂) of the rotations around opposite axes shows
that all the rotations are obtained taking all the unit vectors and the angles not greater
than π, i.e. that the range of the vectors ϕ (manifold of the parameters) is π-ball, a ball
of radius π. However, the opposite points of the same diameter of this ball correspond
to the same rotation: Rπu = R−πu for arbitrary unit vector u. Hence, the rotational
group is compact (parameter space is bounded and closed), but double connected, as any
diameter of the π-ball is a closed path not homotopic to any closed path in the π-ball’s
interior.

Further, the first relation in (3.15), D̂(g(ϕ, 0, 0, 0) = e
1
i~ϕ·l̂, shows that rotations are

represented in the orbital state space by the exponents of the operators of the orbital angu-
lar momentum. Therefore the components of the angular momentum form the Lie algebra
of the rotational group. Using the definition l = r × p, and the canonical coordinates-
momenta commutation relations [qi, pj] = i~δij, the commutation relations of the angular
momenta are easily derived:

[li, lj] = i~
∑
k

ϵijklk (4.1)

(ϵ is Levy-Chivita tensor). This shows that the Lie algebra is so(3,R) (of course, this
follows immediately from the general theory), the set of the traceless hermitian operators1.
Now, several general (and elementary) results of the group theory can be exploited to get
additional insight into basic properties of the rotations and angular momenta.

1Mathematical definition of the exponential relation between Lie group and its algebra (real!) does not
include the imaginary unit, and therefore unitary representations of the group are obtained from the skew
hermitian representation of the algebra. This factor enables that the Lie algebra elements in physics are
hermitian (physical observables), but non-closeness of the commutator in the space of hermitian operators
must be cured by another factor i~ in the commutators, as in (4.1). This may be also understood as a
change of basis in the complexified Lie algebra.

43
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First, compactness implies that rotational group is represented by unitary operators,
while the angular momenta are hermitian (precisely, equivalent to the unitary and her-
mitian operators, or alternatively, that there is a scalar product — selected in physics
— such that the representative operators are unitary and hermitian, respectively). As a
consequence, each representation is decomposable to the irreducible ones, the later being
necessarily finite dimensional.

The fact that the angular momenta form three-dimensional simple Lie algebra so(3,R),
enables to construct irreducible representation according to the well elaborated algorithm
for the semisimple algebras (Section 4.2.1). Additionally, its rank is one, which reveals
that there is a single Cartan element and a single Kazimir operator: conventionally,
these are the third component, l3, and the square, l2 = l21 + l22 + l23, of the angular
momentum). Therefore, irreducible representations are classified by a single parameter,
different eigenvalues of the Kazimir operator, while a basis within arbitrary irreducible
space is counted by the different eigenvalues of the Cartan element as another parameter.

Doubly connected parameter space implies that there is a double (universal) covering,

locally isomorphic to SO(3,R), i.e. a simply connected Lie group ˜SO(3,R), with two-to-
one homomorphism onto SO(3,R), but with the same Lie algebra. As it will be shown
latte, this is the group SU(2), with algebra su(2)=so(3,R). Accordingly, the obtained
representations of the algebra of the angular momenta do not really produce (as exponen-
tials) the representations of the rotational but of the covering group. Only half of them
represent rotations, while the rest are the ”double valued” representations, associating a
pair of the operators to each rotation; the characteristic feature of the double valued rep-
resentation, , differing them from the ordinary ones, is that rotations for 2π reverse all the
vectors (of the representative space), and only rotations for 4π are associated to identity
operators. A final consequence is that the notion of the rotations should be reconsidered:
without any concrete physical content specified, a general concept is effectively defined
by the commutation relations (4.1) only. This essentially introduces the covering group
as that underlying the angular momenta, and not the rotations. The existence of the
fermionic spin degrees of freedom (Section 4.5), which can be explained only by these
double-valued representations, proves that this is not just a mathematical extrapolation.

4.2 Algebra of angular momentum

To stress out that from now on the notion of the angular momentum is as general as
possible, free of any specific physical situation, the angular momenta are defined as a
triple of the hermitian operators Ki (i = 1, 2, 3) satisfying the commutation relations:

[Ki, Kj] = i~
∑
k

ϵijkKk. (4.2)

In this way only the Lie algebra properties are extracted from the initial (prototypic)
example, the orbital angular momentum. Indeed, only this is really necessary for the
following construction of the representation (neatly following the prescription developed
for the semisimple complex Lie algebras).
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4.2.1 Irreducible representations of angular momentum

Construction of the irreducible representations starts by choice of a suitable basis (in
mathematical language, this corresponds to the standard form of the complexified alge-
bra). Mutually adjoint complex linear combinations

K± = K1 ± iK2, (4.3)

of K1 and K2, together with K3 form standard components of angular momentum. They
span the same space as the three momenta, since (4.3) is solvable in the Cartesian com-
ponents: K1 = 1

2
(K+ +K−) and K2 = 1

2i
(K+ −K−). Therefore, space is irreducible for

the Cartesian components if and only if it is irreducible for the standard ones.

Lema 4.1 The standard components satisfy the following commutation relations:

[K3, K±] = ±~K±; (4.4a)

[K+, K−] = 2~K3; (4.4b)

[K3, K+K−] = [K3, K−K+] = [K+K−, K−K+] = 0. (4.4c)

Proof: (a) and (b) are obtained applying (4.3) and then (4.2).

(c) [K3,K±K∓] = [K3,K±]K∓ +K±[K3,K∓] = ±~K±K∓ ∓ ~K±K∓ = 0;

[K+K−,K−K+] = K−[K+K−,K+] + [K+K−,K−]K+ =

K−K+[K−,K+] +K−[K+,K+]K− +K+[K−,K−]K+ + [K+,K−]K−K+ =

K−K+(−2~K3) + 2~K3K−K+ = 0.

The operators K±K∓ are hermitian (an positive), and together with K3 make a set of
compatible observables (as justified by (4.4c)). Thus, they have a common orthonormal
eigenbasis. Number m is used to denote eigenvalues m~ of K3 (the units of angular
momentum and action are same). In the possibly degenerated eigensubspace Vm of K3, a
common (for the whole triple) eigenbasis is denoted by |mλ⟩ (λ = 1, . . . , |Vm|):

K3 |mλ⟩ = m~ |mλ⟩ , K±K∓ |mλ⟩ = α±
m(λ) |mλ⟩ , (4.5)

with α±
m(λ) being the eigenvalues of K±K∓.

Lema 4.2 For each |mλ⟩ the vectors K± |mλ⟩ are mutually orthogonal for different λ,
and satisfy

K3(K± |mλ⟩) = (m± 1)~(K± |mλ⟩), (4.6a)

K±K∓(K± |mλ⟩) = α∓
m(λ)(K± |mλ⟩), (4.6b)

K±K∓(K∓ |mλ⟩) = (α±
m(λ)± 2~2(m∓ 1))(K∓ |mλ⟩). (4.6c)

Proof: All the relations follows from (4.5). To show orthogonality and (4.6b) one regroups the terms:

(⟨mλ|K†
±)(K± |mλ′⟩) = ⟨mλ| (K∓K± |mλ′⟩) = α∓

m(λ) ⟨mλ |mλ′⟩ = α∓
m(λ)δλλ′ ;

(K±K∓)(K± |mλ⟩) = K±(K∓K±) |mλ⟩ = α∓
m(λ)(K± |mλ⟩).

For (4.6a) and (4.6c) it suffices to apply (4.4a) and (4.4c), respectively

K3(K± |mλ⟩) = ([K3,K±] +K±K3) |mλ⟩ = (±1 +m)~(K± |mλ⟩);
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K±K∓(K∓ |mλ⟩) = ([K±,K∓] +K∓K±)(K∓ |mλ⟩) =
= (±2~K3 +K∓K±)(K∓ |mλ⟩) = (±2~2(m∓ 1) + α±

m(λ))(K∓ |mλ⟩).

(in the last equation (4.6a) is used).

The lema enlightens that the vectors of the basis |mλ⟩ of Vm are transferred by K±
into Vm±1, but remain eigenvectors of K±K∓ for the fixed λ; still, some of them vanish,
since the eigenequations (4.6) are trivially solved by the zero vector. As the rotation
group is compact, all its irreducible representations are finite dimensional, and there are
maximal k+ and minimal k− values of m for which K± |k±λ⟩ = 0. Thus, the subspace

V(k+,k−)
λ spanned by the vectors {|mλ⟩ |m = k−, . . . , k+} is invariant and irreducible for
Kz and K±, i.e. for the angular momentum.

Theorem 4.1 All the irreducible representations of angular momentum are D(k)(K) with
the maximal weight

k = k+ = −k− = 0,
1

2
, 1,

3

2
, . . . (4.7)

They are 2k + 1-dimensional, and in the standard basis (4.5), denoted as |km⟩ with m =
−k, . . . , k, of the irreducible space V(k), the matrices D(k)(K) are determined by:

K3 |km⟩ = m~ |km⟩ , K± |km⟩ = c(k)
±

m ~ |k,m± 1⟩ (4.8a)

c(k)
±

m =
√
k(k + 1)−m(m± 1). (4.8b)

Proof: According to the previous results, in the single irreducible subspaceK3 is nondegenerate, making
λ superfluous, and the standard basis is |m⟩, with m = k−, . . . , k+. A direct consequence of (4.6a) are
equations

K3 |m⟩ = m~ |m⟩ , K± |m⟩ = c±m~ |m± 1⟩ ,
having the form of (4.8a). The coefficients c±m are to be still determined in accordance with the previously

assumed orthonormality. ApplyingK+ = K†
− to act byK+ on the left and on the right in ⟨m+ 1|K+ |m⟩,

we get c−
∗

m+1 = c+m. Further, we already proved that there are minimal, k− and maximal, k+, value of m,

for which K± |k±⟩ = 0, allowing to assume c±k± = 0. Then we use (4.4a), to find

2~ ⟨m|K3 |m⟩ = ⟨m| [K+,K−] |m⟩ = ⟨m|K+K− −K−K+ |m⟩ = ∥K− |m⟩ ∥2 − ∥K+ |m⟩ ∥2.

In the view of (4.8a), this reads:
2m = |c−m|2 − |c+m|2. (4.9)

Now we sum these equations for all values of m, and find:

2
k+∑

m=k−

m =
m=k+∑
m=k−

(|c−m|2 − |c+m|2).

When we substitute the equalities |c−m+1| = |c+m| and c±k± = 0 found previously, the right hand side
vanishes (Fig. 4.1), and we get

k+−k−∑
m=0

(k− +m) =
(k+ + k−)(k+ − k− + 1)

2
= 0.

As k+ ≥ k−, this implies k− = −k+. Finally, the difference k+ − k− = 2k+ is an integer, meaning that
k = k+ = 0, 12 , . . . , and |V(k)| = 2k + 1. Analogously, summing (4.9) from m to k = k+, we find:

|c−m|2 = |c−m−1|2 = 2
k∑

s=m

s = 2(
k∑
s=1

s−
m−1∑
s=1

s) = k(k + 1)−m(m− 1),

which is, with a convention on the (common) phase, the value in the theorem.
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Figure 4.1: Standard basis of an irreducible representation of the angular momenta. For
each standard vector |m⟩ (denoted by ◦, or • for maximal and minimal weight) the
corresponding equation (4.9) is written, and the terms which are canceled in the course
of summation are singled out by the gray lines.

Exercise 4.1: Show that the matrices of the angular momenta in the standard basis are:

D(k)(K3) = ~

[−k 0 0 0 0
0 −k+1 0 0 0
0 0 ··· 0 0
0 0 0 k−1 0
0 0 0 0 k

]
, D(k)(K+) = ~


0 0 0 0 0 0√
2k 0 0 0 0 0
0

√
4k−2 0 0 0 0

0 0 ··· 0 0 0
0 0 0

√
4k−2 0 0

0 0 0 0
√
2k 0

 , D(k)(K−) = D(k)†(K+).

(4.10)

The matrices representing rotations can be now easily find from the first equation in
(3.15). In particular, a rotation around z-axis is represented as

D(k)(Rϕez) = e−
i
~ϕD

(k)(K3) = diag[eikϕ, ei(k−1)ϕ, . . . , e−ikϕ].

It is important to note that D(k)(R2πez) = (±)2kI2k+1, i.e. only for an integer k this
is the identity, while this is the case for the rotations for multiples of 4π in the case of
half-integral k. As mentioned in Section 4.1, this manifests the fact that the presented
construction gives the representation of the Lie algebra of of rotational group, and not of
the group itself. Therefore the exponential map of these representations coincides with the
representations of the universal covering group SU(2) of the rotational group. Essentially,
this is the consequence of the nontrivial fundamental group of the rotational group SO(3).
However, this seemingly artifact of the construction, is a substantial physical property of
the particles, as it will be seen in the discussion of the interior degrees of freedom, like
spin (Section 4.5).

4.2.2 Square of the angular momentum

Square of angular momentum is positive observable

K2 = K2
1 +K2

2 +K2
3 . (4.11)
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It is easy to show that K2 commutes with all the components Ki of angular momentum.
Therefore, eigensubspaces of K2, being invariant under all Ki, contain complete irre-
ducible subspaces. Thus each irreducible subspace V(k) is a subspace of an eigensubspace
of K2, meaning that in V(k) operator K2 acts as a multiplication constant. To find out
this constant, we simply act on an arbitrary vector |km, λ⟩ by K2, written in the more
convenient form:

K2 =
1

2
(K+K− +K−K+) +K2

3 . (4.12)

Then, using the results of the Theorem 4.1, we find

K2 |km, λ⟩ = k(k + 1)~2 |km, λ⟩ . (4.13)

Exercise 4.2: Show (4.13).

Thus the eigensubspaces of K2 are multiple irreducible subspaces, i.e. the sum of the
irreducible subspaces of the same maximal weight k. This fact enables to find standard
basis in any space where the operators of the angular momentum are defined as the
common eigenvectors of K3 and K2, i.e. of the system of eigenproblems:

K2 |km, λ⟩ = k(k + 1)~2 |km, λ⟩ , K3 |km, λ⟩ = m~ |km, λ⟩ . (4.14)

This is the most efficient way to determine standard basis in the state space, which will
be systematically used later on.

4.2.3 Discussion

Operators of the angular momentum are related to the rotations by the relations (3.15).
Essentially, this means that the angular momentum components span the Lie algebra of
the rotational group. Therefore, the method used in the construction of the irreducible
representations is the usual prescription in the theory of semisimple Lie algebras. In
particular, the first two equation of (4.4) are the so called standard form of such an
algebra, with K3 being the only Cartan vector, while K± are roots. Analogously, (4.6a)
manifests the well known relation between the roots and the weights. Finally, as the
algebra is of rank 1, it has a single independent Kazimir operator, which is K2.

It is useful to illustrate some differences in the physical contents of the classical and
quantum angular momentum. As usual, the source of them is commutativity of the
classical physical variables, in contrast to their quantum analogues.

From the uncertainty relations (4.2) one directly gets:

∆Ki∆Kj ≥
~
2

∑
k

ϵijk|⟨Kk⟩|. (4.15)

Therefore, unless the average of one component of the angular momentum in the given
state vanishes, the dispersions of the other components are nonzero.

Second, if the state |x⟩ is non-dispersive for Ki, i.e. ∆Ki = 0 meaning that it is
an eigenstate of Ki, then from (4.15) follows that averages of both other components of
angular momentum vanish.
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Finally, in the classical mechanics only the component of the angular momentum along
the axis of rotation is nonzero; those in the perpendicular directions vanish, as well as
their squares. On the contrary, in quantum mechanics the averages ⟨K2

i ⟩ and ⟨K2
j ⟩ vanish

only in the state with vanishing total angular momentum, |k = 0,m = 0, λ⟩. This shows
that the mentioned criterion to determine rotational axis is not applicable in quantum
mechanics.
Exercise 4.3: Show that ⟨K2

i ⟩|x⟩ = ⟨K2
j ⟩|x⟩ = 0 if and only if for all the components Kp |x⟩ = 0, i.e.

|x⟩ = |k = 0,m = 0, λ⟩.

4.3 Orbital Angular Momentum

4.3.1 Coordinate representation

After general considerations we turn back to the original definition of angular momentum,
i.e. to the orbital angular momentum l = r×p. Its Cartesian components li =

∑
jk ϵijkripj

in the coordinate representation, when momentum components pi = −i~∂
∂ri

are substi-
tuted, become:

l1 = −i~
(
r2
∂

∂r3
− r3

∂

∂r2

)
, l2 = −i~

(
r3
∂

∂r1
− r1

∂

∂r3

)
, l3 = −i~

(
r1
∂

∂r2
− r2

∂

∂r1

)
.

(4.16)
The forthcoming considerations are most efficient performed in spherical coordinates.

Also, angular momentum is particularly important (as conserved quantity) for the systems
with spherical symmetry, for which spherical coordinates are natural choice. To find the
spherical components of the angular momentum we use Cartesian components and apply
coordinate transformations: x = r sin θ cosφ, y = r sin θ sinφ, z = r sin θ cosφ. The
Jacobian of this transformation relates the coordinate partial derivatives: ∂

∂r
∂
∂θ
∂
∂φ

 =

 sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

∂
∂x
∂
∂x
∂
∂z

 . (4.17)

Its inverse is used to express the Cartesian derivatives in terms of spherical coordinates:

∂

∂x
= sin θ cosφ

∂

∂r
+

1

r
cos θ cosφ

∂

∂θ
− 1

r

sinφ

sin θ

∂

∂φ
,

∂

∂y
= sin θ sinφ

∂

∂r
+

1

r
cos θ sinφ

∂

∂θ
+

1

r

cosφ

sin θ

∂

∂φ
, (4.18)

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
.

Knowing this, Cartesian components are easily expressed in terms of spherical coordinates:

lx = i~(sinφ
∂

∂θ
+ cot θ

∂

∂φ
),

ly = −i~(cosφ
∂

∂θ
− cot θ

∂

∂φ
), (4.19)

lz = −i~
∂

∂φ
.
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We also find l± and l2 as general theory emphasized their importance:

l± = ~e±iφ

(
±∂
∂θ

+ i cot θ
∂

∂φ

)
, l2 = −~2

[
1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
. (4.20)

All the considered operators act in the Lebesgue space L(R3) of the single three di-
mensional particle, which is the product of the three Lebesgue spaces over Cartesian
coordinates: L(R3) = L(Rx)⊗L(Ry)⊗L(Rz). On the other side, this space is seemingly
product of the Lebesgue spaces over the spherical coordinates. It would be very con-
venient to retain this product structure in spherical coordinate system, although due to
the singularities of this system this is not completely correct (e.g., functions f(r, θ, φ) are
acceptable only if for r = 0 they are independent of θ and φ, i.e. if f(0, θ, φ) is constant;
otherwise the value in coordinate origin is undefined). So, these deficiencies are cured by
extra conditions on the functions f(r, θ, φ):

L(R3) =

{
f(r, θ, φ) ∈ L((0,∞)r)⊗ L((0, π)θ)⊗ L((0, 2π)φ)

∣∣ f(0,θ,φ)=const,
f(r,θ=0,π,φ)=f(r),
f(r,θ,φ)=f(r,θ,φ+2π)

}
. (4.21)

Note that none of the angular momentum operators (4.19) and (4.20) are r dependent,
and therefore they act as identity in the factor space L((0,∞)r). This reflects that the
angular moment generates rotations, which do not affect the radius. A consequence is
that the orbital angular momentum is effectively defined in the angular Lebesgue space
of the functions over the sphere:

L(S2) =
{
f(θ, φ) ∈ L((0, π)θ)⊗ L((0, 2π)φ)

∣∣ f(θ=0,π,φ)=const,
f(θ,φ)=f(θ,φ+2π)

}
. (4.22)

The last condition explicates 2π periodicity of all the functions in the Lebesgue space. As
a consequence, the orbital angular momentum has only integer irreducible components,
as it will be explicated soon.

4.3.2 Standard Basis: Spherical Harmonics

According to the general theory, the standard basis is the common eigenbasis of lz and l
2.

The ineffectiveness of these operators in the radial factor space allows to apply the theorem
on the separation of variables (Appendix A.1), i.e. to consider this eigenproblem in L(S2)
only: the obtained eigenbasis Y m

l (θ, φ) = ⟨θ, φ | lm⟩ in this space may be multiplied by
any basis fn(r) of L((0,∞)r), to get basis fn(r)Y

m
l (θ, φ) = ⟨r, θ, φ |nlm⟩ in the total state

space.
In the view of (4.14) functions Y m

l (θ, φ) are solution of the system of partial differential
equations:

−i∂
∂φ
Y m
l (θ, φ) = mY m

l (θ, φ), (4.23a)

−
[

1
sin2 θ

∂2

∂φ2 +
1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)]
Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ). (4.23b)

Since lz effectively acts in the factor space L((0, 2π)φ), one again applies theorem on the
separation of variables to solve it. Obviously, the first of these equations is solved by the
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functions gml (θ)e
imφ, withm restricted to the integer values by the last condition in (4.21).

In the second eigenproblem we again use separation of variables: l2 = Aθ ⊗ lz +Bθ ⊗ 1φ;
the factors in L((0, 2π)φ) commute, the second one being identity, while the first one is
function of lz. Thus, the eigenfunctions have form gml (θ)e

imφ; substituting this, the second
eigenproblem becomes equation in gml (θ):[

m2

sin2 θ
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− l(l + 1)

]
gml (θ) = 0. (4.24)

After transition to new variable χ = cos θ (consequently ∂
∂χ

= − 1
sin θ

∂
∂θ
), this becomes

general hypergeometric equation:[
∂2

∂χ2
− 2χ

1− χ2

∂

∂χ
+
l(l + 1)(1− χ2)−m2

(1− χ2)2

]
gml (χ) = 0. (4.25)

The first condition in (4.22) implies that form ̸= 0 only functions such that gml (χ = ±1) =
0 should be considered. Straightforward application of the general method (Appendix A.2)
shows that the for each l = 0, 1, . . . and m = 0,±1, . . . ,±l there is a single solution of
(4.25) in the form of the Legendre polynomial gml (χ) = (1 − χ2)

m
2 P

(|m|,|m|)
l−|m| (χ). Finally,

including the factors providing normalization∫ 2π

0

dφ

∫ π

0

sin θ dθY m∗

l (θ, φ)Y m′

l′ (θ, φ) = δll′δmm′ , (4.26)

one gets the spherical harmonics as the standard basis:

Y m
l (θ, φ) =

(−)l−m

2ll!
√
2π

√
2l + 1

2

(l +m)!

(l −m)!

1

sin|m| θ
eimφ

dl−|m|

d(cos θ)l−|m| sin
2l θ. (4.27)

Exercise 4.4: Using the method explained in Appendix A.2 prove that (4.27) are solutions of (4.23).

4.4 Central potentials

Quantum numbers l and m are conserved whenever orbital angular momentum commutes
with hamiltonian. In such cases l2 and lz may be used together with hamiltonian (and
if necessary some other observables) to form a complete set of compatible observables.
This way not only solving of the Schrödinger equation is simplified, but also its solu-
tion are clearly interpreted. Since the kinetic part of the hamiltonian is reduced to the
square of momentum, it always commutes with angular momentum components. Hence,
compatibility of H and angular momentum is determined by the potential. The condi-
tion [V (r), li] = 0 immediately means that the potential commutes with all rotations:
[V,D(Rϕ)] = 0, i.e. D−1(Rϕ)V D(Rϕ) = V . Assuming that the potential depends only on
the coordinates, the last condition reads that the potential must have spherical symmetry:

D−1(Rϕ)V (r)D(Rϕ) = V (Rϕr). (4.28)
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This analysis emphasizes that in the problems with spherical symmetry only, the orbital
angular momentum has particularly important role, with its components being conserved
quantities. Technically this fact is efficiently exploited if l2 and lz are included in CSCO
together with H.

Obviously, in the spherical coordinates (4.28) shows that the potential depends only
on the distance r from the coordinate origin. Indeed, acting on some chosen point r =
(r, θ, φ), the set of all rotations generates sphere with the radius r, and along this sphere
V (r) is constant, meaning that V depends on r only, i.e. (4.28) is satisfied if and only if
the potential is central V (r) = V (r).

According to the results of Section 4.3, in such problems the time independent Schrödinger
equation is solved by the wave functions of the form Rnl(r)Y

m
l (θ, φ). In fact, as in the

angular factor space (4.22) of the total space (4.21) l2 and lz are CSCO, the spherical
harmonics are necessarily angular part of any CSCO in the total space. Therefore, only
the radial functions Rnl(r) are to be determined for any specific potential. Really, since
the hamiltonian of the particle in the central potential is:

H =
p2

2m
+ V (r) = − ~

2m
△+ V (r). (4.29)

Further, according to (4.20) the laplacian has the form△ = 1
r2
∂
∂r
r2 ∂

∂r
− 1

~2r2 l
2. Hence, using

the theorem on the separation of variables, the time independent Schrödinger equation
reduces to the radial part only:[

1

r2
d

dr
r2

d

dr
+

(
2m

~2
(Enl − V (r))− l(l + 1)

r2

)]
Rnl(r) = 0. (4.30)

Recall that the radial eigenbasis is to be found solving such an equation for each l =
0, 1, . . . . Particularly, as only for l = 0 spherical harmonic is constant, for l > 0 the first
condition in (4.21) implies that Rnl(r = 0) = 0. The finite norm of the solutions means
that

∫∞
0
r2 dr|Rnl(r)|2 <∞.

In some problems it is convenient to use R̃nl(r) = rRnl(r), simplifying (4.30) to[
d2

dr2
+

2m

~2
(Enl − V (r))− l(l + 1)

r2

]
R̃nl(r) = 0. (4.31)

Again, for l > 0 the first condition in (4.21) implies that for r → 0 the limiting value of
the function is R̃nl(r)/r → 0; the normalization is enabled by

∫∞
0

dr|R̃nl(r)|2 <∞.

4.4.1 Free particle

It has been shown that the plane waves are solutions of the time independent Schrödinger
equation of the free particle, V (r) = 0. These are found taking momentum components
as the CSCO compatible with hamiltonian. Recall that the eigenenergies Ek = Ek =
~2k2/2m are degenerate along the spheres of the radius k.

However, the constant zero potential possesses spherical symmetry, and therefore
CSCO can be formed by H, l2 and lz. Accordingly, there is alternative eigenbasis of
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H, subdued to this choice of CSCO. The radial equation (4.31) becomes[
d2

dr2
+

2m

~2
E − l(l + 1)

r2

]
R̃nl(r) = 0.

Denoting 2m
~2 E by k2 (in accordance with known solution) and introducing variable x = kr,

one gets [
d2

dx2
+ 1− l(l + 1)

x2

]
R̃kl(x) = 0. (4.32)

Note that instead of n, the energies are counted by k ≥ 0. However, as the equation itself
is k independent, the solvability gives no restriction on k, the spectrum is continual (as
expected), and for each k the same set of solutions (the functions of x, not of r!) must
be obtained. The equation can be solved iteratively. In fact, for l = 0, it reduces to(

d2

dx2
+ 1
)
R̃k0(x) = 0, solved by R̃k0(x) = 2 sin x. On the other hand, the solution can

be looked for in the form R̃kl(x) = xl+1χkl(x), when (4.32) becomes equation in χ.[
d2

dx2
+

2(l + 1)

x

d

dx
+ 1

]
χkl(x) = 0. (4.33)

To solve it, one differentiate the whole equation, getting the equation in χ′
kl(x). When

auxiliary function ϕkl(x) is introduced by χ′
kl(x) = xϕkl(x), it turns out that the obtained

equation in ϕkl(x) [
d2

dx2
+

2(l + 2)

x

d

dx
+ 1

]
ϕkl(x) = 0

is same as (4.33), but for l+1. Therefore, χk,l+1(x) =
1
x

d
dx
χkl(x), meaning that χk,l(x) =

( 1
x

d
dx
)lχk0(x). This conclusion, together with the found result for R̃k0(x) straightforwardly

gives: R̃kl(x) = xl+1( 1
x

d
dx
)l2 sinx

x
. Finally, the solutions of the radial part are:

Rkl(r) = 2(−)l
rl

kl
(
1

r

d

dr
)l2

sin kr

r
= 2kjl(kr). (4.34)

Here, jl(kr) are Bessel’s functions of the first kind (integer, or spherical Bessel’s functions).
Altogether, the generalized eigenbasis for CSCO with angular momentum is

ψklm(r) = ⟨rθφ | klm⟩ = 2kjl(kr)Y
m
l (θ, φ). (4.35)

4.4.2 Coulomb potential and Hydrogen like atoms

Hamiltonian of the relative particle of the hydrogen like atom with Z protons in the
nucleus is

H =
p2

2m
− Ze2

r
, (4.36)

where m = memN/(me +mN) and r = |RN − re|; note that m ≈ me as me ≪ mN. The
radial Schrödinger equation becomes:[

d2

dr2
+

2m

~2

(
Enl +

Ze2

r

)
− l(l + 1)

r2

]
R̃nl(r) = 0. (4.37)
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This equation takes more standard form if the involved quantities are reparameterized.
Using Bohr radius a0 = ~2/mee

2 = 0.529 Å, and atomic unit of energy (one Henry equal
to two Rydbergs) e2/a0 = 4.3610−18 J= 27.21 eV, the energy and radius are substituted
by the dimensionless εnl = a0Enl/e

2 and x = r/a0, to get the generalized hypergeometric
equation: [

d2

dx2
+

2εnlx
2 + 2Zx− l(l + 1)

x2

]
R̃nl(x) = 0. (4.38)

The standard method of solving of such equation (Appendix A.2) straightforwardly gives
that the energy spectrum and radial functions are for each n = 1, 2, . . . and l = 0, . . . , n−1:

En = −me
4

2~2
Z

n2
, Rnl(r) = Cnle

− 2Z
n

me2

~2
r

(
me2

~2
r

)l+1

L2l+1
n−l−1(

2Z

n

me2

~2
r), (4.39)

with normalizing factor Cnl =
√

Z(n−l−1)!
n!(n+l)!

, and Lpq(x) being generalized Laguerre polyno-

mials. Note that the energies are degenerate in l, due to the hidden symmetry of another
group isomorphic to the rotational one (but not related to the spatial rotations; this is
characteristic of the Coulomb potential). This enlarges degeneracy of energy levels to∑n−1

l=0 (2l + 1) = n2.

4.5 Spin

There are several experiments showing that the orbital space So which we are dealing
with in the previous sections is not sufficient to describe completely the single particle
states.

4.5.1 Zeeman’s Effect

Hamiltonian of the particle with the mass m and charge q in the electromagnetic field
defined by the scalar and vector potential Φ and A is

H =
1

2m

(
p− q

c
A
)2

+ qΦ (4.40)

(c is the speed of light). Particularly, the potentials of the homogeneous constant magnetic
field B = Bez can be in the Coulomb gauge (divA = 0) taken in the form A = 1

2
B × r

and Φ = 0, giving(
p− q

c
A
)2

= p2 − q

2c
[p · (B × r) + (B × r) · p] + q2

4c2
(B × r)2 = p2 − q

c
Blz +

q2

4c2
B2r2⊥.

Here, r⊥ is the radius vector component perpendicular to the field.
Consequently, when a hydrogen like atom is exposed to such a magnetic field, the

hamiltonian of the electron becomes:

H = − ~2

2m
△− Ze2

r
+
µB

~
Blz +

e2B2

8mc2
r2⊥, (4.41)
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where µB = e~
2mc

= 0.927 10−23 J/T is the Bohr’s magneton. The terms involving magnetic
field can be roughly estimated by the mean values for the lowest hydrogen like atom
states: ⟨r2⊥⟩ ∼ a20, ⟨lz⟩ ∼ ~, one finds that ⟨µBBlz⟩ ∼ 0.927 10−23B J/T, ⟨ e2B2

8mc2
r2⊥⟩ ∼

4 10−26B2J/T2. The maximal experimental magnetic fields are of the order 1T, making
therefore the last term by thousands less then the third term. In addition, assuming
that the typical energies of the lowest hydrogen like atom states are of the order of
1 eV= 1.6 10−19 J, the third term is by thousands less than the energy of the isolated
atom. Therefore the last term may be neglected, while the rest of the hamiltonian may
be treated perturbatively, using the isolated atom hamiltonian as the nonperturbed one,
while the third therm is perturbation. Accordingly, using the expression (6.5) for the first
correction of the degenerate level, and noticing that the hydrogen like atom eigenstates
|nlm⟩ are also eigenstates for the perturbation, one finds the perturbed energies

Enm = En + µBBm. (4.42)

Thus, quite generally, the energy level is split in the 2l + 1 equidistant sublevels. This
is called Zeeman’s effect. Particularly, for the hydrogen like atoms, with energy levels
En being degenerate in angular momentum values l = 0, . . . n − 1, this result implies
that each level is in the magnetic field split into 2lmax + 1 equidistant sublevels Enm for
m = −l, . . . , l and lmax = n− 1.

However, in the experiments with hydrogen like atoms, it appears that there are even
number of sublevels, and this is called anomalous Zeeman’s effect. Obviously, it cannot
be described within introduced formalism.

4.5.2 Interior degrees of freedom

Further evidence on the incompleteness of the formalism was given by the Stern-Gerlach
experiment: passing through the inhomogeneous magnetic field, well collimated monochro-
matic beam of atoms with a single electron is split into parts. Analysis analogous to that
of the Zeeman’s effect shows again that the number of obtained beams should be odd,
e.g. no splitting can occur for the single s-state electron. But in such cases even number
of split beams is found experimentally.

Still, there is a way to explain the described effects within quantum mechanical for-
malism. The Postulate 4 emphasizes that the total state space is the direct product of
the state spaces for each degree of freedom. In the view of this, the results of the previous
experiments shows that there is another degree of freedom, being not of the orbital type:
the possible values are not parameterized by the continual variable (e.g. coordinate or
momentum), but take a finite number of values. Such degrees are called interior degrees
of freedom.

POSTULATE 6. – INTERIOR DEGREES

Besides orbital, there are also interior degrees of freedom, contributing to the
total state space S by the finite dimensional interior factor space:

S = Sorbital ⊗ Sinterior.
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The construction of the total space as the product of the orbital and interior ones is
in fact required by the previous Postulate 4. Of course, the same argument shows that if
there are several interior degrees of freedom, the interior space is constructed as the direct
product of the corresponding interior spaces: Sinterior = S1

interior ⊗ S2
interior ⊗ . . . . Only the

finiteness of the interior spaces is different with respect to the previous spaces based on
the particle position coordinates.

Finite dimension of the space of function over some set X means that the set itself is
finite. Indeed, as any function over finite (meaning also discrete) set is continuous, such a
space is spanned by the functions fx being zero everywhere but in a single x from X, e.g.

fx(y)
def
= δxy (Kronecker step function). Obviously, the dimension of the spanned space

L2(X) is equal to the number of points in X. Consequently, the last postulate means
that the interior degrees of freedom are finite sets.

This fact may be considered as an empirical one, although relativistic theory gives
a profound proof for it through the analysis of the possible extensions of the Poincare
group: Coleman-Mandula theorem asserts that any group having the Poincare group
as a subgroup, and describing the space-time symmetries in the physically correct way,
must be a direct product of the Poincare group and some compact groups. Therefore,
its irreducible representations are products of the representations of the Poincare group
with the finite-dimensional representations of the compact factor. So, while the Poincare
group leads to infinite dimensional orbital space (its unitary irreducible representations
are infinite dimensional), the compact factors introduce finite-dimensional interior spaces.

4.5.3 Formalism of the spin s = 1
2

The simplest nontrivial case of the angular momentum is the representation for k = 1/2.

According to the Theorem 4.1, the dimension of the space S( 1
2
) of this representation is

|S( 1
2
)| = 2k+1 = 2. A suitable hermitian basis of the corresponding operator space (four

dimensional) is formed by σ0 =

(
1 0
0 1

)
and three Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.43)

For the Pauli matrices the following properties are easily verified:

σ2
i = I, Trσi = 0, Detσi = −1, σiσj + σjσi = 0, σ1σ2σ3 = iσ0. (4.44)

It follows that the basis σi (i = 0, . . . , 3) is orthogonal with respect to the operators

scalar product: Trσiσj = 2δij. Therefore, since each operator in S( 1
2
) can be expanded

in the form A =
∑4

i=0 aiσi, with the complex coefficients ai =
1
2
TrσiA. The last three

coefficients can be grouped into the vector a, to get A = a0σ0 + a · σ (here, like before,
we use vector notation for the triple of Pauli matrices). The second part a · σ gives
the traceless part of A, while the first one gives the scalar part with trace 2a0. For the
hermitian operators, the coefficients ai are real.

Pauli matrices are used to define the spin matrices by

Si =
1

2
~σi (i = 1, 2, 3). (4.45)
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It is easy to verify that

[Si, Sj] = i~
∑
k

ϵijkSk, (4.46)

showing that these operators represent the angular momentum components in S( 1
2
). Ac-

cordingly, the spin square eigenvalue is s(s + 1)~2 = 3
4
~2, which is also follows from

S2 =
∑

i S
2
i =

3
4
~2σ0.

Using the general properties of angular momentum (or directly solving the eigenprob-

lem of S3), one finds that the standard basis in S( 1
2
) is {|+⟩ = |m = 1

2
⟩ , |−⟩ = |m = −1

2
⟩},

for the eigenvalues ±1
2
~ of S3.

The rotations in the spin space are represented by the operators D( 1
2
)(Rϕu) = e−

i
2
ϕu·σ.

Particularly, in the standard basis to the rotation for ϕ around z axis corresponds the

matrix

(
exp(− i

2
ϕ) 0

0 exp( i
2
ϕ)

)
. Obviously, for ϕ = 2π the matrix −I2 is obtained, while

the identity transformation is achieved only for ϕ = 4π. This shows that matrices for spin
1
2
represent group SU(2).

4.6 Addition of angular momenta

Let us consider state space being product

S = S1 ⊗ S2, (4.47)

with angular momenta K1 and K2 in the factors spaces. Such situation is very frequent:
e.g. orbital and spin momenta of a single electron, or two particles with angular momenta
of each of them. From the definition [Kpi, Kpj] = i~

∑
kKpk, it is easily found that the

operators

Ki = K1i ⊗ I2 + I1 ⊗K2i, i = 1, 2, 3, (4.48a)

defined in the whole space S, satisfy the same commutation relations; in other words they
also form angular momentum K being sum of the momenta K1 and K2:

K = K1 +K2. (4.48b)

4.6.1 Irreducible subspaces and standard basis

For various purposes it is useful to know irreducible components and standard basis of
the composed momentum K. It is assumed that irreducible components of the momenta
K1 and K2 are known, i.e. that the decompositions

Si = ⊕ki,λiS
(kiλi)
i , i = 1, 2 (4.49)

are given. Here, S(kiλi)
i are irreducible subspaces of the momentum Ki, where ki(ki+1)~

is eigenvalue of K2
i and λi counts different irreducible subspaces of the same type when

frequency number of ki is greater than 1.
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Irreducible components and Clebsch-Gordan series

The product structure (4.47) of S, together with decomposition (4.49) gives:

S = ⊕k1,k2 ⊕λ1,λ2 S
(k1λ1)
1 ⊗ S(k2λ2)

2 . (4.50)

Therefore, to reveal the irreducible components of angular momenta in S it is sufficient to
find out the irreducible components in the product V(k1) ⊗V (k2) of irreducible subspaces,
i.e. Clebs-Gordan series.

Theorem 4.2 (Clebsch-Gordan series of angular momentum) The product of
the irreducible spaces of the weight k1 and k2 of angular momentum contains exactly once
each irreducible subspace with weight k = |k1 − k2|, . . . , k1 + k2:

V(k1) ⊗ V (k2) = ⊕k1+k2
k=|k1−k2|V

(k). (4.51)

Proof: This is one of the theorems easily derived as a special case of the Weyl’s theorem on the
semisimple Lie algebras. Here we recall that in each irreducible space |kimi⟩ (mi = −ki, . . . , ki) is
standard basis. One basis of the direct product space is |k1m1; k2m2⟩ = |k1m1⟩ ⊗ |k2m2⟩, and this basis
is represented by the points (m1,m2) in Fig. 4.2. Vectors of this basis are eigenvectors of K3:

K3 |k1m1; k2m2⟩ = (m1 +m2)~ |k1m1; k2m2⟩ .

Therefore, vectors with the same sum m = m1 +m2 span eigensubspaces of K3. These subspaces are

denoted by the inclined lines connected vectors with the same m; below each line the corresponding

m1 + m2 and number dm of vectors on it are written. Obviously, the maximal sum is k1 + k2 with a

single vector |k1k1; k2k2⟩ on it. The sum takes on all the values k1 + k2, k1 + k2 − 1, . . . ,−(k1 + k2), and

the degeneracy of these values increases by one for m = k1+k2, k1+k2−1, . . . , k1−k2 (we assumed that

k1 ≥ k2), then remains constant for m = k1 − k2, k1 − k2 − 1, . . . , k2 − k1, and finally decreases by one for

m = k2 − k1, k2 − k1 − 1, . . . ,−k1 − k2. Thus, in the decomposition appears single irreducible subspace

corresponding to the maximal value k1+ k2; it must contain a single eigenvector of K3 for all eigenvalues

k1 + k2, k1 + k2 − 1, . . . ,−(k1 + k2). When this representation is taken into account, all degeneracies

should be diminished by 1. Therefore, among the remaining m values, the maximal m1 +m2 − 1 is now

nondegenerate. We repeat procedure, collecting all less eigenvalues corresponding to this representation,

and subtracting from the diagram. So, all the representations from k1 + k2 to k1 − k2 appear once, and

after this the diagram is exhausted (as the degeneracies are constant).

This way the total space reduction (4.50) becomes

S = ⊕k1,k2 ⊕k1+k2
k=|k1−k2| ⊕λ1,λ2V

(k)
λ1λ2

. (4.52)

Standard basis and Clebsch-Gordan coefficients

After the Clebsch-Gordan series are found, we can proceed to determine the standard
basis in the product space. According to the last decomposition, one can use standard
basis of the direct product of the irreducible spaces. Namely, if |ki,mi⟩ (i = 1, 2) aree
standard bases in the irreducible spaces V(k1) and V(k2), then in the product space, since
each irreducible component occurs once, the standard basis |k1k2; km⟩ is unique (up to the
common phase factor). Therefore the non-correlated |k1,m1; k2,m2⟩ = |k1m1⟩ ⊗ |k2m2⟩
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Figure 4.2: Decomposition of the product of irreducible subspaces of angular momentum.
Case k1 = 3 and k2 = 3/2 is illustrated. At the end of each inclined line the sum m1+m2

for the point (m1,m2) on it is depicted (concrete example is given above in gray) and
the number of these points (degeneracy of the sum value) is below. Values of m1 +m2

included in the irreducible subspace with fixed maximal weight (written on the right side
of diagram) are the lines crossed by the shaded region corresponding to maximal weight.

and standard basis are related by the unitary transition matrix, with elements being
Clebsch-Gordan coefficients ⟨k1,m1; k2,m2 | k1k2; km⟩:

|k1k2; km⟩ =
k1∑

m1=−k1

k2∑
m2=−k2

⟨k1,m1; k2,m2 | k1k2; km⟩ |k1,m1; k2,m2⟩ . (4.53)

The Clebsch-Gordan coefficients as completely mathematical (i.e. independent of
physical context) constants are calculated and tabulated2 in various forms (including com-
puter programs). Still, it is interesting to exploit the eigensubspaces of K3 used in the
proof of the Theorem 4.2. In the first step we found that the standard vector of the maxi-
mal weight is noncorrelated: |k1k2; k = k1 + k2,m = k1 + k2⟩ = |k1,m1 = k1; k2,m2 = k2⟩.
Then, using the operator K− = K1− ⊗ I2 + I1 ⊗K2− we find (see Theorem 4.1):

K− |k1k2; k1 + k2, k1 + k2⟩ = c(k)−m |k1k2k1 + k2, k1 + k2 − 1⟩ .

This vector belongs to the eigenspace of K3 for eigenvalue k1 + k2 − 1. This eigenspace
(Fig. 4.2, the second inclined line) is double degenerate. Thus, only one vector orthogo-
nal to |k1k2; k1 + k2, k1 + k2⟩ can be found, and it must be |k1k2; k1 + k2 − 1, k1 + k2 − 1⟩.
Then, in the triply degenerate subspace of the eigenvalue m = k1 + k2 − 2 two basis vec-
tors are proportional to K2

− |k1k2; k1 + k2, k1 + k2⟩ and K− |k1k2; k1 + k2 − 1, k1 + k2 − 1⟩,
and the vector orthogonal to these two is (up to a phase) |k1k2; k1 + k2 − 2, k1 + k2 − 2⟩.
Repeating procedure all the standard vectors and the corresponding Clebsch-Gordan co-
efficients are derived.

2Sometimes, instead of Clebsch-Gordan coefficients, their particular biunique function called 3j-
symbols are used.
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It is important to stress out that though the decomposition (4.50) involves non-
correlated bases differing by indices λi, the Clebsch-Gordan coefficient do not depend
on them, giving that the total standard basis is:

|k1k2; km;λ1λ2⟩ =
∑
λ1,λ2

k1∑
m1=−k1

k2∑
m2=−k2

⟨k1,m1; k2,m2 | k1k2; km⟩ |k1,m1, λ1; k2,m2, λ2⟩ .

(4.54)
Note that {K2

1 , K13, A1, K
2
2 , K23, A2} is CSCO with non-correlated basis as common

eigenbases, while CSCO for the standard basis (4.54) is {K2
1 , A1, K

2
2 , A2, K

2, K3}.

Wigner-Eckart theorem and selection rules

In the state space with defined angular momentum K there is also a representation
D(SU(2)). Standard basis |kmλ⟩, defined by equations (4.14) corresponds to the de-

composition of the space to the irreducible subspaces of SU(2): S = ⊕kλV(k)
λ , meaning

that (4.14) are manifestation of the general requirement for standard basis D(U) |kmλ⟩ =∑k
m′=−kD

(k)
m′m(U) |km′λ⟩.

However, the transformations of SU(2) act also on the operators in S according to the

rule:
ˆ̂
UA = D(U)AD†(U). This generates a representation in the operator space, and the

standard basis among the operators can be defined:

ˆ̂
UA

(k)
mλ =

k∑
m′=−k

D
(k)
m′m(U)A

(k)
m′λ. (4.55)

Usually, we are not interested in the whole basis, but only in the particular subset corre-
sponding to an irreducible component

A(k) = {A(k)
m |m = −k, . . . , k}, (4.56)

called irreducible tensor (operators). Therefore, index λ is not used any more. Again,
using Lie algebra, i.e. angular momentum, (4.55) becomes:

[K3, A
(k)
m ] = m~A(k)

m , [K±, A
(k)
m ] =

√
(k ∓m)(k ±m+ 1)~A(k)

m±1. (4.57)

This way symmetry adapted bases are imposed both in the space of operators and in
the state space. It is interesting to find the matrix elements of the irreducible tensors
between standard basis elements.

Theorem 4.3 (Wigner-Eckart theorem) Matrix element of an irreducible tensor

component A
(k)
m between two standard vectors is factorized to Clebsch-Gordan coefficient

(independent on λ1 and λ) and the reduced matrix element independent on m, m1 and
m2:

⟨kmλ|A(k2)
m2

|k1m1λ1⟩ = ⟨k1m1; k2m2 | k1k2km⟩ ⟨kλ| |A(k2)| |k1λ1⟩ . (4.58)
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Note that the first term, Clebsch-Gordan coefficient, is strictly symmetry based and a
priori known, while physical context is given only by the reduced matrix element, which
is constant for the whole multiplets of m, m1 and m2. Therefore it can be calculated
(or experimentally found) for one particular choice of m’s, and then used in all of the
(2k + 1)(2k1 + 1)(2k2 + 1) cases with fixed k, k1 and k2.

This conclusion is very important, since the matrix elements are basic ingredient in the
calculations of the transition probabilities, i.e. in study of any physical process. Due to
the Wigner-Eckart theorem, one can immediately find selection rules, i.e. list of the pairs
of states between which the transition in the studied process is not possible: whenever
Clebsch-Gordan coefficient vanishes the corresponding transition is forbidden.

Addition of more than two angular momenta

In the case that there are more than two angular momenta the procedure of their addition
is the same as for two, only the question of the order of addition appears.

For the three angular momenta two possibilities are usually considered: K = (K1 +
K2) + K3 = K1 + (K2 + K3). The difference is not in the irreducible components,
but in the corresponding standarrd base. In the first case the standard basis is common
eigenbasis for CSCO {K2

1 , K
2
2 , K

2
3 , K

2
12, K

2
123, K123,3, A1, A2, A3}, while in the second case

CSCO is {K2
1 , K

2
2 , K

2
3 , K

2
23, K

2
123, K123,3, A1, A2, A3}; here Kij = Ki +Kj.

Considering only irreducible subspaces, i.e. the product V(k1)⊗V (k2)⊗V (k3), this results
in two standard bases |(k1k2)k3k12km⟩ and |k1(k2k3)k23km⟩. These bases are related by
the unitary matrix of 6j-symbols.

Analogously, for addition of four angular momenta we define 9j-symbols, etc.

Superselection rule of total momentum

Note that each particle has spin corresponding to an irreducible angular momentum,
i.e. being s = 0, 1

2
, 1, . . . , and that orbital momentum is always integer. Therefore,

according to the theorem on the addition of angular momenta, total angular momentum
of a particle is either half integer or integer. Further, the same rule for addition gives that
total momentum of many particles is again either integer or half integer. This is known
as the:

Theorem 4.4 (Superselection rule of momentum) State combining half integer and in-
teger angular momentum cannot be realized in the nature.

To distinguish between states with integer and half integer angular momentum it
is useful to introduce superselection observable R = R2πu = e−

i
~u·K . This observable

acts as identity on the vectors corresponding to integer k, and reverses the vectors with
half integer k. Thus, if there is a state space combing integer and half integer total
angular momentum, the corresponding vectors would span the eigensubspaces of R for
the eigenvalues 1 and −1. The superselection principle asserts that in each state space
only one eigenvalue is realized.

In particular, the space of the operators (superspace) is always with integer angular
momentum.
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4.6.2 Examples and applications

Addition of two spins s = 1/2

In this case the dimension of S is four. While noncorrelated basis is |s1ms1; s2ms2⟩ for
msi = ±1/2, or in short |++⟩ = (1, 0, 0, 0)T , |+−⟩ = (0, 1, 0, 0)T , |−+⟩ = (0, 0, 1, 0)T ,
|−−⟩ = (0, 0, 0, 1)T . On the other hand, according to Theorem 4.2 we get S = V(0)+V(1),
with the standard basis |1

2
1
2
00⟩, |1

2
1
2
1,−1⟩, |1

2
1
2
10⟩, |1

2
1
2
11⟩. While the maximal weight

vectors is |1
2
1
2
11⟩ = |++⟩, all other are found with help of S− = ~

(
0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

)
:

|1
2
1
2
10⟩ = (|+−⟩+ |−+⟩)/

√
2, |1

2
1
2
1− 1⟩ = |−−⟩ , |1

2
1
2
00⟩ = (|+−⟩ − |−+⟩)/

√
2.

Spin harmonics of electron

It is known that orbital angular momentum is integer, and contains all integer irreducible
components: SO = ⊕∞

l=0V(l) Taking spin of electron into account, one gets addition in the

form j = l+s and the total space S = SO⊗Ss = ⊕∞
l=0V(l)⊗V( 1

2
) is decomposed according

to (4.51) into irreducible subspaces:

S = V(j= 1
2
)

l=0 +⊕∞
l=1

(
V(j=l− 1

2
)

l ⊕ V (j=l+ 1
2
)

l

)
= ⊕∞

j= 1
2

(
V(j)

l=j− 1
2

⊕ V(j)

l=j+ 1
2

)
. (4.59)

Hence, each half integer total angular momentum occurs twice, due to coupling of the

Figure 4.3: Total angular momentum of electron.

spin to the orbital momentum l = j − 1
2
and for to the orbital momentum l = j + 1

2
.

In each of the irreducible subspaces V(j)
l the standard basis |l 1

2
; jmj⟩ is with help of the

Clebsch-Gordan coefficients expressed as the combination of the product basis:

|l1
2
; jmj⟩ =

l∑
m=−l

1
2∑

ms=− 1
2

⟨lm;
1

2
ms | l

1

2
; jmj⟩ |lm;

1

2
ms⟩ .

As only the Clebsch-Gordan coefficients satisfying mj = m +ms may not vanish, taking
into account that ms takes only values ±1

2
, this sum (for l > 0) reduces to:

|l1
2
; jmj⟩ = c+ |lmj −

1

2
;
1

2

1

2
⟩+ c− |lmj +

1

2
;
1

2
,−1

2
⟩ , c± = ⟨lmj ∓

1

2
;
1

2
,±1

2
| l1
2
; jmj⟩ .
(4.60)
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The coordinate representation (only angular coordinates are considered, and in spin space
vectors |1

2
, 1
2
⟩ = ( 1

0 ) and |1
2
,−1

2
⟩ = ( 0

1 )) becomes:

⟨θφ | l1
2
; jmj⟩ =

(
c+Y

mj− 1
2

l (θ, φ)

c−Y
mj+

1
2

l (θ, φ)

)
. (4.61)

This spinor function is called spin (spherical) harmonic.

Ground state of the helium atom

Helium atom besides nucleus contains two electrons. Therefore the electronic hamiltonian
besides noninteracting par H0 contains interaction:

H = H0 +
e2

r12
, H0 = h1 + h2, hi = Ti −

2e

ri
. (4.62)

Here, hi are single particle hamiltonians, with eigenenergies ϵn = −2me2

n2~2 and eigenfunctions
⟨r, θ, φ |nlm⟩ = Rnl(r)Y

m
l (θ, φ). We consider mutual interaction as perturbation, and H0

as the nonperturbed part.
The ground single electron states are n = 1, l = m = 0. This gives total state with

L = 0; as it is known that the ground state is with S = 0 (changing sign when two
particles are interchanged, i.e. antisymmetrized state Sec. 5.1), thus state |1

2
1
2
00⟩ in spin

space, and therefore J = 0. Thus, orbital ground state is symmetrized. This gives

Ψ(r1, r2) =
8√
2πa30

e
−2

r1+r2
a0 (|+−⟩ − |−+⟩).

The single electron energy is ϵ1 = −54.4 eV, i.e. nonperturbed energy of the ground state is
E0

0 = 2ϵ1 = −108.8 eV. Taking into account integral
∫

e−(ar1+br2)

|r1−r2| dr1 dr2 = 16π2 2a2+2b2+6ab
a2b2(a+b)2

,

one easily finds that the first correction E0 = E0
0 + E

(1)
0 = −74.8 eV. Note that the

experimental value is Eexp
0 = −78.6 eV.

Stark effect of diatomic molecule

We assume that in the diatomic molecule distance between atoms is fixed, i.e. that the
vibrational energies are too high to be excitet by the electrical field. Therefore, only
rotational degrees of freedom remain, i.e. in the homogeneous electrical field E along
z-axis the effective hamiltonian is H = H0+H

′, where H0 = l2/2mr20 and perturbation is
H ′ = −dE cos θ; here d = q1r1 + q2r2 is dipole moment of the molecule, and θ the angle
between the molecule and z-axis. The nonperturbed term is kinetic rotational energy
with eigenvalues and eigenfunctions E0

l = l(l + 1)~2/2mr20 and Y m
l (θ, φ), respectively.

Perturbation is z-component of the vector operator, and since Y 0
1 (θ, φ) ∼ cos θ we can

easily calculate matrix elements:

⟨lm|H ′ |l′m′⟩ ∼
∫ π

0

∫ 2π

0

sin θ dθ dφY m∗
l (θ, φ)Y 0

1 (θ, φ)Y
m′

l′ (θ, φ).



64 CHAPTER 4. ROTATIONS AND ANGULAR MOMENTUM

We see that nonzero matrix elements appear only when selection rules ∆m = m−m′ = 0
and ∆l = l − l′ = 0,±1 are satisfied: the first one is obvious conservation of the z-
component of angular momentum, while for the second one note that D(l) must be a
component of D(1) ⊗D(l′) = D(l′−1) ⊕D(l′) ⊕D(l′+1).

Analogous considerations for spatial inversion exclude the term l′, as on the left side
the parity is (−1)(l′+1). This immediately means that the first order correction vanishes.
The second order perturbation is

E
(2)
l = −

∑
l>0

∑l
m=−l | ⟨l = 0,m = 0|H ′ |lm⟩ |2

l(l + 1)~2/mr20
= −| ⟨l = 0,m = 0|H ′ |l = 1,m = 0⟩ |2

l(l + 1)~2/mr20
.

Stark effect in hydrogen atom

The hamiltonian of the electron in the homogeneous electric field along z-axis is H =
H0 + H ′, where nonperturbed part is usual hamiltonian of the hydrogen atom electron,
while perturbation is H ′ = −eEz. The state space includes spin, though the hamiltonian
is spin independent, and results only in additional degeneracy.

As the perturbation quantum numbers are l = 1 and m = 0, while parities of bra,
berturbation and ket are (−1)l, −1, and (−1)l

′
, the selection rules give:

⟨nlmms|H ′ |n′l′m′m′
s⟩ = δms,m′

s
δmm′(δl,l′+1V

+
nn′ + δl,l′−1V

−
nn′).

Let us consider level n = 2, which is fourfold degenerate (nonperturbed) with ba-
sis |11⟩, |10⟩, |1,−1⟩ and |00⟩. The perturbation matrix must have vanishing elements
when m ̸= m′, as well as when l = l′. This means that the linear effect can be found
only in the subspace spanned by the m = 0 vectors |210⟩ and |200⟩; reduced matrix is

H ′ = eE
(

⟨210|z|210⟩=0 ⟨210|z|200⟩
⟨210|z|200⟩ ⟨200|z|200⟩=0

)
, and the eigenvalues are E(1) = ±| ⟨210| z |200⟩ ||e|E =

±3eEa0.

4.6.3 L− S and j − j coupling

The electronic system in the atom with Z electrons is described by the hamiltonian:

H =
Z∑
i=1

(
p2i
2m

− Ze2

ri
+ vjji ) +

∑
i<j

e2

|ri − rj|
. (4.63)

In the single-particle part besides usual kinetic and Coulomb terms there is spin-orbit
interaction vjji = li · sif(ri), the term commuting with j = l + s. Intuitively it appears
as the magnetic dipole of an electron (proportional to its spin) moves in the electric field
of the nucleus. Given form can be justified by the perturbation theory within relativistic
approach. Depending on the order of the perturbation theory, the form of the function
f(r) can be specified (e.g. f(r) = m2c2

r
d
dr

−Ze2
r

), and for the present purpose it is important
only that it is spherically symmetric.

The last term includes many-electron problem, and we assumed that only two-particle
interactions exist. Such terms, related to many-body systems, prevent exact solution
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of the problem, and this is probably the most important difficulty in the contemporary
physics. Usual approximate approach is to extract some average single electron potential,
i.e. to write the last term in the form∑

i<j

e2

|ri − rj|
=
∑
i

W (ri) +
∑
i<j

V rez
ij . (4.64)

The residual potential V LS =
∑

i<j V
rez
ij is the remaining part of the interaction which has

not been included by the averaged potential W (more detailed analysis of this approach
will be given in the Section 6.3.2). It is assumed to be spin independent.

Adding the averaged potential W to the Coulomb electron-nucleus term, we write the
hamiltonian as the sum of the single-particle central hamiltonian H0, two-particle term
V LS, and spin-orbit (still single particle) term V jj:

H = H0 + V LS + V jj. (4.65)

Of course, the total hamiltonian commutes with total angular momentum J = L + S.
However, it is assumed that many-body term depends only on the orbital variables, and
commutes both with total orbital and spin angular momenta L and S. On the other hand,
coupling electronic orbital and spin degrees of freedom of each electron, V jj commutes
with j. Therefore, further analysis depends on the relation between spin-orbit and many-
body part. It turns out that many-body term is weakly dependent on the atomic number,
while spin-orbit term is proportional to it. Therefore, V LS is the dominant for the light
atoms, while V jj overwhelms in the case in the second half of periodic system.

Consequently, as the first perturbation to H0 for light atoms we take V LS term, getting
Russel-Saunders or LS-coupling hamiltonian HLS = H0 + V LS; only and afterward the
last term V jj is included as the perturbation. Corresponding decomposition of the total
space is

S = SO ⊗ SS = (SO1 ⊗ · · · ⊗ SOZ)⊗ (SS1 ⊗ · · · ⊗ SSZ),

with momenta L = l1 + . . . lZ and S = s1 + . . . sZ acting in SO and SS. There is an
eigen-basis |LM ;SMS;λ⟩ for HLS being standard both for L and S, with (2L+1)(2S+1)
degenerate eigenspaces. When we add V jj, the perturbation theory predicts that each of
these levels ELSλ will split: for each J = |L− S|, . . . , L+ S an sublevel ELSJλ appears.

For heavy atoms V jj interaction prevails, and the procedure is reversed. Now we start
with the jj-coupling, i.e. with Hjj = H0+V

jj. As this describes non-interacting particles
in the external field, for each electron the eigen-basis |nljmj⟩ can be found, and then the
total eigenbasis can be adapted to the set of the compatible observables J2, J3, j

2
1 , j

2
2 , . . . ,

corresponding to decomposition :

S = S1 ⊗ · · · ⊗ SZ , Si = SOi ⊗ SSi.

In each space Si acts total electronic angular momentum ji = li + si. The degeneracy of
the eigenenergies depends on Z, and it is in general high. When V LS is included, only
J2 and J3 remain conserved, and this leads to the splitting of the obtained levels to the
2J + 1 degenerate ones.
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Periodical system of elements

Classification of the states of the hydrogen atom and derived rules for addition of the
angular momentum give insight to the systematization of the atoms with more electrons
according to angular momenta (orbital, spin and total). To this end we anticipate that
state of many-electron system is antisymmetric (i.e. changes sign when any two of elec-
trons are permuted), and consequently Pauli principle (to be derived in the next Chapter)
forbidding two electrons to occupy the same state.

At first we make inventory of the involved angular momenta and introduce conven-
tional notation. Each electron has orbital, spin and total angular, denoted as l, s and
j = l+ s. For the complete electronic system total orbital, spin and angular momentum,
L =

∑
i li, S =

∑
i si and J =

∑
i ji are defined. For the states with orbital momentum

quantum number l equal to 0, 1, 2, 3, etc. we use symbols s, p d, f etc. (and analogously
S, P , D, F ,. . . for L).

For each main quantum number n = 1, 2, . . . , possible orbital momenta are l =
0, . . . , n − 1; in other words, shell n contains subshells nl with these values of l. Each
of them contains 2(2l + 1) states with m = 0,±1, . . . ,±l and ms = ±1

2
. Starting with

known eigenstates and eigenenergies, we begin to fill the states with electrons, starting
from the lowest levels.

Thus, for n = 1, only l = m = 0 is allowed, and the ground state of hydrogen atom
is |n = 1, l = 0,m = 0; s = 1/2,ms⟩, with total momenta L = l = 0, S = s = 1/2, J =
j = 1/2. Spectroscopic notation of these angular momenta and electronic configuration
is 2S+1LJ = 2S1/2 and (nl) = (1s). For the next atoms the higher energy levels are
occupied, and angular momenta are given in the table (note that LS-coupling is assumed,
in agreement with previous conclusions). Generally, for pairs of electrons the orbital part
of state is allowed to be the same, and then the spin part is antisymmetric.

Note that this algorithm is not valid for all elements. For example d-shell is open
before 3p is filled, etc.



4.6. ADDITION OF ANGULAR MOMENTA 67

Table 4.1: Beginning of the periodic system. Horizontal lines denote fulfilled subshells,
while the shells are separated by double lines; both have all angular momenta zero. Quan-
tum numbers n, l and ms are given only for the electrons out of the last filled (sub)shell.
For He there was another possible total spin S = 1, which was rejected by Pauli princi-
ple. On the other hand, J = 1/2 is preferred for B by energy with respect to another
possibility J = 3/2.

Z Symbol n l ms L S J 2S+1LJ Configuration

1 H 1 0 ±1
2

0 1
2

1
2

2S 1
2

(1s)

2 He 1,1 0,0 1
2
,−1

2
0 0 0 1S0 (1s)2

3 Li 2 0 ±1
2

0 1
2

1
2

2S 1
2

(He)(2s)

4 Be 2,2 0,0 1
2
,−1

2
0 0 0 1S0 (He)(2s)2

5 B 2 1 ±1
2

1 1
2

1
2

2P 1
2

(He)(2s)2(2p)

- - - - - - - - - - - - - - - - - - - - - - - -



Chapter 5

Identical Particles

5.1 Quantum Formalism

5.1.1 Permutational Indistinguishability and Symmetrization

According to the conclusion of the subsection 1.3.2, the state space of N particles is the
product of their single particle states. Thus, in the case of N identical particles, when all
the particles are described by the same single particle state space S, the total state space
is a priori constructed as SN = S⊗· · ·⊗S. On the other hand, the intuitive notion of the
identity of the particles, means that permutations among them cannot be observable. In
other words, no measurement can distinguish between initial and permuted state. As for
the pure states this means that the initial and the permuted state vectors are collinear,
differing at most by a phase. However, in the space SN there are vectors not obeying this
requirement. For example, consider non-correlated states, with pth particle being in the
state |ψp⟩. The composite state is shortly denoted as

|ψ1, . . . , ψN⟩ = |ψ1⟩1 ⊗ · · · ⊗ |ψN⟩N . (5.1)

Note that the pth particle is in the state being at the pth place, and therefore the second
index (outside ket) may be omitted. Any permutation π of the particles transform this
state into

∆(π) |ψ1, . . . , ψN⟩
def
= · · · ⊗ |ψ1⟩π1 ⊗ · · · ⊗ |ψN⟩πN ⊗ · · · = |ψπ−11, . . . , ψπ−1N⟩ . (5.2)

Now, if π nontrivially acts on the particles being in the orthogonal single particle states,
the initial and permuted states are mutually orthogonal, and obviously not collinear.

This shows that the construction of the state space of identical particles must be further
suited to the intuitive requirement of indistinguishability. To this end we emphasize that
(5.2) effectively introduces the operators ∆(π) in SN associated to the permutation π.
Indeed, any basis |i⟩ (i = 1, . . . , |S|) of S induces the non-correlated basis |i1, . . . , iN⟩
(ip = 1, . . . , |S|), and (5.2) is applicable for all the vectors of the basis. This suffices to
define linear operators ∆(π). In addition, all the basis vectors are by ∆(π) mapped to the
vectors of the same basis, i.e. ∆(π) permutes the basis; this means that ∆(π) is a unitary
representation (orthonormal single particle basis is assumed) of the symmetric group SN
in SN .

68
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The basic intuitive requirement of indistinguishability of the initial |Ψ⟩ and the per-
muted state ∆(π) |Ψ⟩ (conveniently, for N particle state capital letters are used) can be
now precisely expressed as:

∆(π) |Ψ⟩ = eiφ(π,Ψ) |Ψ⟩ , (5.3)

with the phase depending both on permutation and state. In other words, each physically
allowable state |Ψ⟩ spans one dimensional subspace of SN , in which the representation
∆(SN) is reduced to the phases eiφ(π,Ψ). Of course, these sub-representations are one
dimensional, thus irreducible ones. However, the permutation group SN for N > 1
has exactly two one-dimensional irreducible representations (Exercise 5.1), symmetric
(identical) D(+) and antisymmetric (alternating) D(−) one:

D(±)(π) = (±)π̃. (5.4)

Here, π̃ denotes the parity of the permutation π: each permutation is a product of the
transpositions, and although this decomposition is not unique, as well as the number of
the involved transpositions, this number is uniquely either even, π̃ = 0 or odd π̃ = 1.
Particularly, D(±)(τpp′) = ±1 for the transposition τpp′ of any two particles p and p′.

Exercise 5.1: Show that the representations (5.4) are the only one-dimensional irreducible representa-
tions of SN for N = 2, 3, . . . .

According to the above analysis we conclude that the permutation group SN is in
SN represented by ∆(SN), being reducible, with a number of irreducible components.
However, physically allowable states form multiple irreducible subspaces SN± of the two
one dimensional representations D(±)(SN), and therefore these subspaces are singled out
as the ranges of the corresponding group projectors:

P (±) =
1

N !

∑
π

(±)π̃∆(π). (5.5)

These projectors onto symmetric and antisymmetric subspaces SN± of SN are called sym-
metrizer and antisymmetrizer. The only physically allowable states are within these
subspaces, and for |Ψ⟩ ∈ SN+ the phase in (5.3) is eiφ(π,Ψ) = 1, while for |Ψ⟩ ∈ SN−
one gets eiφ(π,Ψ) = (−)π̃. However, any nontrivial linear combination α+ |+⟩ + α− |−⟩ of
|±⟩ ∈ SN± after transposition becomes ∆(τ)(α+ |+⟩ + α− |−⟩) = α+ |+⟩ − α− |−⟩, which
is not collinear to the initial vector. To retain the superposition principle, the system of
identical particles must be described by one of these two subspaces only.

These conclusions are summarized in:

POSTULATE 7. – IDENTICAL PARTICLES

The state space of a system of N identical particles with the single particle state
space S is either symmetric SN+ or antisymmetric SN− subspace of the direct
product space SN . The choice depends only on the type of the particles: bosons,
particles with the integer spin, have the symmetrized N particle states, while for
the fermions, the particles with the half-integer spin, states are antisymmetrized.

The last part of the Postulate, relating spin to the type of the transformation of the
particle states under permutations can be proved within relativistic quantum mechanics,
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using the locality of interaction [?]. This has deep influence not only to the kinematical,
but also to the dynamical properties of the particles: as a consequence of the different
permutational symmetry for the systems of fermions and bosons the different statistics,
Bose-Einstein or Fermi-Dirac, are applied.

5.1.2 Structure of the state space — occupation numbers

The permutational symmetry of the physical states gives further insight to the structure
of the boson and fermion state spaces. At first, it should be noticed that (5.2) shows that
the operators ∆(SN) in SN permute the non-correlated basis vectors |i1, . . . , iN⟩. Indeed,
their action consists in the rearrangement of the single particle states quantum numbers
i1, . . . , iN . This inspires introduction of the occupation numbers: for the N particle state
|i1, . . . , iN⟩ one counts the number ni(|i1, . . . , iN⟩) of the particles occupying the single
particle state |i⟩. Thus, each basis state defines |S| occupation numbers n(|i1, . . . , iN⟩) =
(n1, . . . , n|S|), with the obvious relation

∑|S|
i=1 = N . More than one basis vector may

have same array n. Precisely, all the permutations acting by the representation ∆(SN)
on the vector |i1, . . . , iN⟩ give the vectors with the same occupation numbers. Hence,
the non-correlated basis is by the action of SN partitioned into the orbits, each of them
characterized by the unique n. In other words, each |S|-tuple n of the non-negative

integers ns such that
∑|S|

s=1 ns = N defines an orbit of the non-correlated basis.
The permutations interchanging particles being in the same single particle states leave

the basis vector invariant (e.g. ∆(τ12) |i1, i2 = i1, i3, . . . , iN⟩ = |i1, i2 = i1, i3, . . . , iN⟩).
Taking from each orbit n a representative basis vector |i1, . . . , iN⟩, it is easy to find its
stabilizer: it is the group Sn = Sn1 ⊗ · · · ⊗ Sn|S| ; Sns contains only the permutations
interchanging the particles in the same state |is⟩ and leaving invariant all other particles
(therefore different factors permute disjoint subsets of the particles and commute mutu-

ally). Obviously, the order of the stabilizer is |Sn| = n!
def
=
∏|S|

s=1 ns!, showing that the
number of the basis vectors in the same orbit of SN is

|n| = |SN |
|Sn|

=
N !

n1! · · ·n|S|!
=
N !

n!
. (5.6)

Since in each factor Sns for ns > 1 one half of the permutations are even and the other
half odd, the same is valid for the whole stabilizer Sn: one half of its permutations are
even and the rest are odd; only when all ns are equal to one, only the identity element,
which is even, is in the stabilizer.

Now, recall that each orbit n is a subset of the non-correlated basis. Therefore, it
spans a |n|-dimensional subspace Sn of SN , and

SN = ⊕nSn. (5.7)

As SN is spanned by the whole non-correlated basis, one finds
∑

|n| = |S|N . Each of
these subspaces Sn is invariant under the permutation operators ∆, showing that (5.7)
is a decomposition of the total space onto the invariant subspaces of the representation
∆(SN). Hence, this representation reduces in the occupation number spaces Sn onto the
sub-representations ∆n(SN) geting the reduced form ∆(SN) = ⊕n∆n(SN).
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Finally, we perform (anti)symmetrization, as requested by the Postulate VII. The sym-
metric/antisymmetric space SN± is found as the range of the (anti)symmetrizer (5.5). The
invariance of SNn , resulting in decomposition of ∆(SN), implies that the group projectors
also reduce in the occupation number subspaces:

P (±) = ⊕nP
(±)
n , P (±)

n =
1

N !

∑
π

(±)π̃∆n(π). (5.8)

Due to the orthogonality of the subspaces SNn , the operators P
(±)
n are projectors, and

their ranges SNn± are orthogonally summed into the range of P (±). The first conclusion
emerges: the (anti)symmetrized space SN± is orthogonal sum of the (anti)symmetrized
subspaces SNn± of the occupation number spaces SNn .

To find these ranges we chose for each orbit the orbit representative. We sort the orbit
elements in the increasing order with respect to the single particle state indices, and chose
the first of them for the representative; effectively, we choose the non-correlated vector
|n⟩ = |i1 ≤ i2 ≤ · · · ≤ in⟩ for which from ip ≤ ip′ follows that p ≤ p′, i.e. the single particle
state indices do not decrease from left to right (e.g. for S = 7 and N = 6, |5, 2, 5, 3, 2, 5⟩
is in the orbit n = (0, 2, 1, 0, 3, 0, 0) represented by |n⟩ = |2, 2, 3, 5, 5, 5⟩; the stabilizer of
this state is S0 ⊗S2 ⊗S1 ⊗S0S3 ⊗S0S0 = S2 ⊗S3, with |n| = 12 elements). According
to the general group theoretical theorem, SN acts such that exactly |Sn| permutations
map |n⟩ to each element of the orbit n. Therefore, only the stabilizer elements of the

sum in P
(±)
n contribute to ⟨n|P (±)

n |n⟩, giving TrP
(±)
n = 1

n!

∑
π(±)π̃ ⟨n|P (±)

n |n⟩.

Bosons

In the case of P
(+)
n the contributions of all the stabilizer elements are equal to 1/N !; thus

⟨n|P (+)
n |n⟩ = n!/N !. This holds for all |n| vectors of the orbit n, and the trace of P

(+)
n

is |n| ⟨n|P (+)
n |n⟩ = 1. Thus, in the case of bosons, each occupation number subspace SNn

contains exactly one dimensional symmetric subspace spanned by the normalized sym-
metric vector |n+⟩ obtained by the action of the symmetrizer onto |n⟩ = |i1 ≤ · · · ≤ iN⟩:

|n+⟩ =

√
N !

n1! · · ·n|S|!
P (+)
n |n⟩ =

√
1

n1! · · ·n|S|!N !

∑
π

|iπ−11, . . . , iπ−1N⟩ . (5.9)

The normalization factor is easily found, taking into account that the whole orbit with
|n| orthonormal vectors appear after the action of the permutations, and each of them
exactly n! times.

Thus SN+ is orthogonal sum of the one-dimensional symmetrized occupation number
subspaces:

SN+ =
∑
n

SNn+, SNn+ = Span(|n+⟩). (5.10)

It is obvious that each occupation number n uniquely defines the symmetrized vector
|n+⟩, and in this sense the occupation numbers are basis in the bosonic space.
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Fermions

Analogously to the bosons, the space of fermions is to be found with help of P
(−)
n . However,

if any ns is greater than one, only the even half of the stabilizer elements contribute to
⟨n|P (−)

n |n⟩ by 1/N !, and the odd part by −1/N !. Thus, if any occupation number is

greater than one, the matrix element vanishes, meaning that the trace of P
(−)
n is zero,

and such Sn has no antisymmetric physical states. Consequently, only the spaces with
all ns = 0, 1, i.e. with n! = 1, contribute to the fermionic state space SN− , by the one
dimensional subspace space spanned by the antisymmetric vector

|n−⟩ =
√
N !P (−)

n |n⟩ =
√

1

N !

∑
π

(−)π̃ |iπ−11 < · · · < iπ−1N⟩ . (5.11)

Again, SN− is the orthogonal sum of the one-dimensional symmetrized occupation
number subspaces, but the sum includes only the terms with n having components ns =
0, 1:

SN− =
∑

n (ns<2)

SNn− , SNn− = Span(|n−⟩). (5.12)

Clearly, occupation number n satisfying ns < 2 uniquely defines the antisymmetrized
vector |n−⟩, and such occupation numbers are basis in the fermionic space.

5.1.3 States

Pure states

We have shown that the substantial difference between bosons and fermions was the type
of symmetrization. This has far reaching consequences on the behavior of the two type
of particles.

The most important one is the already emphasized constraint ni = 0, 1 to the fermionic
occupation numbers. In fact, this is the famous Pauli exclusion principle: two fermions
cannot be in the same state. The most frequent example is that at most two electrons
may have the same orbital wave function ψ(r): then their states |ψ,ms⟩ differ in the spin
space by the quantum number ms =

1
2
and ms = −1

2
. This fact is the corner stone of the

periodic system of elements.
As there is no analogous requirement for bosons, the different statistics are obeyed

by the ensembles of the identical fermions and bosons. This can be easily understood
even on the simplest systems. E.g., we can consider the system of two particles in the
states a and b. Classically, there are four states of the pair: a1a2, a1b2 b1a1 and b1b2
(the subscript enumerates the particles). So, assuming equal probabilities of these states,
one can find both particles in the state a with probability 1/4, the same for the state
b, and the probability to find different states of the particles is 1/2. However, in the
quantum mechanical treatment, these states are combined to the three symmetric states
|aa⟩, |ab⟩+ |ba⟩, |bb⟩ and one antisymmetric state |ab⟩−|ba⟩. Hence, in the case of bosons,
the probability is 1/3 to find both the particles in the state |a⟩, same for |b⟩, and same
for the particles in different states. Finally, one finds the fermions in the different states
with certainty. While for the fermions the coincident states are completely forbidden, for
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bosons these are even more probable then for the classical particles. In fact, the total
energy of non-interacting bosons is sum of all the energies of the occupied single particle
states; the ground state of such a system is obviously one with all the particles in the
same single particle state of the minimal energy. This effect is called Bose condensation.
It is important important in understanding of various phenomena, and probably its most
striking manifestation is superfluidity and superconductivity.

The same example may illustrate another striking difference between two types of the
particles. The antisymmetrized vector (5.11) is correlated for any n, while when all bosons
are in the same state |j⟩, i.e. when ni = Nδij, state |n+⟩ is non-correlated. In other words,
fermions are always correlated: Pauli principle imposes, through the antisymmetrization,
at least the exchange or Pauli correlation. Of course, general physical states are nontrivial
superposition of the basis vectors |n−⟩, being in a sense more correlated than |n−⟩. In the
same sense, Pauli correlation is the minimal one, and being not related to dynamics, it is
purely kinematical. On the other hand, depending on the particular dynamics (including
external fields and interaction between particles), the non-correlated states may be even
preferred for bosons.

Despite these, and many other physical differences between bosons and fermions, many
related expressions are formally analogous, and to a far extent it is possible to treat them
in a unified way. Basically this is due to the unified form

|n±⟩ =
√

1

n!N !

∑
π

(±)π̃∆(π) |i1 ≤ · · · ≤ iN⟩ (5.13)

of the occupation number basis vectors, where for fermions n! = 1 is taken into account
for fermions to get (5.11), and otherwise (5.9) is obtained.

For further reasons we introduce convention that if any occupation number is negative
the corresponding vector vanishes: ni < 0 implies |n±⟩ = 0. Also, we use n < n′ to denote
that ns ≤ n′

s for each s, i.e. that the single particle states involved in |n±⟩ are subset of
those appearing in |n′±⟩ (this tacitly assumes different number of particles described by
|n±⟩ and |n′±⟩).

As for the fermions, there is a well known convenient way to perform the antisym-
metrization on the left of (5.13). In fact, this vector is obtained automatically if one
calculates Slater determinant N !−1/2(|ip⟩q), using the direct product as the multiplica-
tion of the matrix elements, which also means that the factors in the product are not
commutative. The expansion rules for determinants provide the correct signs of the fac-
tors. However, if the signs are always taken to be positive, the definition of permanent is
obtained, allowing one to write (5.13) in the form:

|n±⟩ =
√

1

n!N !

∣∣∣∣∣∣∣∣
|i1⟩ |i1⟩ · · · |i1⟩
|i2⟩ |i2⟩ · · · |i2⟩
· · · · · · · · · · · ·
|iN⟩ |iN⟩ · · · |iN⟩

∣∣∣∣∣∣∣∣
±

. (5.14)

Here, sign + stands for permanent and− for determinant. Alas, the algebra of permanents
is much more cumbersome than that of determinants, making this notation widely used
for fermions only. An illustration is easy proof (Exercise 5.2) that the |n−⟩ is biuniquelly
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related to the subspace Sn = Span(|i1⟩ , . . . , |iN⟩) spanned by the occupied single particle
states (this subspace of S should be distinguished from SNn of the N -particle space).
Further important application is the coordinate representation of the states |n±⟩. Indeed,
with ψi(rp) = ⟨rp | i⟩, from (5.14) it is obvious that the corresponding wave function
Ψn±(r1, . . . , rN) = ⟨r1, . . . , rN |n±⟩ is:

Ψn±(r1, . . . , rN) =

√
1

n!N !

∣∣∣∣∣∣∣∣
ψi1(r1) ψi1(r2) · · · ψi1(rN)
ψi2(r1) ψi2(r2) · · · ψi2(rN)
· · · · · · · · · · · ·

ψiN (r1) ψiN (r2) · · · ψiN (rN)

∣∣∣∣∣∣∣∣
±

. (5.15)

Exercise 5.2: Show that arbitrary basis |jp⟩ of Span(|ip⟩ |p = 1, . . . , |iN ⟩) gives by (5.13) the same
physical state as the basis |i⟩ (i.e. the vector differing from |n−⟩ at most by a phase).

Being the basis of the state space SN± , the states |n±⟩ do not exhaust it. The super-
position principle inevitably includes their linear combinations. Although some of these
linear combinations are again purely kinematically correlated states, made with the dif-
ferent bases of the single particle space, there are (anti)symmetrized states which cannot
be written in the form (5.13) for any possible choice of the single particle states. Usually
the eigenstates of the real N -particle systems are just such states, and then the additional
correlation in comparison to the exchange one is naturally called dynamical correlation.

Mixed States

The methods of the statistical physics are quite important in many body problems. They
are based on the mixed states, and we consider some of their elementary properties. A
statistical operator in SN± can be expanded in the form

ρ =
∑
n,n′

cnn′ |n±⟩ ⟨n′±| . (5.16)

From this form it is obvious that these operators commute with permutations. Indeed,
∆−1(π)ρ∆(π) = ρ, both for bosons and fermions since the parity of π appears twice.
Such operators are called symmetric operators, and only these are relevant (by the same
argument as for ρ) for the systems of identical particles.

KANONSKI ANSAMBLI

Subsystems

The reduced states of the clusters of L ≤ N particles are suitable to describe measure-
ments on these natural subsystems. Applying previously introduced techniques (Subsec-
tion 1.3.4) to the subsystems of L and the remaining N − L particles, the reduced state
of the particles p1, . . . , pL is the partial trace over other particles:

ρp1...pL = Tr p̂1···p̂Lρ. (5.17)

Here, hat denotes the particles omitted in the trace. That this is a statistical operator
in SL follows from the general theory. However, it should be checked that it is really
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a state of L identical particles, i.e. a statistical operator in SL± having the form (5.16)
with L-particle symmetrized states |n±

L⟩ and |n′±
L ⟩ (

∑
i nLi =

∑
i n

′
Li = L). To this end

we use the fact (see Exercise 5.3) that the partial scalar product ⟨iL+1, . . . , iN |n±⟩ is up
to the constant just the (anti)symmetrized state of the first L particles (if the set of the
quantum numbers in the bra is not a subset of those in the ket, it vanishes). As in the
partial trace appear only such terms, we see that the reduced state is really a state of L
identical particles.

Exercise 5.3: Prove that the partial scalar product of the N -particle state |n±⟩ with non-correlated
last N − L particles vector |jL+1, . . . , jN ⟩ with the occupation numbers nN−L is L-particle state:

⟨jL+1, . . . , jN |n±⟩ =
√

n!L!

nL!N !
(±)σ̃ |n±

L ⟩ , nL = n− nN−L (5.18a)

(recall that vector vanishes if any nLi is negative); σ is a permutation (unique in the case of fermions
and irrelevant for bosons) such that

∆(σ) |i1 ≤ · · · ≤ iN ⟩ = |iσ−11 ≤ · · · ≤ iσ−1L, jL+1, . . . , jN ⟩ .

Analogously, for the first L-particle vector |j1, . . . , jL⟩ show

⟨j1, . . . , jL |n±⟩ =

√
n!(N − L)!

nN−L!N !
(±)σ̃ |n±

N−L⟩ , nN−L = n− n(j1, . . . , jL), (5.18b)

with σ defined by ∆(σ) |i1 ≤ · · · ≤ iN ⟩ = |j1, . . . , jL, iσ−1(L+1) ≤ · · · ≤ iσ−1N ⟩. For L = 1 derive:

⟨j |n±⟩ =
√
nj
N

(±)lj |n±
N−1⟩ , nN−1,i = ni − δij , lj =

∑
i<j

ni. (5.18c)

Exercise 5.4: Show the equality (here
(

n
nL

) def
= n!/nL!nN−L! with n = nL + nN−L):

⟨n±
N−L |n±⟩ =

√(
n

nL

)
/

(
N

L

)
(±)λ̃ |n±

L ⟩ . (5.19)

It is intuitively clear that due to the indistinguishability of particles, i.e. due to the
symmetrization of the state ρ, each of the L-particle subsystem states should be described
by essentially the same reduced statistical operator:

ρ1,...,L = ρp1,...,pL , ∀{p1, . . . , pL}. (5.20)

To see this formally, we find the matrix elements of the reduced operator ρ1,...,L:

⟨i1, . . . , iL| ρ1,...,L |i′1, . . . , i′L⟩ =∑
jL+1,...,jN

⟨i1, . . . , iL| ⟨jL+1, . . . , jN | ρ |i′1, . . . , i′L⟩ |jL+1, . . . , jN⟩ .

As ρ is symmetric, it can be replaced by ∆−1(π)ρ∆(π) for any π. We chose π to map
{1, . . . , L} into {p1, . . . , pL}. Acting on the bras and kets, this permutation changes the
particles omitted in the partial trace to p1, . . . , pL, giving ρp1,...,pL . On the other hand,
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the commutation of ρ with the permutations of the first L particles, shows that ρ1,...,L is
symmetric.

It has been discussed that the pure states are among the mixed ones singled out as
the one dimensional projectors. As the purely kinematically correlated states |n±⟩ span
the state space, it is useful to find the reduced L-particle states of ρ = |n±⟩ ⟨n±|. Using
(5.18), one straightforwardly shows (Exercise 5.5):

ρ1,...,L =

(
N

L

)−1 ∑
nL≤n

(
n

nL

)
|n±

L⟩ ⟨n
±
L | , with

(
n

nL

)
def
=

|S|∏
s=1

(
ns
nLs

)
. (5.21a)

An important consequence is the form of the single particle reduced states ρ1. The possible
states |n1⟩ are in fact the single particle states: for each s with ns > 0 there is n1 such
that n1i = δis, making |n1⟩ = |s⟩. Then n1! = 1, and (5.21a) becomes:

ρ1 = N−1

|S|∑
s=1

ns |s⟩ ⟨s| . (5.21b)

Exercise 5.5: Prove (5.21a).

Particularly interesting, and for further purposes important, is the structure of these
reduced states for fermions. As the occupation number n satisfies ni = 0, 1, (5.21b)
becomes ρ1 = Pn/N , where Pn is the projector onto the previously introduced single-
particle subspace Sn = Span(|i1⟩ , . . . , |iN⟩). Also, the general form of the reduced states
is simple (Exercise 5.6):

ρ1,...,L =
1(
N
L

) Pn ⊗ · · · ⊗ Pn︸ ︷︷ ︸
L

P
(−)
L . (5.22a)

The most significant special cases of this result are for L = 1, 2, N :

ρ1 =
Pn

N
, ρ12 =

2

N(N − 1)
(Pn ⊗ Pn)P

(−)
2 , ρ = Pn ⊗ · · · ⊗ Pn︸ ︷︷ ︸

N

P (−). (5.22b)

The last expression explains how the subspace of the single particle occupied state uniquelly
determines N -fermion state, as it is anticipated earlier (Exercise 5.2).

Exercise 5.6: Prove (5.22).

Therefore, each N -dimensional single-particle subspace completely determines one an-
tisymmetric physical state; different choices of bases give Slater determinants differing by
phase factors. Vice versa, each N particle Slater determinant uniquely determines N -
dimensional subspace in the single particle state S. In this sense, Slater determinants and
single particle subspaces are biuniquelly related.
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5.1.4 Operators

Symmetric Operators

Indistinguishability of the particles is reflected also on the operators. As the statistical
operators, any N -particle observable must be invariant under the particle permutations,
i.e. ∆−1(π)A∆(π) = A. Such symmetric operators in SN are singled out as the range of
the group SN super-projector

ˆ̂
P (+)A = A,

ˆ̂
P (+) def

=
1

N !

∑
π

∆−1(π) . . .∆(π). (5.23)

In other words, the physical observables commute with permutations, and therefore they
transform according to the identical representation of SN .

Note that a symmetric operator acts within physical state spaces, i.e. it maps phys-
ical states into other ones, which is also a necessary physical property. Indeed, this is
actually a requirement that SN± is an invariant subspace for any physically relevant N
particle operator A, or equivalently, that A commutes with the symmetrizer and the
antisymmetrizer,

[(
ˆ̂
P (+)A), P (±)] = 0, (5.24)

which is easily verified (Exercise 5.7). Thus, although the symmetric operators are fre-
quently written in SN , their physically relevant part is the reduced operator AP (±) =
P (±)AP (±) in SN± , having the form (5.16). Hence, only symmetric operators will be fur-
ther considered.

Exercise 5.7: Prove (5.24).

The symmetric N -particle operators are usually constructed from one- or two-particle
ones. More generally, an L-particle operator Ap1···pL essentially couples L particles p1,. . . ,pL:
it acts nontrivially in the product of the spaces of these particles, while it is identity in
other particle spaces. Using suitable permutations, one straightforwardly obtains equiv-
alent operators for the other L particle clusters: ∆−1(π)Ap1···pL∆(π) = Apπ1···pπL

. In this
way, by the symmetrizer (5.23) the symmetric (in N particle permutations) L-particle

operator A[L] = c
ˆ̂
P (+)Ap1···pL is constructed, where the constant c is defined according

to the particular physical content of the operator (there is no universal normalization
convention as for the states). When Ap1···pL is symmetric itself, i.e. when it commutes
with L particle permutations one gets:

A[L] = c

N∑
p1<···<pL

Ap1,...,pL . (5.25)

Otherwise the sum includes various orderings of the same particles; these essentially
give the symmetrized (by the super-symmetrizer (5.23)) operator. Thus, any symmetric
operator A in SN may be expanded into the series A =

∑N
L=0A

[L].
Typical examples of the symmetric operators are additive quantities like energy (then

c = 1 in (5.25)): an one-particle operator is just the sum A[1] =
∑

pAp, while A
[2] =
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∑
p1<p2

Ap1p2 is a two particle operator. Another type are the multiplicative operators,
like symmetry transformations: if D1 is a single particle operator, then its L-th tensor
powerD1⊗· · ·⊗D1 is a symmetric operator in SL. Also, each L-particle (anti)symmetrizer
P±
L is a symmetric operator.
As the indistinguishability of the particles is now completely incorporated in the quan-

tum formalism, few examples of the symmetric operators discussed below may indicate
its profound and far pervading consequences.

It has been mentioned that the Pauli principle allows at most two electrons to be
in the same orbital state |ψ⟩; then their total single-particle states are |ψ,ms =

1
2
⟩ and

|ψ,ms = −1
2
⟩, yielding the two particle state (in shorten notation) 1√

2
|ψ⟩ (|+−⟩− |−+⟩).

Note that the total spin S2 = s21 + s22 of this state is S = 0. In fact, this is the simplest
manifestation of the quite general result on the total angular momentum of the closed
shell fermions (Exercise 5.8): if 2k+1 fermions occupy the shell of the angular momentum
k (this is the set of states |Q; km⟩, m = −k, . . . , k, with fixed all other quantum numbers
Q, including k in particular), then their total angular momentum vanishes: K = 0. This
refers to any angular momentum appearing in the concrete problem. Here we slightly
generalize the notion of the shell introduced in the physics of atoms in analogy to the
hydrogen like model: besides the main quantum number n there appears the orbital
angular momentum l, as well as the spin s. Then, a closed shell is formed by the 2(2l+1)
electrons filling the states with the fixed n and l. It follows that all the total angular
momenta, L, S and J of these electrons vanish.

Exercise 5.8: Prove that the total angular momentum of the fermions in a closed shell is zero.

Symmetry transformations may serve as examples of symmetric multiplicative oper-
ators. To begin with, recall that an arbitrary single particle operator D1 generates the

multiplicative L-particle operators [D⊗L]± =
ˆ̂
P (+) ⊗L

p=1 Dp are (anti)symmetrized tensor
powers of D1. Recall that if there are |S| identical fermions, their total state space SN− is
one-dimensional. This also means that [D⊗|S|]− is an one-dimensional operator; actually,
this is the determinant of D. If D(g) are operators forming a representation of a group G,
then the (anti)symmetrized operators [D⊗|S|]± are also representations ((anti)symmetrized
powers). In particular, in the space of the |S| fermions, this representation is detD(g).
Therefore, the general conclusion is that if in a single particle space there is a representa-
tion D(G), in the fulfilled case (of |D| = |S| fermions) acts the representation detD(G).
Note that the previous example is a special case of this statement. Considering the ro-
tational group (precisely SU(2)), and its irreducible representations D(k)(SU(2)), in the
closed shell the representation is detD(k)(SU(2)). However, the determinant is the basis
independent product of the eigenvalues eimϕ (m = −k, . . . , k), which immediately shows
that the determinants of any irreducible representation of the rotational group form the
unit representation D(0)(SU(2)), i.e. with the zero total angular momentum. A gener-
alization of this property is elaborated in the Exercise 5.9 (in fact, the last equation of
the Exercises concerns the reducible representations in the single-fermion space, corre-
sponding to several fulfilled shells). The last conclusion also reflects the obvious equality
⊗n
p=1Dp = e

∑n
p=1 Ap relating some n-particle and single-particle symmetric operators.

Exercise 5.9: Show:
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1. [D⊗|D|]− = detD.

2. If D = D1 ⊕D2 ⊕DK , then [D⊗|D|]− =
∏K
i=1(detDi)

|D|−|Di|.

Mean values and reduced operators

In analogy to the reduced L-particle statistical operators, the L-particle operators in
Sp1⊗· · ·⊗SpL are from theN -particle ones constructed by partial traces over the remaining

particles: Ap1,...,pL
def
= Tr p̂1,...,p̂LA. As (5.20) is implied by the fact that ρ is symmetric,

for all the physically relevant (i.e. symmetric) operators one gets symmetric L-particle
operators:

A1,...,L = Ap1,...,pL , ∀{p1, . . . , pL}. (5.26)

Mean value of the L-particle symmetric operator A[L] in the mixed state ρ is

⟨A[L]⟩ρ = TrA[L]ρ =

(
N

L

)
Tr 1,...,LA1,...,Lρ1,...,L. (5.27)

To see this it suffices to use (5.25): TrA[L]ρ =
∑N

p1<···<pL Tr p1,...,pLAp1,...,pLTr p̂1,...,p̂Lρ.
According to (5.26), all the terms are same giving the binomial factor. Note that Tr 1,...,L

is the complete trace of the expression after it, and therefore in the applications it will be
denoted only by Tr .

Particularly, the energy is additive quantity, and assuming only pairwise interactions
the hamiltonian of N -particle system is H = H [1] + H [2]. Single-particle hamiltonian is
H [1] =

∑N
p=1Hp, where Hp = Tp + Up. Analogously, pairwise interactions Vpq, contribute

in the sense of (5.25) (c = 1), by H [2] = 1
2

∑
p1 ̸=p2 Vp1p2 . Therefore, the mean value of the

hamiltonian is found by (5.27):

E[ρ] = NTr 1H1ρ1 +

(
N

2

)
Tr 12V12ρ12. (5.28)

Suppose that the occupation numbers are defined for the eigenbasis of H1 in S, i.e.
H1 =

∑
i ϵi |i⟩ ⟨i|. Then for the purely kinematically correlated states ρ = |n±⟩ ⟨n±|, one

gets by (5.21a):

E[ρ] =
∑
s

nsϵs +
∑
n2<n

(
n

n2

)
TrV12 |n±

2 ⟩ ⟨n±
2 | (5.29)

The first term is the energy of the noninteracting particles, and in some simple dynamical
approximation only it is used. The second term has not the form of the single-particle
mean, which makes the problem too hard to proceed exactly. The main obstacle is
correlation. In fact, even for the single particle term, the general expression is found only
for the minimally correlated states. Further, to understand that the main complexity
is introduced by correlations, we consider very exceptional case of non-correlated two-
particle reduced state: ρ12 = ρ′1⊗ρ′1 (the factors must be equal as the state is symmetrical).
Then the second term in (5.28) is easy to find: Tr 12V12ρ12 = Tr ρ′1Tr 2V12ρ

′
1. We reveal the
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mean field approximation: the interaction term is the energy of the first particle in the
averaged field Tr 2V12ρ

′
1 of the others (being in the states ρ′1), which reduces the problem

to the single-particle one. This observation motivates the most of the approximative
approaches to the many-body dynamics.

MEASUREMENTS
INEFFECTIVENESS OF PAULI PRINCIPLE
L+2 PERTURBATIONS REDUCING IN THE OCCUPATION NUMBER SPACES:

HEISENBERG...
(ANTI)SYMMETRIZATION: ORBITAL AND SPIN
N-REPRESENTABILITY

5.2 Second Quantization

Until now the systems with the fixed number of particles are considered. However, it is
well known that in various processes particles are created or annihilated. Although non-
relativistic quantum mechanics cannot give real insight and explanation of such processes,
its formalism is sufficiently general to treat such situation. Further, in many nonrelativis-
tic problems, usually within some approximations, the dynamics can be well described in
terms of quasi-particles: it turns out that excitations of the systems have so much of the
properties of the real particles (e.g. momenta, spin, etc.), that it is not only technically
convenient, but heuristically very fruitful, to treat them on equal footing. Typically this
occurs in the harmonic approximations, retaining only the hamiltonian terms quadratic
in some generalized coordinates. Being itself an archetypical example, the harmonic oscil-
lator problem underlies all such approaches. Finally, even when the number of particles is
fixed, the previously developed formalism is deficient in the sense that most of the calcu-
lations are performed in the space SN , with cumbersome appearance of the permutations,
although the physical space is only its (anti)symmetrized part. All these motivate the
development of the advanced quantum mechanical formalism, called second quantization,
which is indispensable tool in the contemporary many-body physics and quantum field
theory (including particularly solid state and elementary particles physics).

5.2.1 Fock space

Although nonrelativistic quantum mechanics cannot give real insight to the processes
of the transitions between particles, e.g. decays or creation of particles, the introduced
formalism may treat also these situations. To this end one should firstly realize that the
state space SN± , describing the system with N identical particles space state, is insufficient
framework for the systems with the varying number of particles. Obviously, such spaces
with all possible N = 0, 1, 2 . . . are to be summed, to get the correct state space, called
Fock space:

F± = ⊕NSN± . (5.30)

Recall that if {|i⟩ | i = 1, . . . ,S} is a basis in the single particle state, than the occupation
number vectors n = (n1, . . . , n|S|) define uniquely states |n±⟩. All possible choices of ni
such that N =

∑|S|
i=1 ni give an orthonormal basis in SN± . Therefore, using the states |n±⟩
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for N = 0, 1, . . . one gets the occupation number orthonormal basis of the Fock space
F±, and any vector of this space may be expanded as |Ψ⟩ =

∑
n cn |n±⟩. Particularly, for

N = 0, one gets the one dimensional vacuum space S0
±, spanned by the vacuum state |0⟩

(of course, n = 0 means that n1 = · · · = n|S| = 0). Also, for N = 1 various occupation
numbers are exhausted by one particle being in a particular state |i⟩ = |0, . . . , 0, 1, 0 . . . , 0⟩
(1 on the ith place), and all other states are empty; thus the initial single particle state is
spanned by this basis: S1

± = S.

5.2.2 Creation and annihilation operators

Obviously, the change in the number of particle is manifested as the transition from one
of the subspaces SN± to another one SN ′

± . Such a transition may be considered as a series
of changes by one particle. Thus, it suffices to study creation or annihilation of a single
particle in some particular single-particle state.

Let in the N -particle system being in the state |n±⟩ = |n1, n2, . . .⟩, the particle in
the state |i⟩ is annihilated. The resulting state is |n′±⟩, describing the system of N − 1
particles, with n′

j = nj particles in the states |j(̸= i)⟩ and n′
i = ni − 1 particles in the

state |i⟩. This observation is used to define conveniently the annihilation operator ai in
the ith state:

ai |n1, . . . , ni, . . .⟩ = (±)li(n)√ni |n1, . . . , ni − 1, . . .⟩ . (5.31)

Here, li(n) =
∑i−1

j=1 nj is the number of particles being in the states j with j < i (for

given |n±⟩), i.e. the number of states on the left of the first i. For bosons (+)li(n) = 1
and may be omitted, but we write it to emphasize the unified treatment. The adjoint
operator a†i can be found considering the matrix elements ⟨n′

1, n
′
2, . . .| a

†
i |n1, n2, . . .⟩. As

it acts on the left as the annihilation operator, all the matrix elements vanish except for
⟨n1, . . . ni + 1, . . .|, i.e.

⟨n′±| a†i |n±⟩ =
√
n′±
i (±)li(n

′±)δn
′
1

n1
· · · δn

′
i−1

ni · · · =
√
1 + ni(±)li(n

′)δn
′
1

n1
· · · δn

′
i

1+ni
· · ·

Recall that for fermions ni = 0, 1, meaning that for ni = 1 the occupation number on
the left should be n′

i = 2, and bra automatically vanishes, implying that the whole scalar
product is always zero; as the only other case is ni = 0 the root may be for the fermions
changed to

√
1− ni. Finally, one gets the creation operator:

a†i |n1, . . . , ni, . . .⟩ = (±)li(n)
√
1± ni |n1, . . . , ni + 1, . . .⟩ . (5.32)

Exercise 5.10: Show that as |n±⟩ =
√
N ⟨s |n±⟩. Derive (5.32) using this. Generalize the first result

to get (5.18b) in the form:

⟨j1, . . . , jL |n±⟩ =
√

(N − L)!

N !
ajL · · · aj1 |n±⟩ . (5.33)

Find the form of this expression independent on the number of particles N in the state |n±⟩.

Some important properties of the introduced operators directly follow. For any i in
the vacuum state

ai |0⟩ = 0, a†i |0⟩ = |i⟩ . (5.34)
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While for fermions a2i = a†
2

i = 0, for bosons aki |n+⟩ =
√

ni!
(ni−k)! |n1, . . . , ni − k, . . .⟩ and

a†
k

i |n+⟩ =
√

(ni+k)!
ni!

|n1, . . . , k, . . .⟩. Obviously, any state can be obtained from vacuum by

creation operators:

|n±⟩ = 1√
n1! · · ·n|S|!

a†
n1

1 · · · a†
n|S|

|S| |0⟩ . (5.35)

Finally, note that the number of particles in the state |i⟩ is easily obtained by appli-

cation of occupation number operator n̂i
def
= a†iai, as its eigenvalue:

n̂i |n±⟩ = ni |n±⟩ (5.36)

(for bosons, this directly follows from the definitions, while for fermions in addition the
cases of ni = 0 and ni = 1 should be separately discussed). Accordingly, since the
states with the same number of particles are comprised in the subspaces SN± , these are

eigenspaces of the number of particles operator N̂ =
∑

i n̂i =
∑

i a
†
iai:

N̂ |n±⟩ =
∑
i

ni |n±⟩ = N |n±⟩ . (5.37)

The creation and annihilation operators correspond to the arbitrary chosen basis in the
single particle space S. If the considered basis is continual, then one get continual family of
the creation/annihilation operators, called field operators. For example, to the coordinate
basis |x⟩ correspond the field operators a†(x) creating a particle at x: |x⟩ = a†(x) |0⟩.

5.2.3 Bosonic and fermionic commutation relations

It is obvious that any transition from |n±⟩ to |n′±⟩ can be obtained by action of the
appropriately chosen product of various creation and annihilation operators. Therefore,
it is important to manipulate easily with these operators, and the commutation relations
among them enable this. In addition, the commutation relations are conceptually impor-
tant, revealing in a specific way the difference between bosons and fermions, with the far
reaching consequences.

At first, we look for the commutation relations of two annihilation operators, ai and
aj. To this end we compare the action of aiaj and ajai, for i < j:

aiaj |n±⟩ = (±)li(n)+lj(n)√ninj |. . . , ni − 1, . . . , nj − 1, . . .⟩ ,
ajai |n±⟩ = (±)li(n)+lj(n)−1√ninj |. . . , ni − 1, . . . , nj − 1, . . .⟩ .

In the bosonic case both results are equal. However, since in the second equation ai acts
first, it diminishes by one the number of particles in the states with indices less than j,
which is in the case of fermions manifested as the opposite sign of the result. For i = j,
one trivially gets two equal results for bosons and zeros for fermions. Finally, for j < i

one should reverse the order of the equations. Hence, denoting by [A,B]±
def
= AB ∓ BA

the commutator and anticommutator of the operators, one gets [ai, aj]± = 0. Quite
analogously, the same results is obtained for the pair of annihilation operators.
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Similarly, if one operator is annihilation and the other one creation operator the same
result follows from (i < j):

aia
†
j |n±⟩ = (±)li(n)+lj(n)

√
ni(1± nj) |. . . , ni − 1, . . . , nj + 1, . . .⟩ ,

a†jai |n±⟩ = (±)li(n)+lj(n)−1
√
ni(1± nj) |. . . , ni − 1, . . . , nj + 1, . . .⟩ .

However, for i = j there is important difference. In fact,

aia
†
i |n±⟩ = (±)li(n)+li(n)

√
(1 + ni)(1± ni) |. . . , ni, . . .⟩ = (1± ni) |n±⟩ ;

to show this for fermions, one again notes that the whole expression a priori vanishes
for ni = 1, so the change of the factor 1 + ni to 1 − ni does not matter, as well as in
the case ni = 0. In the opposite order one gets the occupation number operators, i.e.
a†iai |n±⟩ = ni |n±⟩. So, all the obtained results are comprised in:

[ai, aj]± = [a†i , a
†
j]± = 0, [ai, a

†
j]± = δij. (5.38)

Note that for the field operators, the Dirac’s delta function is on the right.
Exercise 5.11: Reconsider the harmonic oscillator problem in terms of the second quantization: find
single particle space and Fock space. What are particles here? Are they fermions or bosons?

5.2.4 Representation of the second quantization

Any orthonormal basis |i⟩ in the single-particle state S can be use to construct the set
of the creation operators a†i in F±, and their adjoint annihilation operators ai. Conse-
quently, instead of the non-correlated bases in F based on the single-particle basis, the
corresponding creation and annihilation operators may be used to represent states and
operators directly in the physical spaces F±.

As for the vectors, their second quantization form is obvious. Indeed, for arbitrary

state |Ψ⟩ =
∑

nΨn |n±⟩ from F±, (5.35) gives |Ψ⟩ =
∑

nΨn
1√
n!
a†

n1

1 · · · a†
n|S|

|S| |0⟩. This
may be applied also for the single particle states. For example, any wave function can
be written as |ψ⟩ =

∫
ψ(r)a†(r) dr |0⟩ = ψ† |0⟩, where ψ† =

∫
ψ(x)a†(x) dx, and a†(r) is

coordinate field. Particularly, plane waves are: |p⟩ = 1
(2π~)3/2

∫
e

i
~p·ra†(r) dr |0⟩.

The operators also may be expressed in terms of the creation and annihilation oper-
ators, as follows from their Dirac notation. Obviously, the operators leaving the number
of particles invariant are combined from the the product of the same number of creation
and annihilation operators. The additive operators among them have very convenient
form. We give it for one-particle and two-particle operators T [1] =

∑
p Tp and V [2] =

1
2

∑
p1 ̸=p2 Vp1p2 , with T1 = T =

∑
ss′ T

s
s′ |s⟩ ⟨s′| and V12 = V =

∑
s1s′1s2s

′
2
V s1s2
s′1s

′
2
|s1s2⟩ ⟨s′1s′2|

(this notation is used to remind of the typical examples of kinetic energy and pairwise
interaction, but the result is quite general):

T [1] =
∑
ss′

T ss′a
†
sas′ , (5.39a)

V [2] =
1

2

∑
s1s′1s2s

′
2

V s1s2
s′1s

′
2
a†s1a

†
s2
as′2as′1 . (5.39b)
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Exercise 5.12: Prove that for additive symmetric L-particle operator A[L] =
∑
p1<···<pl Ap1,...,pL holds

A[L] =
1

L!

∑
s1,...,sL
s′1,...,s′

L

As1,...,sLs′1,...,s
′
L
a†s1 · · · a

†
sLasL · · · as1 , (5.39c)

with As1,...,sLs′1,...,s
′
L
= ⟨s1, . . . , sL|A1,...,L |s′1, . . . , s′L⟩.

Exercise 5.13: Express the angular momentum operators in the form (5.39a) and give the alternative
proof of the closed shell property (5.8).

In the context of representations, the transitions between them should be considered,
too. Taking besides |a; i⟩ the basis |b; i⟩, related to the first one by the unitary transition
operator U , |b; q⟩ =

∑
iq Uiq |a; i⟩, one gets two sets of creation (and annihilation) operators

a†i and b
†
i . Then obviously

b†q =
∑
iq

Uiqa
†
i , bq =

∑
iq

U∗
iqai, (5.40)

meaning that the creation operators transform like basis, while the annihilation ones
transform like dual basis. The plane waves illustrate how the transition between bases
relates the corresponding creation operators (fields): a†(p) = 1

(2π~)3/2

∫
e

i
~p·ra†(r) dr.



Chapter 6

Approximate Methods

Apart from few simple (although important) problems, Schrödinger equation cannot be
solved exactly. A number of methods is developed to find the approximate solutions to
it. It should be emphasized that these methods are substantially different, and suited for
particular purposes.

6.1 Time Independent Perturbations

6.1.1 Perturbed and Unperturbed Hamiltonian

When the Hamiltonian H can be separated into two parts, H = H0+H
′, the first of them

being dominant, it is natural to assume that the solutions (eigenvalues and eigenvectors)
of the dominant part H0 are close to those of the total hamiltonian. This intuitive fact
is easily formalized. To this end the parameter a ∈ [0, 1] is introduced, such that the
a-parameterized operator family

H(a) = H0 + aH ′, (6.1)

form a continuous path from H0 = H(0) to H = H(1). We assume that along the whole
path hamiltonians H(a) have discrete spectrum. If En(0) and |n, λ, 0⟩ are the eigenvalues
and vectors of the unperturbed hamiltonian, H0, then the parameter a, which can be as
small as necessary, interrelates perturbed and unperturbed eigenvalues and eigenvectors:
if En(1) is some eigenvalue of H (i.e. in a = 1), then when a continuously decreases to
0, one gets path En(a) of eigenvalue, with En(0) being the corresponding eigenvalue of
H0. However, several different values, say En(a), En′(a),. . . , can have the same initial
unperturbed eigenvalue En(0): a degenerate level of the unperturbed hamiltonian may
be split by the perturbation into several less degenerate levels1. We denote by Eni(a) all

the perturbed levels which come together to E
(0)
n = Eni(0) in the unperturbed case. Then

the condition for the corresponding families of the eigenvalues Eni(a) and eigenvectors
|n, i, λ, a⟩ is:

H(a) |n, i, λ, a⟩ = Eni(a) |n, i, λ, a⟩ . (6.2)

1In principle, it is also possible that several unperturbed levels En(0), En′(0),. . . , give paths coinciding
in a = 1. For differentiable curves En(a), En′(a),. . . , the coincidence may occur in the countable number
of points, and this is tacitly assumed in the forthcoming expansion.
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In other words, index i counts the splitting of the unperturbed level En(0). The reminded
degeneracy (if any) of the perturbed levels is counted by the index λ, such that the
perturbed eigenvectors are |niλ; a⟩.

6.1.2 Perturbative expansion

These preliminary considerations enable us to expand in a all the terms in the parametric
eigen problem (6.2):

(H0 + aH ′)
∑
p

ap |niλ⟩(p) =

(∑
s

asE
(s)
ni

)(∑
p

ap |niλ⟩(p)
)
. (6.3)

Here one should take into account that E
(0)
ni = E

(0)
n and |niλ⟩(0) = |niλ; 0⟩. While the

zero order energy levels E
(0)
n are assumed to be known, the zero order vectors |niλ; 0⟩ are

not, since the unperturbed Hamiltonian H0 cannot single out any basis within the same
eigen space. Then, separating different orders in a one gets the series of equations:

a0 : H0 |niλ; 0⟩ = E(0)
n |niλ; 0⟩ ; (6.4a)

a1 : H0 |niλ⟩(1) +H ′ |niλ; 0⟩ = E(0)
n |niλ⟩(1) + E

(1)
ni |niλ; 0⟩ ; (6.4b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ap : H0 |niλ⟩(p) +H ′ |niλ⟩(p−1) =

p∑
s=0

E
(s)
ni |niλ⟩

(p−s) . (6.4c)

The first of these equations is immediate consequence of the assumption that the zero
order eigen problem of H is the eigen problem of H0. In this sense, this trivial equation is
a consistency condition for the method. Next we come to the first order equation. If Pn is
the projector onto the unperturbed hamiltonian eigenspace Sn, then Pn |niλ; 0⟩ = |niλ; 0⟩
and PnH0 = PnH0Pn = E

(0)
n Pn. When (6.4b) are projected into Sn, i.e. its both sides

multiplied by Pn, one gets:

E(0)
n Pn |niλ⟩(1) + PnH

′Pn |niλ; 0⟩ = E(0)
n Pn |niλ⟩(1) + E

(1)
ni Pn |niλ; 0⟩ .

Cancelling the first term on the both sides, this becomes the eigenequation for the operator
PnH

′Pn, which is the perturbation H ′ cut in the subspace Sn:

PnH
′Pn |niλ; 0⟩ = E

(1)
ni |niλ; 0⟩ . (6.5)

Both the first order correction of energy levels and the zero order state vectors are
obtained by solving this eigenproblem. Note further that each unperturbed level is up
to the first order correction treated independently. In practice this means that one takes
some important levels (usually the ground one, and sometimes a few above it). Taking

any eigenbasis |nµ; 0⟩ for each of these levels E
(0)
n , the secular equation (6.5) is obtained

in the matrix form ⟨nµ; 0|H ′ |nν; 0⟩ = E
(1)
n δµν . Its different eigenvalues E

(1)
ni are the first

order corrections in energy, while the corresponding eigenvectors |ni, λ; 0⟩ are the zero
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order eigenvectors (for the perturbation H ′) obtained as the representative columns in
the chosen basis |nµ; 0⟩.

This procedure can be further developed for higher order corrections. We will an-
alyze only the case of non-degenerate unperturbed level (the complete theory is given

by Kato [?]). Let us mention here that when E
(0)
n is a discrete eigenvalue with very

close other energies, or a point of the continual spectrum are to be corrected, one should
solve equation (6.5), but with Pn being the sum of projectors of the relevant neighboring

eigenvalues (e.g. from some interval centered at E
(0)
n ).

It is very convenient to have a simple estimate of the error of the involved when energy
level is approximated. In fact, the mean value of the hamiltonian terms which are excluded
in the considered level of perturbation, taken in the obtained corrected eigenvectors gives
such an estimate.

6.1.3 Higher Corrections for Non-degenerate Level

If E
(0)
n is non-degenerate, the indices i and λ are redundant. While obviously the zero

order state must be |n; 0⟩ (the only one in Sn), (6.5) shows that the first order energy
correction is simply the mean of the perturbation in this state:

⟨n; 0|H ′ |n; 0⟩ = E(1)
n . (6.6)

On the other hand, the projector P⊥
n =

∑
m(̸=n),µ |mµ; 0⟩ ⟨mµ; 0| onto the orthocomple-

ment to Sn is (we assumed non-degeneracy for nth unperturbed level only, while the other
ones may be degenerate) is applied to the first order equation, giving the projection onto
S⊥
n :∑
m(̸=n),µ

(
E(0)
m ⟨mµ; 0 |n⟩(1) + ⟨mµ; 0|H ′ |n; 0⟩

)
|mµ; 0⟩ = E(0)

n

∑
m(̸=n),µ

⟨mµ; 0 |n⟩(1) |mµ; 0⟩ .

Consequently, finding the projections onto the basis vectors |mµ; 0⟩, and assuming that

the first order correction |n⟩(1) of the state |n; 0⟩ is orthogonal to |n; 0⟩:

⟨mµ; 0 |n⟩(1) = ⟨mµ; 0|H ′ |n; 0⟩
E

(0)
n − E

(0)
m

, i.e. |n⟩(1) =
∑

m(̸=n),µ

⟨mµ; 0|H ′ |n; 0⟩
E

(0)
n − E

(0)
m

|mµ; 0⟩ . (6.7)

The second order correction of the energy can be found analogously, projecting (6.4c) for
p = 2 onto Sn:

E(0)
n Pn |n⟩(2) + PnH

′ |n⟩(1) = E(0)
n Pn |n⟩(2) + E(1)

n Pn |n⟩(1) + E(2)
n |n; 0⟩ .

The first terms on the both sides cancel, the second term on the right vanishes due to the
orthogonality of |n⟩(1) and |n; 0⟩:

|n; 0⟩ ⟨n; 0|H ′ |n⟩(1) = E(2)
n |n; 0⟩ .

Finally, substituting (6.7) one gets

E(2)
n =

∑
m(̸=n),µ

| ⟨mµ; 0|H ′ |n; 0⟩ |2

E
(0)
n − E

(0)
m

. (6.8)
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Usually it is interesting to find the corrections to the energy of the ground state, E
(0)
0 ,

being the minimal among the eigenvalues of H0. Obviously, the second order correction
is always negative, independently of the system. In fact, there is an estimate of this
correction:

Theorem 6.1 If there is finite difference △E(0)
n from the level E

(0)
n to the closest to it

level, and the dispersion △H ′ in the state |n; 0⟩ is finite, then

|E(2)| ≤ △2H ′

|△E(0)
n |

. (6.9)

Proof: Taking the absolute value of (6.8) one gets the proposed estimation directly:

|E(2)
n | ≤

∑
m( ̸=n),µ

| ⟨mµ; 0|H ′ |n; 0⟩ |2

|E(0)
n − E

(0)
m |

≤
∑
m(̸=n),µ | ⟨mµ; 0|H ′ |n; 0⟩ |2

|△E(0)
n |

=

⟨n; 0|H ′(I − |n; 0⟩ ⟨n; 0|)H ′ |n; 0⟩
|△E(0)

n |
=

⟨H ′2⟩ − ⟨H ′⟩2

|△E(0)
n |

.

6.2 Adiabatic approximation

Complex matter consists of ions and electrons. Their great difference in masses enables
specific approximate separations of degrees of freedom related to the two classes. Let
R = (R1x, . . . , RNz) denotes the set of all the coordinates of ions, while r = (r1x, . . . , rNz)
are the coordinates of electrons. Total hamiltonian is:

H = TR + Tr + V (R, r) = Hr + TR, (6.10)

where TR =
∑N

I=1
~2

2MI
△R, and Tr =

∑n
r=1

~2
2m

△r are ionic and electronic kinetic energies,
while the total interaction V (R, r) = Vion(R) + Vel(r) + Vie(R, r) is the total interac-
tion consisting of ionic, electronic and electron-ion part. This hamiltonian gives total
Schrödinger equation:

HΨ(R, r) = EΨ(R, r). (6.11)

Electronic hamiltonian

Hr = Tr + V (R, r), (6.12)

does not include ionic kinetic energy, and all other terms commute with ionic coordinate
operators2. Therefore, it can be understood as a family of the electronic hamiltonians,
parameterized by the ionic configurations R. In this sense, the solutions of the electronic
Schrödinger equation

Hrηi(R, r) = ϵi(R)ηi(R, r), (6.13)

2Alternatively, for some purposes also Vion(R) can be omitted from Hr, with the same conclusions.
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are parameterized by R. This means that for each ionic position R there are electronic
states, making basis in the electronic state space, and energies. Accordingly, total eigen-
function can be expanded in the form

Ψ(R, r) =
∑
i

χi(R)ηi(R, r). (6.14)

Here, for each R the expansion coefficients give ionic functions χi(R). To find them, we
substitute (6.14) in (6.11), apply (6.13), multiply by η∗j and finally integrate over r, to
find out:

[TR + ϵj(R)− E]χj(R) =
∑
i

Λjiχi(R).

Matrix Λ has the elements

Λji =
∑
I

~
2MI

∫
drη∗j (R, r)

∂2ηi(R, r)

∂R2
I

+

(∑
I

~
MI

∫
drη∗j (R, r)

∂ηi(R, r)

∂RI

∂χi(R)

∂RI

)
.

Obviously, for large ionic masses it is small. Adiabatic approximation consists in neglect-
ing Λ. Then the previous equation becomes ionic Schrödinger equation:

[TR + ϵj(R)]χmj(R) = Emjχmj(R).

This equation contains no electronic degrees of freedom. On the other hand, the
electrons appears here through their eigenenergies, which have the role of the external
potential defining the ion dynamics.

To summarize, adiabatic approximation suffices to separate electron and aions. Within
this model, the electronic equation is to be solved first, and their energies give the potential
in which ions move. To study the ground state of the total system, one takes the ground
state of electrons, with energi ϵ0, and then solves equation of ions in the external potential
ϵ0.

Despite the success in reduction the problem to separate equations in electrons and
ions, each of these subsystems is usually complex enough, and further approximations are
employed. While for the electrons various approximations will be considered later, here
we mention that for ions it is usual to adopt Born approximation. It assumes that the
ions are in the position R0 corresponding to minimum of the potential ϵ0. Then, their
dynamics is by harmonic approximation reduced to vibrations around this minimum.

6.3 Variational Method

6.3.1 General characteristics

Foundation

The variational method is based on the well known mathematical theorem on the coinci-
dence of the eigenvectors of an observable, with the stationary vectors of the functional
defined over the domain of A as the mean ⟨ψ|A |ψ⟩ of A. We are going to prove it, in the
form suitable for further purposes.



90 CHAPTER 6. APPROXIMATE METHODS

Theorem 6.2 Let the Hamiltonian H be with purely discrete spectrum, and let the energy
functional be defined as:

E[|ψ⟩] def
=

⟨ψ|H |ψ⟩
⟨ψ |ψ⟩

. (6.15)

Then the stationary points of E[|ψ⟩] coincide with the eigenvectors of H; the corresponding
stationary values are the eigenvalues of H.

Proof: The variation of (6.15) in the form ⟨ψ| (H − E[|ψ⟩]) |ψ⟩ = 0, with the stationary condition

δE[|ψ⟩] = 0 gives equation ⟨δψ| (H − E[|ψ⟩]) |ψ⟩ + ⟨ψ| (H − E[|ψ⟩]) |δψ⟩ = 0. Due to the independence

of the variation of the vectors, |δψ⟩, and functionals, ⟨δψ|, both terms in the last equation must vanish,

imposing the eigenvalue condition: (H − E[|ψ⟩]) |ψ⟩ = 0.

In addition, the same proof shows that in any invariant subspace in S, the stationary
points of E in any invariant subspace are the eigen vectors of H from that subspace (note
that besides the vectors, also the variations |δψ⟩ in the proof are from this subspace).
Altogether, the variational problem over the entire state space S is equivalent to the
eigenvalue problem of H, and can be used in the context of the dynamics of the system.
Still, in this form it actually reduces to eigenproblem, giving no advantage to its solution.
Nevertheless, the following trivial consequence of the statement 6.2 is fruitful.

Theorem 6.3 The ground state energy (minimal eigenvalue of H) is less than or equal
to the mean value of the hamiltonian in any state:

E0 ≤ E[|ψ⟩] = ⟨ψ|H |ψ⟩
⟨ψ |ψ⟩

. (6.16)

Proof: With help of probability vn = v(En,H, |ψ⟩) mean is E[|ψ⟩] =
∑
nEnvn ≥ E0

∑
n vn = E0.

Now one uses variational formulation of the eigenproblem to introduce the following
approximation. Instead of the whole state space S only its part T , called trial set, is
considered. Then the variational method gives the stationary points within T . According
to the theorem 6.3, it is expected that the ground state |0⟩ is best approximated within T
by the state |ψ0⟩, giving the minimal E[|ψ0⟩]. Of course, the quality of the approximation
is determined by the choice of T .

This stress out that the choice of T is the critical point of the approximation. There-
fore, to improve the results all a priori known properties of the ground state should be
included. For example, frequently the symmetry or number of zeros of the ground state
wave function are a priory clear, and the trial functions with such characteristics are to
be considered. This is also important in approximations of the excited states within this
method. If the ground state, either exact |0⟩, or approximate |ψ0⟩, is known, the trial set
is to be chosen among the orthogonal vectors.

Standard realizations

To enable variational calculus, i.e. analysis, the trial set wuite generally must be a mani-
fold. Therefore, the states are taken in the parameterized form |ψ(a1, a2, . . . )⟩. Then the
variational derivative is found as the derivative over the parameters, and the stationary
state is obtained as a value of the parameters a1, a2, etc., satisfying all the equations

∂

∂ai

⟨ψ(a1, a2, . . . )|H |ψ(a1, a2, . . . )⟩
⟨ψ(a1, a2, . . . ) |ψ(a1, a2, . . . )⟩

= 0. (6.17)
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Most frequently, this procedure is performed in the coordinate representation.
Particularly, if the trial set is a subspace, then the parameters are naturally chosen

as the coefficients ai in the expansion |ψ⟩ =
∑

i ai |ϕi⟩ of the arbitrary vector over some
basis |ϕi⟩ of T . Then, denoting the Hamiltonian matrix elements in this subbasis by
Hij = ⟨ϕi|H |ϕj⟩, the state norm in the equations (6.17) may be restricted to 1, which
introduces the mean energy as the Lagrange multiplier:

∂

∂ai

(∑
pq

a∗paqHpq − E
∑
pq

a∗paq

)
, i.e.

∑
p

a∗p(Hpq − E) = 0 ∀q.

Since |ϕi⟩ form the basis in the subspace T , in the last equation only the matrix elements
of the restricted operator HT = PTHPT are involved (as usual, PT is the projector
onto T ). Hence, this equation is exactly the eigenvalue problem ⟨ψ| (HT − E) = 0,
its q-th component written in the |ϕi⟩ representation. Indeed, this is anticipated when
immediately after the Theorem 6.2 it is generalized to any invariant subspace of H: the
only relevant operator in the variational procedure turns out to be the restriction HT , for
which the subspace T is invariant. Therefore, the variational problem with linear trial
set reduces to the eigenvalue problem of the restriction.

It is also interesting to compare the variational method to the stationary perturbations.
To this end let Hamiltonian be H = H0 + H ′, while the trial set is chosen as an eigen
space of H0: T = S0

n. The stationary states are found as the eigen states of the restricted
Hamiltonian Pn(H0 +H ′)Pn = E0

n + PnH
′Pn. Obviously, the states |niλ; 0⟩ are obtained,

with encountered correction of energy of the first order: E[|niλ; 0⟩] = E0
n + E

(1)
ni .

Error estimates

There is no precise estimate of the error, but the following results are useful in this context.

Theorem 6.4 Let {|0⟩ , |1⟩ , . . . } and {E0, E1, . . . } be the exact eigenvectors and the cor-
responding eigenvalues of the Hamiltonian, in the increasing energy order.
(i) For each physical state |ψ⟩ there is at least one n such that

|En − E[|ψ⟩]| ≤ △|ψ⟩H.

(ii) If the difference between the variational and the exact ground states |ψ0⟩ and |0⟩ is

estimated by ϵ
def
= 1− | ⟨ψ0 | 0⟩ |, then for each |ψ⟩ orthogonal to |ψ0⟩:

ϵ ≥ | ⟨ψ | 0⟩ |2, E[|ψ⟩] ≥ E1 − ϵ(E1 − E0).

Proof: (i) According to the previous theorems, there surely exists En closest to the E[|ψ⟩]. Then, using
the mean in |ψ⟩ of the spectral form (H − E[|ψ⟩])2 =

∑
i(Ei − E[|ψ⟩])2Pi, one gets

△2
|ψ⟩H ≥

∑
i

⟨ψ| (En − E[|ψ⟩])2Pi |ψ⟩ = (En − E[|ψ⟩])2.

(ii) For any vector |ψ⟩ orthogonal to |ψ0⟩ one finds

1 = ⟨0 | 0⟩ = ⟨0 |ψ0⟩ ⟨ψ0 | 0⟩+ ⟨0 |ψ⟩ ⟨ψ | 0⟩+ · · · ≤ 1− ϵ+ | ⟨0 |ψ⟩ |2,
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which proves the left inequality. The right one follows from:

E[|ψ⟩] =
∑
nn′ ⟨ψ |n⟩ ⟨n|H |n′⟩ ⟨n′ |ψ⟩ =

∑
nEn| ⟨ψ |n⟩ |2 =

E0| ⟨ψ | 0⟩ |2 − E1| ⟨ψ | 0⟩ |2 + E1| ⟨ψ | 0⟩ |2 +
∑
n(>0)En| ⟨ψ |n⟩ |2 ≥

(E0 − E1)| ⟨ψ | 0⟩ |2 + E1

∑
n | ⟨ψ |n⟩ |2 ≥ −(E0 − E1)ϵ+ E1.

The first part of the theorem asserts that any state, including any state stationary over
T , is close to an eigenstate (in the △H neighborhood), but it is not specified to which
eigenstate. Hence, using this criterion it cannot be estimated how far from the ground
state the result is.

6.3.2 Hartree-Fock method

Correlation of many particle states is the main obstacle to the exact dynamical approach.
They cannot be avoided, as the (anti)symmetrization and interaction make the noncor-
related states not physically real. As it has been discussed, the minimal correlation is
pure kinematical exchange one, introduced by the indistinguishability of the particles.
As for the electrons, this Pauli correlation is included by the Hartree-Fock variational
method: the trial set comprises all the Slater determinants. It should be immediately
stressed out that the dynamical correlation is completely neglected, which restricts the
scope of the applications: the typical error in the obtained ground state energy is 0.1 eV
is good enough for prediction of the most of the physical (e.g. electro-optical properties),
but too large for reliable predictions of the stable molecular configuration. Therefore,
Hartree-Fock method has been during the past decade progressively substituted by the
density functional methods, to accommodate requirements of high-technology and mate-
rials science.

Energy functional

The cornerstone of the Hartree-Fock method is the restriction to the trial set of Slater
determinants. This results in the extremely simple form (5.22b) of the corresponding
single- and two-particle reduced states, which are in turn enough to find convenient general
form (for this trial set!) of the energy functional. Indeed, as at most pairwise interactions
are assumed, the hamiltonian is H = H [1] + H [2], with the single-particle term H [1] =∑N

p=1Hp; here Hp = Tp+Up includes kinetic energy and potential of the possible external

field. The pairwise Coulomb interactions Vpq, determine H [2] = 1
2

∑
p1 ̸=p2 Vp1p2 . Therefore,

for the Slater determinant composed of the states |ϕ1⟩ , . . . , |ϕN⟩, making the single particle
space projector P =

∑N
i=1 |ϕi⟩ ⟨ϕi| = Nρ1, the energy functional, i.e. the mean value of

the hamiltonian, by (5.28) reads:

E[P ] = Tr 1(H1 +
1

2
UHF
1 )P =

N∑
p=1

⟨ϕp| (H1 +
1

2
UHF
1 ) |ϕp⟩ , (6.18)

with V = V12. The crucial point is that the two-particle terms reduce to the formally
single particle operator:

UHF
1

def
= 2Tr 2P

(−)
2 V P = 2NTr 2P

(−)
2 V ρ2; (6.19)
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here, P and ρ1 are the operators in the second particle space. In other words, the Slater
determinants approximation, change the dynamical model to that of the noninteracting
particles in the external field U + 1

2
UHF.

Explicitly, the terms related to the two-particle interactions in (6.18) are:

⟨ϕp|
1

2
UHF
1 |ϕp⟩ =

1

2

∑
q

(⟨ϕpϕq|V |ϕpϕq⟩ − ⟨ϕpϕq|V |ϕqϕp⟩) (6.20a)

(note that the term p = q is cancelled). The first term is called direct or Hartree’s and
the second one exchange or Fock’s (the ordinal of the space is given within the vector for
clarity):

UH
1 =

∞∑
p=1

N∑
q=1

|ϕp1⟩ ⟨ϕp1| ⟨ϕq2|V |ϕq2⟩ =
N∑
q=1

⟨ϕq2|V |ϕq2⟩ (6.20b)

UF
1 =

∞∑
p=1

N∑
q=1

|ϕp1⟩ ⟨ϕq1| ⟨ϕp2|V |ϕq2⟩ . (6.20c)

Their coordinate representation (assuming position dependent interaction potential) is

UH
1 (r) =

∫
dr2

∑
q

ϕ∗
q(r2)ϕq(r2)V (r, r2), (6.20d)

UF
1 (r, r

′) =
∑
q

ϕ∗
q(r

′)ϕq(r)V (r, r′). (6.20e)

The Hartree contribution is diagonal in the coordinates, i.e. it is usual multiplicative
single-particle potential. In fact, this is simply averaged interaction with other electrons,
and due to the exchange it must be corrected by the Fock’s term, which is not of this type.
The method in which exchange term is neglected (and possibly treated perturbatively
later on) is therefore called Hartree’s, while the Hartree-Fock method proceeds with both
terms.

Equation of extrema

Having thus the energy functional expressed as the single particle operator mean value,
we can perform variational calculus to find the extremes. At first, we emphasize again
that the Slater determinants are considered only, which results in the approximation to
the ground state with the minimal, Pauli, correlation. On the other hand, due to the
biunique relation of the N -particle Slater determinants and N -dimensional projectors in
the single particle state space, the trial set is formed by the N -dimensional projectors
(or subspaces) in S. Such a set is manifold (thus the variational approach is eligible),
but the realization of the variational problem is more transparent within the constrained
(conditional) variation scheme: we perform the variation over the linear space of the her-
mitian operators (apparently enlarging the trial set by the physically senseless operators,
not corresponding to the states), but compensate this by the constraint P 2−P = 0. This
introduces the Lagrange multiplier Λ, and the variation of the energy functional becomes:

δE[P ] = δTr 1

[(
H1 + Tr 2(P

(−)
2 V P )

)
P + Λ(P 2 − P )

]
= 0.



94 CHAPTER 6. APPROXIMATE METHODS

Here, Λ is matrix of the dimension of the single particle space, in which the N -dimensional
projectors P are trial set. The dimension of the projector is automatically provided in
the course of the realization of the variational method. Indeed, the initial condition
should be appropriately chosen, i.e. such N -dimensional projector is started with, and in
the view of the continuity of the procedure, only the manifold of the same dimensional
projectors is taken into account. Since ∆(τ)P

(−)
2 V (δP ⊗ P )∆(τ) = P

(−)
2 V (P ⊗ δP ), and

Tr 1Λ(P
2 − P ) = Tr 1(PΛ− Λ)P , the equation for the variational extreme is

Tr [(h+ ΛP + PΛ− Λ)δP ] = 0,

with the single particle effective hamiltonian h = H1 + UHF
1 . The trace is over the single

particle space, which is the total space of the equation. The variational equation has
the form of the operator scalar product; thus, since the variation is arbitrary hermitian
operator, one gets the equivalent algebraic equation for the extremes:

h+ ΛP + PΛ− Λ = 0. (6.21)

Multiplying it by P , firstly from left and then from right, and subtracting the obtained
equations, we get:

[h, P ] = 0. (6.22)

However, we easily verify that whenever (6.22) is satisfied by some h and P , then also
the extremal equation (6.21) is solved by Λ = h − hP − Ph. Therefore, (6.22) is the
solution which is looked for, and it is called the Hartree-Fock equation. If in UHF

1 the
exchange potential is omitted, one gets the Hartree equation of the same form. Note
again that the considerably simple algebraic form of the Hartree-Fock equation (6.22)
originates in the effectively single particle procedure, enabled by the neglecting of the
dynamical correlations.

Self consistent solution

It is important that UHF
1 , and this way h, is itself determined by the state P (precisely,

by the Slater determinant corresponding to P ), which is looked for. This makes the
equation (6.22) nonlinear in P , and the procedure for solving it is necessarily iterative.
To understand this approach, consider the final solution: we obtained the Hartree-Fock
hamiltonian h commuting with the N -dimensional projector P . Consequently, within the
range of P there are N states (single particle) which are eigenstates of h:

h |ip⟩ = ϵp |ip⟩ , p = 1, . . . , N. (6.23)

As the dynamical model is reduced to the independent (noninteracting) electrons, we may
assume that the electrons, due to the Pauli principle, occupy these N states. In this sense,
the operator h takes the role of the hamiltonian; nevertheless, the total energy is not the
sum of the above eigenvalues, as UHF is multiplied by 1

2
in (6.18). Further, if there was

not mutual interaction of electrons, i.e. if U = 0, these states would be real single particle
states (and h would be real single particle hamiltonian).
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Thus one starts with a Slater determinant constructed with some states |i01⟩ , . . . , |i0N⟩,
giving the projector P 0. Usually, they correspond to the noninteracting case of the con-
sidered problem; as Hartree-Fock method is usually used to find the atomic or molecular
orbitals, one can use the first N hydrogen like orbitals. Then, for this state UHF and h
are to be calculated: UHF[P 0] = 2Tr 2P

(−)
2 V (12)P 0, h0 = T +U+UHF[P 0]. Next, the eigen

problem of h0 is solved, to get the eigenvectors |i1p⟩, and the eigenergies ϵ1p (p = 1, . . . , |S|).
The lowest N energies select the eigenstates |i11⟩ , . . . , |i1N⟩ forming new Slater determinant
and projector P 1. The procedure is then repeated: in the s-th step we calculate single
particle hamiltonian hs, with eigenvectors determining the next step:

hs |is+1
p ⟩ = ϵs+1

p |is+1
p ⟩ , p = 1, . . . , N.

The solution is the fixed point of the procedure: after some iterations, new state is same as
the previous. If the initial state is considerably well estimated, the procedure converges,
providing self consistency of the solution. The obtained solution surely is the extreme
of energy (within the trial set of the Slater determinants), but it is not obvious if it is
minimum. However, the choice of the lowest energy eigenvectors usually leads to the
minimum.

As mentioned above, the total energy of the resulting state is not the sum of the
obtained eigenenergies; indeed by (6.18) one finds:

E[P ] =
∑
i

ϵi −
1

2
⟨UHF⟩ .

This is because the sum includes each pairwise interaction twice. Therefore, the eigenval-
ues ϵi are not to be interpreted as the energies of the electrons in the corresponding states
|i⟩, but the ionization energies necessary to separate particle in that state (Koopmans’
theorem).

6.4 Density Functional Theory

The Hartree-Fock method essentially reduces the interacting many-body problem to the
noninteracting one, with suitably chosen single particle external potential. In fact, this
includes a part of the inter-particle interaction as the mean field in the assumed state. The
cost for the reduction to the single particle problem is neglecting of correlations (except
the Pauli exchange), due to the trial function of the Slater determinant type.

The same concept inspired much more precise method called density functional theory.
It is based on the following simple:

Theorem 6.5 [Hohenberg-Kohn, 1964] Reduced density matrix ρ1 of the ground state
uniquely determines the external potential U . Particularly, for the position dependent
potential, the density function ρ1(r) = ⟨r| ρ1 |r⟩ determines U .

Proof: We assume that in the external potential U the ground state of the system is ρ, with the reduced
density matrix ρ1. Let there is another external potential U ′ giving the ground state ρ′ with the same
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reduced statistical operator ρ1. With H0 = T + V , the minimal energy (??) of the ground states in the
potentials U and U ′ are related as:

EU [ρ] = TrH0ρ+NTr 1Uρ1 < EU [ρ
′] = TrH0ρ

′ +NTr 1Uρ1 = EU ′ [ρ′] +NTr 1(U − U ′)ρ1.

Analogously, EU ′ [ρ′] < EU [ρ]+NTr 1(U
′−U)ρ1. Then, adding these two equations, one gets contradiction

EU ′ [ρ′] +EU [ρ] < EU ′ [ρ′] +EU [ρ], proving that if in the potential U the reduced ground state density is

ρ1, there is no other potential producing the same ground state density. This conclusion is consequence

of the same ρ1 in the last term; When the external potential is position dependent only, this term reads

Tr 1(U − U ′)ρ1 =
∫
drρ1(r)(U(r)− U ′(r)), and the equality of density functions is sufficient.

Although in the above proof the non-degenerate ground state is considered, the gen-
eralization to degenerate ground state exists in literature. Further, there are densities
ρ1(r) being not reduced states of the ground state for any potential. Thus, the theorem
means that there is biunique correspondence between potentials U and the densities of
the ground states of a many-particle system in some external potential; such densities are
called U -representable.

In fact, a system of many particles of some sort defines itself an inter-particle in-
teraction V , being universal in the sense that it has the same form for these particles
independently on the specific circumstances. Analogously, the kinetic energy is universal,
and only the external potential defines different physical situations. Now, the Hohenberg-
Kohn theorem emphasizes the importance of the densities: they biuniquely correspond
to different physical situations, i.e. to the associated ground states. When this is un-
derstood, the theorem implies that the ground state is functional of ρ1(r), as well as the
ground state mean value of any many body observable A:

⟨A⟩ def
= TrAρ = A[ρ1(r)]. (6.24)

The last conclusion applied to the energy functional immediately gives:

Theorem 6.6 [Hohenberg-Kohn, 1964] The energy functional

EU [ρ1] = F [ρ1] + Tr 1Uρ1 (6.25)

reaches its minimum for the ground state reduced density ρ1 corresponding to U . Here, F
is functional universal for the given type of particles.

Instead of ρ1, to fix the number of particles N , we use ϱ = Nρ1. The function
ϱ(r) = ⟨r| ϱ |r⟩ is real N -particle density, due to the trace relation

Tr 1ϱ =

∫
drϱ(r) = N. (6.26)

Density variational principle

It is well known that the N -particle ground state |Ψ⟩ is the minimal state of the energy
mean. The variational procedure may be performed in two steps. Firstly, for each fixed
ϱ(r), one may find |Ψϱ⟩ as the minimum of the energy mean over the states giving same
ϱ(r). Thus this mean is the functional of ϱ(r):

E[|Ψϱ⟩] = min
Φ→ϱ(r)

⟨Φ|H |Φ⟩ = F [ϱ(r)] +

∫
drU(r)ϱ(r). (6.27)
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This defines the universal (exterior field independent) functional

F [ϱ(r)]
def
= min

Φ→ϱ(r)
⟨Φ|T + V |Φ⟩ = ⟨Ψϱ|T + V |Ψϱ⟩ . (6.28)

In the next step, the ground state is found as the minimum of E[|Ψϱ⟩] over densities, i.e.
the states |Ψϱ⟩. The Euler-Lagrange equation for the constrained variational extremes 3

is
δF [ϱ(r)]

δϱ(r)
+ U(r) = µ, (6.29)

where the chemical potential µ is the Lagrange coefficient for the density constraint (6.26).
Determination of the functional F [ϱ(r)] would transform (6.29) into equation in ϱ,

making N -particle problem exactly solvable. However, the functional is not known. In
principle, it is a sum of the kinetic energy (T [ϱ(r)]) and potential containing the direct
(Hartree) term (D[ϱ(r)]), Fock exchange (X[ϱ(r)]) and correlation (C[ϱ]) functionals4.
The last two terms are usually joined into the exchange-correlation functional Exc[ϱ(r)].
These potentials will be precisely determined later. The kinetic energy and correlation
functional are not known exactly.

To handle the kinetic energy, we consider a system of noninteracting particles, i.e.
V = 0, when essentially the single particle approximation is fulfilled, and instead of F
the kinetic energy functional T0 is obtained. Thus, the hamiltonian is H0 = T + U , and
for fixed ϱ(r) one can define |Ψϱ0⟩ and the ground state |Ψ0⟩:

T0[ϱ(r)]
def
= min

Φ→ϱ(r)
⟨Φ|T |Φ⟩ = ⟨Ψϱ0|T |Ψϱ0⟩ , (6.30)

giving the variational minimum by the equation:

δT0[ϱ(r)]

δϱ(r)
+ U0(r) = µ. (6.31)

Now, assuming that ϱ(r) is both interacting and noninteracting system U -representable,
one can think of (6.29) and (6.31) as describing equivalent (via ϱ(r)) interacting and non-
interacting systems. Their equivalence is achieved by the redefined (with respect to U(r))
external field U0(r) (which is also suited to get the same Lagrange multiplier µ). Thus,
the Euler-Lagrange equation for the noninteracting system give Kohn-Sham equations:

Theorem 6.7 [Kohn-Sham, 1965] The exact N-particle ground state density ϱ(r) is
ϱ =

∑N
p=1 |p⟩ ⟨p|, where |p⟩ are the N lowest eigenvectors of the Kohn-Sham single-particle

hamiltonian H0 = T + U0:

H0 |p⟩ = ϵp |p⟩ , U0(r) = U(r) +
δD[ϱ(r)]

δϱ(r)
+
δExc[ϱ(r)]

δϱ(r)
. (6.32)

3Variation of the functional F [ϱ] is defined as δF [ϱ]
def
= ∂

∂α (F [ϱ(r) + αδϱ])α=0. The functional
derivative is the functional of ϱ comprising the part of variation linear in δϱ. For the local functional

F [ϱ] =
∫
drf [r, ϱ], the variation is

∫
drf ′ϱ[r, ϱ]δϱ, making δF [ϱ]

δϱ = f ′ϱ[r, ϱ(r)].
4Exchange term includes correlation due to antisymmetrization only, while the rest is gathered in

correlation term; this means that Slater determinant gives C = 0, while C ̸= 0 is provided only by their
linear combinations.
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This equation can be solved self consistently, in analogy with Hartree-Fock method
if all the potentials are known. For the noninteracting Kohn-Sham orbitals (giving |Ψ0⟩
as their Slater determinant) T0[ϱ(r)] is found exactly, as well as the Hartree direct term,
D[ϱ(r)] = 1

2

∫
dr dr′ϱ(r)ϱ(r′)v(r − r′), introducing the potential (6.20d). Since Slater

determinant |Ψ0⟩ involves no correlation, X[ϱ(r)]
def
= ⟨Ψ0|V |Ψ0⟩−D[ϱ(r)], giving ⟨Ψ0|T+

V |Ψ0⟩ = T0[ϱ(r)] + D[ϱ(r)] + X[ϱ(r)]. As F [ϱ(r)] = ⟨Ψ|T + V |Ψ⟩, and Exc[ϱ(r)] =
X[ϱ(r)] + C[ϱ(r)] it remains:

C[ϱ] = F [ϱ]− (T0[ϱ] +D[ϱ] +X[ϱ]) = ⟨Ψ| (T + V ) |Ψ⟩ − ⟨Ψ0| (T + V ) |Ψ0⟩ . (6.33)

Note that when V = 0, single particle case, X[ϱ(r)] = −D[ϱ(r)], making C[ϱ(r)] = 0
(since a priori F [ϱ(r)] = T0[ϱ(r)]). For V ̸= 0, since |Ψ⟩ is the minimal point of ⟨T + V ⟩,
C[ϱ(r)] ≤ 0. On the contrary, |Ψ0⟩ minimalize ⟨T ⟩, making ⟨T ⟩Ψ − ⟨T ⟩Ψ0

positive.
Consequently, the rest ⟨V ⟩Ψ − ⟨V ⟩Ψ0

of C[ϱ(r)] is negative.
Thus the main problem is determination of correlation functional. This is performed

within some approximations. It appears that it is easier to approximate together exchange
and correlation. To understand this energy, we consider family of the hamiltonians,
Hλ = T + λV + U , yielding |Ψλ⟩ with fixed ϱ(r) (adiabatic connection). For λ = 0 the
Kohn-Sham system is obtained, and for λ = 1 the actual interacting system. Further, we
introduce two-particle density operator ϱλ2 = N(N −1)Tr 3,...,N |Ψλ⟩ ⟨Ψλ|, and two particle
density ϱλ2(r

′, r) = ⟨r, r′| ϱλ2 |r, r′⟩, giving the joint probability to find particle around r′

and another one around r. Then

⟨V ⟩Ψλ
=

1

2
TrV ϱ2 =

1

2

∫
dr dr′ϱλ2(r

′, r)v(r, r′). (6.34)

If the conditional probability to find particle near r′ when one is fixed at r is nλ2(r, r
′), then

ϱλ2(r
′, r) = ϱ(r)nλ2(r, r

′). Obviously, nλ2(r, r
′) is the density of the remaining particles,

when one is at r, giving
∫

dr′nλ2(r, r
′) = N − 1. Finally, to extract the exchange-

correlation part, one writes nλ2(r, r
′) = ϱ(r′) +nλxc(r, r

′). The first term is the direct one,
for the noninteracting particles. This can be used in (6.36), written in the form

Exc[ϱ(r)] =

∫ 1

0

dλ
d

dλ
⟨Ψλ| (T+λV ) |Ψλ⟩−D[ϱ] =

∫ 1

0

dλ ⟨Ψλ| (T+V ) |Ψλ⟩−D[ϱ] (6.35)

(Hellman-Faynman theorem is used on the right). Altogether, one gets:

Exc[ϱ(r)] =
1

2

∫
dr dr′ϱ(r)n̄λxc(r

′, r)V (r, r′), n̄xc(r
′, r) =

∫ 1

0

dλnλxc(r
′, r). (6.36)

This shows that the exchange-correlation energy is the interaction between a particle and
averaged (with respect to the coupling constant λ) exchange-correlation hole around it.
This hole appears due to three factors: (i) self-interaction correction, (ii) Pauli principle,
(3) potential V . First two of them contribute to the exchange, and the last to correlation.

6.4.1 Uniform electron gas

We consider d-dimensional noninteracting electron gas of the uniform density ϱ. When
only translational subgroup of the lattice with all periods equal to L is used, the corre-
sponding eigenorbitals are plane waves eik·r/

√
Ld, with eigenenergies ~k2/2m. Assuming g
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dimensional interior space (g = 2 for spin) the density of orbitals in k-space is gLd/(2π)d.
On the other hand, N = ϱLd electrons from the elementary cell occupy all the states
with the momentum k ≤ kF (each with the degeneracy g). This defines the Fermi sphere
with radius kF, such that its volume Sd = πd/2kdF/Γ(d/2 + 1) contains exactly N states.
Therefore the density is:

ϱ = kdF
g

2d
1

πd/2Γ(d/2 + 1)
=

Γ(d/2 + 1)

πd/2rdS
, (6.37)

where the Seitz radius rS defines the sphere containing single electron.
The average kinetic energy per electron of these orbitals is t0 =

g
N

~2
2m

∑
k<kF

k2; using

k-space orbital density gLd/(2π)d, and k-space volume element dkd = dπd/2kd−1/Γ(d/2+
1) dk, one finds:

t0[ϱ] =
~2

2m

d

d+ 2
k2F =

~2

2m

d

d+ 2

4π

g
Γ2/d(d/2 + 1)ϱ2/d =

~2

2m

d

d+ 2

4Γ2/d(d/2 + 1)

g2/dr2S
. (6.38)

Particularly, for g = 2 and d = 3 one gets:

T0[ϱ] =

∫
drϱ(r)t0[ϱ] =

~2

m

32/33π4/3

10

∫
drϱ5/3(r). (6.39)

6.4.2 Exchange energy

The Fock exchange energy for the Slater determinant Ψ of doubly occupied orbitals ψi is
functional:

Ex[Ψ] = −1

2

∑
σ

∑
i,j

∫ ∫
dr dr′ϕ

∗
iσ(r)ϕ

∗
jσ(r

′)ϕiσ(r
′)ϕjσ(r)

|r − r′|
. (6.40)

To this end, all the functionals should be known, which is not the case. However,
various approximations are applied. These are based on the assumptions on thee locality
of thee used functionals. In fact, the functionals having Rietzs-Frechet representations,

F [ρ]
def
=
∫

drϕ(r)ρ(r), are called local. However, there is no direct argument resulting
in the locality, and therefore the expansion over derivatives of ρ1 must be involved to
mimic nonlocality. The zero-order term, without derivatives, thus of the local form, in
this expansion gives the local density approximation (LDA). Neglecting of gradient terms
corresponds to the uniform gas of particles. Therefore, to get this approximation (giving
the leading terms) one starts looks for the relevant energy terms in the uniform gas, where
all of them are function of density (being the only parameter of the system). Then, one
comes back to the slowly varying density (becoming function of r), and construct the
average of the energy terms with such density; this average is itself a functional of ρ1.

6.5 Time dependent perturbations

The goal of the time dependent perturbation theory is to describe the response of a quan-
tum system to the external perturbation. We assume that, when isolated, the considered
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system is described by the hamiltonian H0, with eigenproblem

H0 |n⟩ = En |n⟩ . (6.41)

Then, during time interval [0, t], it is exposed to the external field (in a very broad sense,
e.g. this includes interaction with some other system). This is described as an additional
interaction term in the hamiltonian, the perturbation H ′(t). After t, the field vanishes,
and the system is isolated again. Therefore, H ′(t) is a function of time, nonvanishing
during the interval [0, t] only. Very frequent example is periodic perturbation, describing
the influence of the electromagnetic radiation.

The response of the system is manifested in excitations: H ′(t) induces transitions
between the various eigenstates of the unperturbed hamiltonian. Thus, the main task is
to find these transition probabilities. Precisely, for the system prepared at t = 0 in the
eigenstate |n⟩ (of the isolated hamiltonian H0), we look for the probability

v(1, |n′⟩ ⟨n′| , |n, t⟩) = vn→n′(t) = | ⟨n′|U(t) |n⟩ |2 (6.42)

to find the system at t in some other eigenstate |n′⟩.

6.5.1 Expansion of the evolution

The task is most efficiently solved within Dirac’s picture (Sec. 2.5.2). The total evolution
governed by

H(t) = H0 +H ′(t), (6.43)

is factorized in the form
U(t) = U (0)(t)U ′(t). (6.44)

While the total evolution U(t) satisfies the differential equation (2.2), the unperturbed
evolution U (0) and the remained factor U ′(t) obey (2.33) and (2.34) (we shorten notation:
U(t− t0, t0) = U(t− 0, 0) = U(t)):

i~
d

dt
U (0)(t) = H0U

(0)(t), U (0)(0) = I,

i~
d

dt
U ′(t) = H ′

D(t)U
′(t), U ′(0) = I.

The formal integral solution of the last equation

U ′(t) = I +
1

i~

∫ t

0

dt1H
′
D(t1)U

′(t1) (6.45)

is iterated to get the series

U ′(t) =
∞∑
p=0

U ′(p)(t), U ′(p)(t) =
1

ip~p

∫ t

0

· · ·
∫ tp−1

0

dt1 · · · dtpH ′
D(t1) · · ·H ′

D(tp).

Note the time ordering t ≥ t1 ≥ t2 ≥ · · · ≥ 0. We assume that the series is convergent; as
we will use only the first few terms of the series, neglecting the reminder, this convergence
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is particularly important, and restrict the considerations to sufficiently small t. When
U ′(t) is substituted (6.44) becomes:

U(t) =
∞∑
p=0

U (p)(t), U (p)(t) = U (0)(t)U ′(p)(t). (6.46)

Taking into account H ′
D(t) = U (0)†(t)H ′(t)U (0)(t) and U (0)(ti)U

(0)†(tj) = U (0)(ti− tj), the
convenient form of the terms is obtained:

U (p)(t) =
1

ip~p

∫ t

0

. . .

∫ tp−1

0

dt1 · · · dtpU (0)(t− t1)H
′(t1)U

(0)(t1 − t2) · · ·H ′(tp)U
(0)(tp).

(6.47)

6.5.2 Transition amplitudes

As the transition probability (6.42) involves the probability amplitudes ⟨n′|U(t) |n⟩, we
have to find the matrix elements ⟨n′|U (p)(t) |n⟩. To simplify this, we insert the identical
operators I =

∑
|ni⟩ ⟨ni| after each H ′(ti) in (6.47), which reduces the unperturbed

evolution to the phases:

⟨n′|U (p)(t) |n⟩ =
∑

n1,...,np−1

1

ip~p

∫ t

0

. . .

∫ tp−1

0

dt1 · · · dtp ×

× e−
i
~ [En′ (t−t1)+En1 (t1−t2)+···+Enp−1 (tp−1−tp)+Entp] × (6.48)

× ⟨n′|H ′(t1) |n1⟩ ⟨n1|H ′(t2) |n2⟩ · · · ⟨np−1|H ′(tp) |n⟩ .

In practice, the series (6.42) is truncated to a few first terms. We explicitly find them
for p = 0, 1, 2:

⟨n′|U (0)(t) |n⟩ = e−
i
~Entδnn′ ; (6.49)

⟨n′|U (1)(t) |n⟩ =
e−

i
~En′ t

i~

∫ t

0

dt1e
i
~ (En′−En)t1 ⟨n′|H ′(t1) |n⟩ ; (6.50)

⟨n′|U (2)(t) |n⟩ =
∑
n1

e−
i
~En′ t

i2~2

∫ t

0

∫ t1

0

dt1 dt2e
i
~ [(En′−En1 )t1+(En1−En)t2] ×

× ⟨n′|H ′(t1) |n1⟩ ⟨n1|H ′(t2) |n⟩ . (6.51)

The last expressions, as well as the general term (6.48) can be nicely interpreted
by diagrams Fig. 6.1. In fact, it turns out that the perturbation in the expression for
U (p) acts only in the instances t1, . . . , tp, and meanwhile the system evolves as isolated.
Consequently, the state |i⟩ during the interval (ti, ti+1) obtains pure phase factor. At the
instance ti, affected by the perturbation H ′(ti), the system abruptly changes state from
|ni−1⟩ to |ni⟩, not conserving its energy (of isolated system). Thus, for p ≥ 2 there appear
intermediate states |n1⟩ , . . . , |np−1⟩, which are called virtual states. Transitions to all
unperturbed eigenstates at any instance from [0, t] are included by summations over the
unperturbed basis, and integration over all intermediate instances.
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Figure 6.1: Scheme of the terms of the transition amplitudes: wave lines represent pertur-
bation acting in the instances ti only, and causing system transition from the state |ni−1⟩
to |ni⟩, while meanwhile the system evolves as isolated.

6.5.3 Transition probabilities

The preceding results enable to expand the transition probabilities. Substituting (6.46)
in (6.42) we find

vn→n′(t) =
∞∑

p,p′=0

⟨n′|U (p)(t) |n⟩ ⟨n′|U (p′)(t) |n⟩∗ . (6.52)

Using (6.49) we find the first two terms in the transition probabilities:

v
(0)
n→n′(t) = δnn′ ; (6.53)

v
(1)
n→n′(t) = δnn′

2

~
Im[e

i
~ (En−En′ )t

∫ t

0

dt1e
i
~ (En′−En)t1 ⟨n′|H ′(t1) |n⟩]; (6.54)

v
(2)
n→n′(t) = v

(2)
n9n′(t) + δnn′v

(2)
n⇒n′(t). (6.55)

Obviously, in the zeroth and the first orders, probabilities forbid transitions (to other
states then the initial one |n⟩). Only in the second order, besides the state preserving

term v
(2)
n⇒n(t) = 2Re[⟨n|U (2)(t) |n⟩ ⟨n|U (0)(t) |n⟩∗], there is a probability of the transition

to other states. Introducing Bohr’s frequencies ωn′n =
En′−En

~ one finds the transition
probability (in the first effective order):

v
(2)
n9n′(t) =

1

~2

∣∣∣∣∫ t

0

dt1e
iωn′nt1 ⟨n′|H ′(t) |n⟩

∣∣∣∣2 . (6.56)

As H ′(t) is hermitian, v
(2)
n9n′(t) = v

(2)
n′9n(t), i.e. the opposite transitions occur with same

probability. This characteristic of the first order transition probability remains in the
higher orders only for the systems with time reversal symmetry.

Constant perturbation and Fermi golden rule

When H ′ is constant during the considered time interval, the matrix elements can be
pulled out of the integral, and the remaining time dependent part is easily integrated
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Figure 6.2: Function f(ω, t): note its periodicity of 2π/t dumped by the enveloping
function 4/ω2. Bellow: intervals of frequency corresponding to Eqns. (6.62) and (6.61).

giving squared ”cardinal sine” function:

f(ω, t) =

∣∣∣∣∫ t

0

dt1e
iωt1

∣∣∣∣2 = 2
1− cosωt

ω2
=

(
sin tω

2
ω
2

)2

. (6.57a)

Two asymptotic properties of this function (Fig. 6.2) are important for further analysis:∫ ∞

−∞
f(ω, t) dω = 2πt, (6.57b)

f(ω, t→ ∞) = 2πtδ(ω). (6.57c)

In the first (effective) order, the transition probability becomes:

v
(2)
n9n′ =

1

~2
| ⟨n′|H ′ |n⟩ |2f(ωn′n, t). (6.58)

For experimental applications, it is useful to consider the probability of transition
not to a single state, but to a group of states N ′. Then this probability is sum of the
probabilities for each of these states:

v
(2)
n9N ′ =

∑
n′∈N ′

1

~2
| ⟨n′|H ′ |n⟩ |2f(ωn′n, t). (6.59)

Particularly frequent is the situation when the energies (eigen-energies of H(0)) of the final
states are (quasi)continually distributed within the interval (E0 − ε/2, E0 + ε/2). Then
the last sum becomes integral with the contribution of each energy E pondered by its
weight, i.e. by the density of states ρ(E):

v
(2)
n9N ′ =

1

~2

∫ E0+ε/2

E0−ε/2
| ⟨n′|H ′ |n⟩ |2f(E − En

~
, t)ρ(E) dE. (6.60)
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For sufficiently small ε the matrix elements and density may be considered almost con-
stant, and taken outside the integral. On the other side, for large t (but still within the
applicability of the approximation!), ε ≫ 2π~/t, and the interval of integration contains
a number of periods 2π/t of f(ω, t). Then two opposite cases can be analyzed.

(i) En ∈ (E0− ε/2, E0+ ε/2) (Fig. 6.2). Then, since the contribution of the central peak
is highly dominant (according to (6.57c)), the integration may be approximately
extended to the whole energy axis, and (6.57b) is used to obtain:

v
(2)
n9N ′ =

2π

~
| ⟨n′|H ′ |n⟩ |2ρ(En)t. (6.61)

This conclusion, that the transition probability to the nearby states linearly in-
creases with time is known as the Fermi’s golden rule.

(ii) En /∈ (E0 − ε/2, E0 + ε/2) (Fig. 6.2). Now the central peak is excluded, but the
integral may be approximated by its mean over a number of periods. As the mean
of the denominator is (E0 − En)

2, while the mean of 2(1 − cosωt) over multiple
period [2πk/t, 2π(k+k′)/t] (k and k′ are integers) is 2, the estimate of the transition
amplitude becomes:

v
(2)
n9N ′ =

2ε| ⟨n′|H ′ |n⟩ |2

(E0 − En)2
ρ(E0) (6.62)

To conclude, the last equation shows that the transition rate per unit time is constant for
the transitions conserving the energy of the isolated system, while it vanishes (t is large)
if the energy is changed.

Periodic perturbation and resonances

Another frequent situation is that the perturbation is periodic in time (e.g. optical tran-
sitions induced by the electromagnetic waves). Then its general form is

H ′(t) = Aeiωt + A†e−iωt, (6.63)

where A is time independent operator. Instead of the complete matrix elements, only
time independent part can be put outside the integral in (6.56), resulting in

v
(2)
n9n′ =

1

~2
| ⟨n′|A |n⟩

∫ t

0

ei(ωn′n+ω)t1 dt1 + ⟨n′|A† |n⟩
∫ t

0

ei(ωn′n−ω)t1 dt1|2. (6.64)

Again, the case when t is sufficiently large is considered. Then, the first term in the
probability amplitude is negligible unless En′ = En − ~ω, i.e. only the process of emit-
ting of the energy quant ~ω gives significant contribution to the transition probability.
Analogously, the second term describes dominantly the absorption of the same quant:
En′ = En + ~ω. Under the same assumption of large t, t ≫ 2π/ω, these two regions are
separated. Therefore, the amplitudes of emission and absorption do not interfere, and the
probability is large only for these two processes, which can be analyzed separately. For
emission, one gets analogously to (6.58):

v
(2)e
n9n′ =

1

~2
| ⟨n′|A |n⟩ |2f(ωn′n + ω, t), v

(2)a
n9n′ =

1

~2
| ⟨n′|A† |n⟩ |2f(ωn′n − ω, t). (6.65)
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This obviously differs with respect to the constant perturbation only in the shift for ±ω
of the function f(ω, t). Therefore, all the conclusions are analogous to that case: instead
of the conservation of energy (corresponding to the central peak of f(ω, t)) the transition
probability per unit time to the group of states around En∓ω is constant, while vanishes
for different final energies. All these results are easily generalized for the more complex
periodic perturbations, having the Fourier form

H ′(t) =
∑
s

Ase
isωt + A†

se
−isωt;

each term contributes to the emission/absorption of the quant s~ω.

6.6 Elementary scattering theory

Collisions of some sort of the particles with a target is one of the most frequent experimen-
tal methods to examin properties of target and interactions. The scheme of the collision
is simple (Fig. ??): a collimated beam of particles is directed toward the target. After
that the scattered particles are detected and studied, and according to this many con-
clusions about the target are derived. There are various types of the collision processes:
spallation and reactions (when some completely new particles are scattered), ZAHVAT
(the target and the incoming particle together form a new particle) and scattering (the
simplest one, when the outgoing particle is the same one as incoming). Particularly, here
we are interested in the elastic scattering, in which the kinetic energy of the incoming
particle is preserved.

In the experiments with elastic scattering the distribution dn(θ, φ) of the outgoing
particles over the directions is measured. This is obviously proportional to the flux Φin of
the incoming (along the z-axis) particles:

dn(θ, φ) = σ(θ, φ)Φin dΩ, (6.66)

where the differential cross section σ(θ, φ) is the proportionality factor, which com-
prises all the details on the types of the beam and target, interactions, etc. Note that
σ(0, φ) is not measured quantity, since experimentally it is not easy to distinguish be-
tween the scattered particles with θ = 0 scattering angle, and the particles which sim-
ply passed by target without interaction (thus in the same direction). If the interac-
tion between the beam and target depends only on their distance, then it is spheri-
cally symmetric, and the cross section is φ-independent. Therefore, it can be integrated
over φ, giving σ(θ) =

∫ 2π

0
σ(θ, φ) dφ = 2πσ(θ, 0). Total cross section is the integral

σ =
∫ π
0

∫ 2π

0
σ(θ, φ) dΩ. Cross sections have the dimension of surface, and usually are

measured in Barns: 1Barn=10−24cm2.
Within the quantum theory, it is possible to give some general relations on the

scattering cross section, without detailed analysis of the interaction. To this end the
stationary regime is to be considered, when the state of beam is a stationary state
ψ(r, t) = ψ(r)e−iEt/~ of the hamiltonian H = T + V (r) describing a beam particle inter-
acting with target only. The interaction potential is assumed to decrease with r. The
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time independent function is of the form (it is not normalized)

ψ(r) = eikz + f(θ, φ)
eikr

r
, (6.67)

being a superposition of the incoming state (plane wave along z-axis) and the scat-
tered state (spherical wave). It asymptotically (for large r) satisfies time independent
Schrödinger equation. The function f(θ, φ) (or f(θ) for the spherically symmetric in-
teraction) is called scattering amplitude. The number of scattered particles is given by
(6.66), with the incoming beam particles in the state of plane wave. Thus their flux is
proportional to the probability current Φin = c~k/m. On the other side this number is
proportional to the flux of outgoing particles:

dn(θ, φ) = cjout · dS = cjoutr r2 dΩ.

The outgoing probability current is easily calculated applying (2.19) to the outgoing state
ψsw(r) = f(θ, φ)eikr/r. The leading term in r is r−2, and in the asymptotic region (which
is studied here) only r-component of current appears:

joutr =
1

m
Re(ψ∗(r, t)

~
i
∂rψ(r, t)) =

~
m
k
|f(θ, φ)|2

r2
.

Using these two expressions for the number of outgoing particles one finally finds the
differential cross section:

σ(θ, φ) = |f(θ, φ)|2. (6.68)



Appendix A

Technical support

A.1 Separation of Variables

Here we give simple algebraic spectral theorem on the operators acting in the direct
product space S = S1 ⊗ S2. The aim is to facilitate the solution of the eigenproblem,
reducing it to the factor spaces for two special, but frequent in quantum mechanical
problems forms of the considered operators: A = B1 ⊗ B2 and A = B1 ⊗ B2 + C1 ⊗ C2.
While the former is given for the completeness only, in the view of its self obvious outcome
and considerably rare physical situations when it is applicable, the latter one refers to
wide range of examples.

Lema A.1 (Separation of variables) Let S = S1 ⊗ S2.

(a) If A = B1 ⊗B2 with spectral forms Bi =
∑

bi
biPbi(Bi) (i = 1, 2), where Pbi(Bi) are

the spectral projectors of the factor operators, then the spectral form of A is:

A =
∑
b1,b2

b1b2Pb1(B1)⊗ Pb2(B2). (A.1)

Geometrically, this means that the space S is decomposed as the direct sum S =
⊕b1,b2S

(b1)
1 ⊗ S(b2)

2 of the eigenspaces S(b1)
1 ⊗ S(b2)

2 of A for the eigenvalues b1b2 (not
necessarily different; hence, to achieve the spectral decomposition one should rear-
range the sum firstly, to group together the same eigenvalues), each of these sub-
spaces being the product of the eigenspaces of the factor operators.

(b) If A = B1⊗B2+C1⊗C2, and B2 and C2 are compatible, and the projectors to their

common eigensubspaces S(b2,c2)
2 are P(b2,c2), then

A =
∑
(b2,c2)

∑
a(b2,c2)

a(b2, c2)Pa(b2,c2)(b2B1 + c2C1)⊗ Pb2c2 . (A.2)

In other words, S is decomposed to the direct sum S =
∑

(b2,c2)

∑
a(b2,c2)

Sa(b2,c2)1 ⊗
S(b2,c2)
2 of the products of the eigenspaces Sa(b2,c2)1 for the eigenvalues a(b2, c2) (again,

not necessarily different) of the operators A1(b2, c2) = b2B1 + c2C1 and common

eigenspaces S(b2,c2)
2 of B2 and C2.

107
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Proof: (a) The direct products |b1;λ1⟩ ⊗ |b1;λ2⟩ of the eigenvectors of B1 and B2 are basis in S.
Thus they are an eigenbasis of A, since A |b1;λ1⟩ ⊗ |b1;λ2⟩ = b1b2 |b1;λ1⟩ ⊗ |b1;λ2⟩. Finally, for fixed b1

and b2 they span the subspaces S(b1)
1 ⊗ S(b2)

2 in the decomposition S = ⊕b1,b2S
(b1)
1 ⊗ S(b2)

2 .

(b) Operator A is reduced to A1(b2, c2)⊗Pb2c2 in each of the spaces S1⊗S(b2,c2)
2 , since A |x⟩ |(b2, c2), λ⟩ =

((b2B1 + c2C1) |x⟩)⊗ |(b2, c2), λ⟩ for each |x⟩ from S1 and |(b2, c2), λ⟩ from S(b2,c2)
2 . Therefore, it remains

to find the spectral form of A1(b2, c2) in S1 for each compatible pair (b2, c2).

A.2 Hypergeometric equation

The most important equations of quantum dynamics are second order differential one.
Among them, the class of the generalized hypergeometric equation covers most of the
problems considered in this textbook:

u′′(t) +
τ̃(t)

σ(t)
u′(t) +

σ̃(t)

σ(t)2
u(t) = 0, (A.3)

where σ(t) and σ̃(t) are polynomials of the order less then 3, and τ̃(t) a polynomial of the
order less than 2. This class is solvable, with the solution standardized within so called
special functions. Here we give the three step algorithm to find out these solutions. The
method is based on the theory of differential operators in the underlying Lebesgue space
L([a, b]).

Step 1. Find all possible constants k such that

π(t) =
σ′ − τ̃

2
±

√(
σ′ − τ̃

2

)2

− σ̃ + kσ

is polynomial (of the order less than 2). This means that we look for k giving the
rooted expression the form (at + b)2. For each (at most 2) such k, we find two
polynomials πk±, and the next steps are to be performed for each of them.

Step 2. For each πk± solve the first order differential equation in ϕ(t):

ϕ′

ϕ
=
πk±
σ
,

and calculate polynomials τk± = 2πk± − τ̃ and constants λk± = −k − π′
k±. Substi-

tuting the solutions ϕk± in (A.3) by the change u = ϕk±yk± we get hypergeometric
equation in y = yk±:

σ(t)y′′(t) + τ(t)y′(t) = λy(t), (A.4)

which obviously has the eigenproblem form.

Step 3. Solve Pearson’s equation

(σρ)′ = τk±ρ, i.e.
ρ′

ρ
=
τk± − σ′

σ
,
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for each k, and among the solutions ρk± select only those being positive (perhaps
vanishing on a countable set) and bounded. Then (A.4) can be rewritten in the
eigenequation form:

Hy(t) = λy(t), with H =
1

ρ(t)

d

dt
[σ(t)ρ(t)

d

dt
]. (A.5)

The rest of the algorithm is based on the

Theorem A.1 In the subspace {f(t) ∈ L2((a, b), ρ) | σ(a)ρ(a)f(a) = σ(b)ρ(b)f(b) = 0}
of L2((a, b), ρ), with ρ being bounded positive function on (a, b) satisfying (σρ)′ = τρ,

operator H has purely discrete spectrum {λn = nτ ′ + n(n−1)
2

σ′′ | n = 0, 1, . . . } with
the corresponding eigenfunctions being orthogonal polynomial given by Rodrigues equa-
tion xn(t) = Bn

ρ(t)
dn

dtn
[σn(t)ρ(t)] (here Bn is arbotrary constant, to be determined by the

normalization).

To resume, only for λ = λn (for some n) (A.3) has solution u = ϕxn satisfying the
conditions of the theorem, which is unique (up to the constant). For other values of λ
there are no solutions (at least of this type).

It is easy to verify that the obtained functions xn(t) are polynomials of the order
n. Therefore, they can be obtained by the orthonormalization of the set {1, t, t2, . . . }
in the space L2((a, b), ρ). These classical orthogonal polynomials are well studied and
standardized (see Table A.1 and [?] for details) according to σ and τ .

Table A.1: Classical orthogonal polynomials. Among Jacobi’s polynomials are Legendre’s
polynomials Pn(t) = P

(0,0)
n (t) and associated Legendre’s polynomials P

(m)
n (t) = P

(m,m)
n (t).

Name (a, b) σ(t) τ(t) ρ(t) xn

Jacobi (−1, 1) 1− t2 β − α− (1− t)α× P
(α,β)
n (t) = (−1)n ×

2nn![(1−t)α(1+t)β ]
−(α + β + 2)t ×(1 + t)β dn

dtn
[(1− t)n+α(1 + t)n+β]

Laguerre (0,∞) t −t+ α + 1 tαe−t Lαn(t) =
ett−α

n!
dn

dtn
[e−ttn+α]

Hermite (−∞,∞) 1 −2t e−t
2

Hn(t) =
(−1)n√
2nn!

√
π
et

2 dn

dtn
[e−t

2
]
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Solutions of Exercises

B.0.1 Quantum Kinematics

Solution ??. The following equalities are valid: [AB,C] = ABC − CAB = ABC −
ACB + ACB − CAB = A(BC − CB) + (AC − CA)B = A[B,C] + [A,C]B.

Solution ??. Writing expression as series in powers of λ we have: (A − λB)−1 =∑∞
n=0 λ

nLn, where operators Ln are to be determined. Multiplying by (A − λB) one
gets I =

∑∞
n=0 λ

n(A − λB)Ln = AL0 +
∑∞

n=0 λ
n+1(ALn+1 − BLn). It is obvious that

expression becomes (A− λB)−1 =
∑∞

n=0 λ
n(A−1B)nA−1 = A−1

∑∞
n=0 λ

n(BA−1)n.

Solution ??. ⟨(A− ⟨A⟩)2⟩ = ⟨A2 − 2A ⟨A⟩+ ⟨A⟩2⟩ = ⟨A2⟩ − 2 ⟨A⟩ ⟨A⟩ + ⟨A⟩2 = ⟨A2⟩ −
⟨A⟩2

Solution ??. For m = 1 equality holds. Supposing that equality is valid for some m = n,
for m = n+1 using solution ??: [An+1, B] = A[An, B]+[A,B]An = nAn[A,B]+[A,B]An,
using condition that operator A (and any its positive power) commutes with commutator
[A,B], we have [An+1, B] = (n+ 1)An[A,B].

Solution ??. Assuming that orthonormal basis β = {|i⟩} exists, trace can be expressed
as Tr(|u⟩ ⟨v|) =

∑
⟨i | u⟩ ⟨v | i⟩ =

∑
⟨v | i⟩ ⟨i |u⟩ = ⟨v| (

∑
|i⟩ ⟨i|) |u⟩ = ⟨v| I |u⟩ = ⟨v | u⟩.

Solution ??. Operator H is Hermitian iff (x,Hy) = (Hx, y) holds for any two vectors
x and y. To shorten notation we’ll write A† = A+ and A = A−. The following set of
equalities for any x and y (x,A±A∓y) = (A∓x,A∓y) = (A±A∓x, y) proves that operators
A±A∓ are Hermitian. For any vector x, mean value (x,A±A∓x) = (A∓x,A∓x) = ∥A∓x∥2
is always positive, and for any orthonormal basis β = {|i⟩}, TrA±A∓ =

∑
(i, A±A∓i) =∑

(A∓i, A∓i) =
∑

∥A∓i∥2. Finally, TrA±A∓ =
∑

∥A∓i∥2 = 0 iff ∥A∓i∥ = 0 for any
i⇒ A∓ = 0.

Solution ??. d(AB)/dλ = limε→0(A(λ + ε)B(λ + ε) − A(λ)B(λ))/ε = limε→0(A(λ +
ε)B(λ+ε)−A(λ)B(λ+ε)+A(λ)B(λ+ε)−A(λ)B(λ))/ε = limε→0(A(λ+ε)−A(λ))/εB(λ+
ε) + limε→0A(λ)(B(λ + ε) − B(λ))/ε = (d(A)/dλ)B + A(d(B)/dλ). Differentiating
equality AA−1 = I one gets (d(A)/dλ)A−1 + A(d(A−1)/dλ) = 0 ⇒ d(A−1)/dλ =
−A−1(d(A)/dλ)A−1.

110
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Solution ??. Introducing operator g(A,B, α) = eαBAe−αB and expanding it around
α = 0 one gets g(A,B, α) =

∑
αndng/dαn/n! where d0g/dα0 = A, dg/dα = Bg − gB =

[B,A], d2g/dα2 = [B, dg/dα] = [B, [B,A]], . . . Setting α = 1 one gets the equality.

Solution ??. Using the solution of the previous problem with conditions given in this
problem one gets: dT (s)/ds = d(esAesB)/ds = AT (s) + T (s)B = (A+ esABe−sA)T (s) =

(A+B + [A,B]s)T (s) ⇒ T (s) = e(A+B)s+ 1
2
[A,B]s2 .

Solution 1.1. For an arbitrary vector |ψ⟩ its image under ρ is ρ |ψ⟩ =
∑

i ωi |ψi⟩ ⟨ψi |ψ⟩.
Thus, any vector from the range of ρ is a linear combination of the involved states |ψi⟩,
and R(ρ) < V def

= span {|ψ⟩}. If R(ρ) is a proper subspace in V , there exists a nonzero
vector |x⟩ from V such that ρ |x⟩ = 0. Then we can find an orthonormal basis |j⟩ in
V , such that |1⟩ = |x⟩. In this basis |ψi⟩ =

∑
j cji |j⟩ and ρ =

∑
jj′
∑

i cjic
∗
j′iωi |j⟩ ⟨j′|,

with cji = ⟨j |ψi⟩. Since |1⟩ is an eigenvector of ρ for the eigenvalue 0, it spans one-
dimensional invariant subspace for ρ, meaning that for the matrix elements in the first
row and the first column of ρ vanish. Particularly, for the first diagonal matrix element one
has

∑
i c1ic

∗
1iωi = 0, and in the view of positivity of ωi this means that all the coefficients

c1i vanish, i.e. |x⟩ = 0, which contradicts to the assumption.

Solution 1.2. From (1.13b) one finds superoperator ΠAX
def
=
∑

a Pa(A)XPa(A). This su-
peroperator is hermitian: (X,ΠAY ) =

∑
aTrX

†Pa(A)Y Pa(A) =
∑

aTrPa(A)X
†Pa(A)Y =

Tr (
∑

a Pa(A)XPa(A))
†Y = (ΠAX,Y ). It is also idempotent:

ΠAΠAX =
∑
a,b

Pa(A)Pb(A)XPb(A)ΠA =
∑
a

Pa(A)XΠA = ΠAX.

Solution 1.4. Using partial integration one verifies: (ψ, pφ) =
∫ b
a
ψ∗pφdx =∫ b

a
ψ∗(−i~ d

dx
φ)dx =

∫ b
a
ψ∗(−i~φ′)dx = −i~ψ∗φ|ba +

∫ b
a
(−i~ψ′)∗φdx = (pψ, φ).

Solution 1.5. Applying obvious relation [A,BC] = B[A,C] + [A,B]C successively in
[x̂, p̂n] one finds series [x̂, p̂n] = p̂n−1[x̂, p̂]+ [x̂, p̂n−1]p̂ = i~p̂n−1+ p̂n−2[x̂, p̂]p̂+[x̂, p̂n−2]p̂2 =
2i~p̂n−1 + [x̂, p̂n−2]p̂2 = · · · = ni~p̂n−1.

Solution 1.6. ???

Solution 1.7. Since for each |x⟩ one has ⟨x|A1 |x⟩ =
∑

b(⟨x|⊗⟨b|)A(|x⟩⊗|b⟩), the reality
and positivity of the terms on the right implies reality and positivity of the left hand side.
Finally, if A is statistical, TrA1 =

∑
ab(⟨a| ⊗ ⟨b|)A(|a⟩ ⊗ |b⟩) = TrA = 1.

Solution 1.8. Consider the general, i.e. mixed state ρ. Being positive operator, ρ
has unique positive root ρ1/2. Let us define the auxiliary operators A′ = A − ⟨A⟩ρ,
B′ = B − ⟨B⟩ρ, and A” = ρ1/2A′, B” = ρ1/2B′. Using the standard scalar product

in the operators space (X, Y ) = TrA†B, it is easy to recognize the Schwartz inequality

in the expression Tr (A”†A”)Tr (B”†B”) ≥ |TrB”†A”|2. Note that the left hand side is
equal to ∆2

ρ(A)∆
2
ρ(B), while the right one substituting B” becomes mean | ⟨A′B′⟩ρ |2 =

| ⟨A′B′+B′A′

2
⟩
ρ
+⟨A′B′−B′A′

2
⟩
ρ
|2. Recall that the obtained symmetrized and antisymmetrized
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products are hermitian and scew-hermitian operators, and their means real and pure imag-
inary, respectively. Thus, the absolute value if the whole obtained expression is less that
square of the imaginary part, or altogether, ∆2

ρ(A)∆
2
ρ(B) ≥ | ⟨A′B′⟩ρ |2 =

1
4
| ⟨[A′, B′]⟩ρ |2 =

1
4
| ⟨[A,B]⟩ρ |2.

Solution 1.9. ???

B.0.2 Quantum dynamcs

Solution 2.1. Differentiating the expectation value one finds:

d

da
E(a) = ⟨E(a)| d

da
H(a) |E(a)⟩+ (

d

da
⟨E(a)|)H(a) |E(a)⟩+ ⟨E(a)|H(a)(

d

da
|E(a)⟩).

Therefore:

d

da
E(a) = ⟨E(a)| d

da
H(a) |E(a)⟩+ E(a)(

d

da
⟨E(a)|) |E(a)⟩+ E(a) ⟨E(a)| ( d

da
|E(a)⟩).

The last two terms cancel, as the derivative of the norm of the eigenstate, being 1.

Solution 2.2. ???

Solution 2.3. ???

Solution ??. It is easy to see that if energy (E) is greater than any potential in infinity
(V±) than eigenfunction is plane-wave with momentum k =

√
2m(E − V±)/~2 without

boundary condition in that infinity. This means that particle is free iff energy is greater
than minimum of the potentials in infinity. In conclusion, the state is bound iff V+ > E.

Solution ??. Suppose that we have two physically different states (nonlinear) ψ1(x) and
ψ2(x) heaving the same energy. Than, for any potential V (x) we have ψ′′

1/ψ1 = 2m(E −
V (x))/~2 = ψ′′

2/ψ2 leading to equation (ψ′
1ψ2 − ψ1ψ

′
2)

′ = 0. Integrating the last equation
we have ψ′

1ψ2 − ψ1ψ
′
2 = C for any x. Constant C vanishes because eigenfunction and its

first derivative for boundary states vanishes in both infinities. Furthermore, integrating
ψ′
1/ψ1 = ψ2/ψ

′
2 we have ψ1 = Aψ2 and because states are normalized constant A is

phase factor specifying that states ψ1(x) and ψ2(x) are the same physical states which
contradicts assumptions.

Solution ??. Consider two eigenfunctions ψn(x) and ψn+1(x) with eigenvalues En <
En+1. From the equations ψ′′

n+2m(En−V )ψn/~2 = 0 and ψ′′
n+1+2m(En+1−V )ψn+1/~2 =

0, after simple calculation we obtain (ψ′
nψn+1 − ψ′

n+1ψn)|a...???

Solution ??. Adding and subtracting normal and space inverted Schrödinger equation
we get two equalities (V (x)− E)(ψ(x)± ψ(−x)) = 0, ∀x, giving that eigenfunctions are
either even or odd (ψ(−x) = ±ψ(x)).

Solution ??. ???

Solution ??. ???
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Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution ??. ???

Solution 2.4. ???

Solution ??. ???

Solution 2.5. ???

Solution 2.6. ???

Solution 2.7. ???

Solution 2.8. ???

Solution 2.9. ???

B.0.3 Galilean transformations

Solution 3.1. ???

Solution 3.2. For even n, In is unity while for odd n, In = I. Expanding operator eiπI

one gets eiπIψ(r) =
∑

n(iπ)
n/n!Inψ(r) =

∑
k(−)kπ2k/(2k)!ψ(r) + i

∑
k(−)kπ2k+1/(2k +

1)!Iψ(r) = cos(π)ψ(r) + i sin(π)ψ(−r) = −ψ(r)

Solution 3.3. Introducing unity I and space inversion I operators, one can write any
function as sum of even and odd functions: ψ(r) = (ψ(r)+ψ(−r))/2+(ψ(r)−ψ(−r))/2 =
(I+I)/2ψ(r)+(I−I)/2ψ(r) = P+ψ(r)+P−ψ(r). Operator I is Hermitian as it follows
from: (ψ(r), Iφ(r)) =

∫∞
−∞ dx

∫∞
−∞ dy

∫∞
−∞ dzψ(r)φ(−r) =

−
∫ −∞
∞ dx

∫ −∞
∞ dy

∫ −∞
∞ dzψ(−r)φ(r) =

∫∞
−∞ dx

∫∞
−∞ dy

∫∞
−∞ dzψ(−r)φ(r) = (Iψ(r), φ(r)).

Consequently, operators P± are Hermitian, and idempotent P 2
± = (I ±I)2/4 = (I ± 2I +

I2)/4 = P±.

Solution 3.4. Operator Uαβ is unitary if α and β are pure imaginary numbers. Operator

Uαβ is space inversion if Sx = UαβxU
†
αβ = −x and Sp = UαβpU

†
αβ = −p. Using equality
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from Prob. ?? we have: Sx = x + [αx2 + βp2, x] + 1
2!
[αx2 + βp2, [αx2 + βp2, x]] + · · · =∑∞

i=0
1
2!
Ki, where Ki+1 = [Ki, x]. It is easy to calculate commutators: K0 = x, K1 =

−2i~αp, K2 = −2i~α2

Solution ??. ???

B.0.4 Angular momentum

Solution 4.2. Obviously, if Kp |x⟩ = 0 (p = 1, 2, 3), then also ⟨K2
p⟩|x⟩ = ⟨x|KpKp |x⟩ =

∥Kp |x⟩ ∥ = 0, and ⟨K2⟩|x⟩ = 0 (and k = m = 0).
In the opposite direction, from ⟨K2

i ⟩|x⟩ = ⟨K2
j ⟩|x⟩ = 0, the same argument implies that

∥Ki |x⟩ ∥ = ∥Kj |x⟩ ∥ = 0, i.e. Ki |x⟩ = Kj |x⟩ = 0. However, then 0 = [Ki, Kj] |x⟩ =
Kk |x⟩, for the remaining component Kk.

Solution 4.1. Straightforward application of (4.8) in the representation formulaKi |km⟩ =∑k
m′=−kD

(k)
m′m(Ki) |km′⟩.

Solution 4.2. Use the form (4.12) for K2, and then substitute the expressions (4.8) for
the action of K3 and K± on the standard basis.

Solution 4.3. As squares of Hermitean operators, K2
i are positive, implying that their

average vanishes if and only if Ki |x⟩ = 0. Then, if ⟨K2
i ⟩|x⟩ = ⟨K2

j ⟩|x⟩ = 0, also
[Ki, Kj] |x⟩ = 0, and ⟨K2⟩|x⟩ = 0. This means that k = m = 0.

Solution 4.4. ???

B.0.5 Identical particles

Solution 5.1. All the transpositions (which appear only for N > 1 are in the same conju-
gation class of SN , since any pair of them is mutually conjugated: τpp′ = τpqτp′q′τqq′τpqτp′q′
(conveniently, τii = e). Therefore, they have the same character in each representa-
tion, and as for the one dimensional ones, they are represented by the same numbers.
As obviously τ 2pp′ = e (identity element), homomorphism gives for any representation
D2(τpp′) = 1, giving for the one dimensional representations D(τpp′) = ±1. Taking one of
these two choices coincidentally for all transpositions, one builds up the numbers repre-
senting the other permutations as the product of even or odd number of ± factors.

Solution 5.2. The two bases are necessarily related as |jp⟩ =
∑

l Ulp |il⟩, with U be-
ing an unitary operator (thus det(U) is pure phase). The new Slater determinant is
|n−; j⟩ = 1√

N !
det |jp⟩q =

1√
N !

det
∑

l Ulp |il⟩q. Noticing that the form of the pq-th element

is (UT |il⟩)pq, the homomorphism of the determinant functional, detA detB = detAB,
directly gives |n−; j⟩ = det(U) |n−; i⟩.

Solution 5.3. All the terms in the sum (5.13) contain the same quantum numbers,
and obviously the wanted partial scalar product vanishes if the set of quantum num-
bers {i1, . . . , iN} is not a superset of {jL+1, . . . , jN}, i.e. when some of the components
of nL = n − nN−L are negative. Otherwise, there exists a permutation σ defined in
the exercise, rearranging the quantum numbers {i1 ≤ · · · ≤ iN} such that the last
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N − L coincide with |jL+1, . . . , jN⟩ and the first L are ordered. Then the L particle
state |ΨL⟩ = ⟨jL+1, . . . , jN |n±⟩ is:

|ΨL⟩ =
(±)σ̃√
n!N !

∑
π

(±)π̃ ⟨jL+1, . . . , jN |∆(π) |iσ−11 ≤ · · · ≤ iσ−1L, jL+1, . . . , jN⟩ .

Since bra-vector is fixed, the partial scalar product involving the permutation π does not
vanish only when π leaves invariant the states of the particles L + 1, . . . , N . Each such
permutation may be written as a product π = πLπn, where πL ∈ SL permutes only the
first L particles, and πn ∈ Sn. However, the intersection of the groups SL and Sn is just
the group SnL

, the stabilizer of the L particle state |iσ−11 ≤ · · · ≤ iσ−1L⟩. Therefore, the
factorization πLπn is not unique, and in the set of the products πLπn each permutation
appears exactly nL! times. One gets

|ΨL⟩ =
∑
πL,πn

(±)σ̃+π̃L+π̃n

nL!
√
n!N !

⟨jL+1, . . . , jN |∆(πLπn) |iσ−11 ≤ · · · ≤ iσ−1L, jL+1, . . . , jN⟩ .

Finally, one realizes that

⟨jL+1, . . . , jN |∆(πLπn) |iσ−11 ≤ · · · ≤ iσ−1L, jL+1, . . . , jN⟩ = ∆(πL) |iσ−11 ≤ · · · ≤ iσ−1L⟩ ,

independently of πn; hence there are n! such terms (all with the same sign: for fermions
πn is the identical permutation only, and for bosons all terms are with the same sign),
giving

|ΨL⟩ =
(±)σ̃n!

nL!
√
n!N !

∑
πL

(±)π̃L∆(πL) |iσ−11 ≤ · · · ≤ iσ−1L⟩ .

Summing over πL, and including normalization factor, one immediately gets (5.18a). Anal-
ogously one gets (5.18b). As for L = 1 case, the permutation σ moves the first particle
in the state |j⟩, to the first place (where this state is cancelled by ⟨j|). So, there are
lj =

∑
i<j ni states before, which are effectively cycled by σ = τ12 · · · τlj−1,ljτlj ,lj+1, show-

ing that lj = σ̃.

Solution 5.4. First, note that the permutation σ from the Exercise 5.5 may be given
a canonical form σ = πN−Lλ, where λ is a ”riffle shuffle” permutation, which on the
set {i1, ..., in} with singled out L (and therefore the remaining N − L) elements simply
separates them, putting the L elements first and N −L after them, without changing the
order within subsets, while πN−L permutes only the second subset. Taking into account

(5.13) for N−L particles, one gets ⟨n±
N−L |n±⟩ =

√
1

nN−L!(N−L)!

√
n!L!
nL!N !

(N−L)!(±)λ̃ |n±
L⟩.

Solution 5.5. From (5.18) it immediately follows that

ρ1,...,L =
∑

jL+1,...,jN

⟨jL+1, . . . , jN |n±⟩ ⟨n± | jL+1, . . . , jN⟩ =
(
N

L

)−1 ∑
nL≤n

CnL

n!L!

nL!N !
|n±

L⟩ ⟨n
±
L | ,

where the weight CnL
shows how many times occupation number nL appears during the

summation in j = (jL+1, . . . , jN). To find it we observe that nL appears for j such that
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nL = n− n(j). For fixed nL, also n(j) is fixed, and from (N − L)! permutations of the
set j altogether n(j)! give the same arrangement of the indices j, i.e. they correspond to
the same term in sum over j. So, there are CnL

= (N − L)!/n(j)! different terms with
same nL.

Solution 5.6. As now n! = nL! = 1 (5.21a) becomes

ρ1,...,L =
∑
nL≤n

|n±
L⟩ ⟨n

±
L |(

N
L

) =
L!(
N
L

) N∑′

i1<···<iL=1

P
(−)
L |i1, . . . , iL⟩ ⟨i1, . . . , iL|P (−)

L .

The primed sum means that all the indices run over the N single particle states defined
by ns = 1 in n (alternatively, we may assume that the single particle space basis |i⟩ starts
with these N occupied states and indices run from 1 to N). Due to the antisymmetrizer,
the restrictions i1 < · · · < iL in the summation may be omitted: the repeated indices are
neglected by the antisymmetrizers, and only unordered permutations of (i1 < · · · < iL)
are effectively added. However, corresponding vectors P (−) |i1, . . . , iL⟩ are up to the sign
same as for the ordered one, and the same sign appears both in bra and ket. Hence there
are L! same terms, instead of one which must be compensated by divison:

ρ1,...,L =
1(
N
L

) N∑′

i1,...,iL=1

P
(−)
L |i1, . . . , iL⟩ ⟨i1, . . . , iL|P (−)

L .

It remains to notice that the summations in i1, . . . , iL become independent, each giving
the projector Pn, and that the direct product of L these projectors commutes with the
projector P

(−)
L , which can be omitted from one side.

Solution 5.7. By definition (
ˆ̂
P (+)A)P (±) = 1

N !2

∑
ππ′(±)π̃∆−1(π′)A∆(π′)∆(π). Denoting

π′π by π′′, one finds ∆(π′)∆(π) = ∆(π′′) and ∆−1(π′) = ∆−1(π)∆−1(π′′). Substituting
summation in π′ and π by summation in π′′ and π−1, respectively (rearrangement lema),

one obtains (
ˆ̂
P (+)A)P (±) = P (±)(

ˆ̂
P (+)A).

Solution 5.8. The operators K± =
∑2k+1

p=1 kp± are symmetric (additive) operators, thus

commuting with the antisymmetrizer (recall that otherwise the relevant space S2k+1
− would

not be invariant; formally since
ˆ̂
PK± = K±, this follows from (5.24)). Thus the 2k + 1-

particle state (5.11) is defined by the occupation numbers nm = 1, m = −k, . . . , k (using
single particle basis |Q, k,m⟩):

|n−⟩ =
√
N !P (−)

n |n⟩ =
√

1

N !

∑
π

(−)π̃∆(π) |Q, k,−k; . . . ;Q, k, k⟩ ,

giving

K± |n−⟩ =
√

1

N !

2k+1∑
p=1

∑
π

(−)π̃kp±∆(π) |Q, k,−k; . . . ;Q, k, k⟩ .

Now note that each summand kp±∆(π) |Q, k,−k; . . . ;Q, k, k⟩ is zero: either at position p
after action of ∆(π) appears kp± |Q, k,m = ±k⟩ = 0, or kp± |Q, k,±m⟩ ∼ |Q, k,±m± 1⟩,
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the state in which is another electron already. However, K± |n−⟩ = K±P
(−) |n−⟩ =

P (−)K± |n−⟩, and we can apply on each summand another antisymmetrization, resulting
in the vanishing vector.

Solution 5.9. Acting on the Slater determinant |1, . . . , N⟩ (as N = |S|) one gets
(⊗N

p=1Dp) |1, . . . , N⟩ = 1
N !

∑
π(−1)π

∑
j1,...,jN

Dj1,π−11 · · ·DjN ,π−1N |j1⟩ ⊗ · · · ⊗ |jN⟩, which
is (reordering the matrix element) 1

N !

∑
π(−1)π

∑
j1,...,jN

Djπ11 · · ·DjπNN |j1⟩ ⊗ · · · ⊗ |jN⟩.
Changing jπp to jp gives 1

N !

∑
π(−1)π

∑
j1,...,jN

Dj11 · · ·DjNN |jπ−11⟩ ⊗ · · · ⊗ |jπ−1N⟩ =∑
j1,...,jN

Dj11 · · ·DjNNP
− |j1, . . . , jN⟩. The antisymmetrizer annihilates the terms with

repeated indices jp; as P
− |j1, . . . , jN⟩ = (−1)π(j1,...,jN ) |1, . . . , N⟩, this becomes

(
∑

j1,...,jN
(−1)π(j1,...,jN )Dj11 · · ·DjNN) = (detD) |1, . . . , N⟩. The second part of the Exer-

cise is an obvious generalization of the well known equality detA⊗B = (detA)|B|(detB)|A|.

Solution 5.10. Compare the definition (5.31) to (5.18c). As for a†s, we again consider
its left action in |n′±⟩ a†s |n±⟩ =

√
N(⟨n′± | s⟩) |n±⟩. Thus, the expression vanishes unless

|n′pm⟩ is the unique one satisfying ⟨s |n′±⟩ ∼ |n±⟩. Apparently, this is just |n±⟩ |s⟩
(everywhere it is assumed that |s⟩ refers to the last particle). However, although it has
the correct occupation number, it is not (anti)symmetrized, thus it is not in the Fock
space: the adjoint of the operator in F± must be also an operator in the same space.
Thus this vector is to be (anti)symmetrized, but previously quantum number s is to
be put (i.e. permuted by σ) to the position ps, such that the states after it are with
greater quantum numbers. Altogether, this exactly gives the same result as (5.32). The
generalization (5.33) is obtained by the successive application of the first relation. N -
independent form is achieved using the number of particles operator: ⟨j1, . . . , jL |n±⟩ =
ajL

1√
N̂
· · · aj1 1√

N̂
|n±⟩.

Solution 5.11. Consider a particle with one dimensional state space. Due to this peculiar-
ity, all the observables are real numbers, among them the hamiltonian being ~ω (ω ≥ 0).
Further, any N -particle space is again one dimensional, spanned by the vector |N⟩ (as
there is only one single particle basis vector, occupation number vector is simply the total
number of particles). The particles do not interact, making the N -particle hamiltonian
N~ω. The particles may be created or annihilated, thus they must be considered within
Fock’s space, which is exactly the state space of the harmonic oscillator. It only remains
to shift the energy scale for ω̄/2, and the oscillator dynamics is completely reproduced by
the described noninteracting particles, which really correspond to the excitations of the
harmonic oscillator. The commutation relation (2.26) shows that such excitations are of
Bose type.

Solution 5.12. Consider an arbitrary matrix element An
n′ = ⟨n±|A[L] |n′±⟩ in the occu-

pation number basis:

An
n′ =

∑
p1<···<pl

∑
s1,...,sL
s′1,...,s

′
L

As1,...,sLs′1,...,s
′
L
⟨n± | s(p1)1 , . . . , s

(pL)
L ⟩ ⟨s′(p1)1 , . . . , s

′(pL)
L |n′±⟩ ;

superscript is particle counter, i.e. noncorrelated vector |s(p1)1 , . . . , s
(pL)
L ⟩ describes a system

of particles p1 < · · · < pL, with the particle pj in the state sj. To apply (5.33), one
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previously should move particles p1 < · · · < pL to the first L places; however, the sign
arising (for fermions only) in such a permutation, appears both for bra and ket. Thus,
summation in particles gives

(
N
L

)
same terms:

An
n′ =

(
N

L

) ∑
s1,...,sL
s′1,...,s

′
L

As1,...,sLs′1,...,s
′
L
⟨n± | s1, . . . , sL⟩ ⟨s′1, . . . , s′L |n′±⟩ .

Now, (5.33) directly gives the equality of the arbitrary matrix elements of the operators
in (5.39c).

Solution 5.13. Defining operators aQkm corresponding to the basis |Qkm⟩, and noticing
thatK± is additive single particle operator such that ⟨Qkm| k± |Q′k′m′⟩ = α±

m′δQQ′δkk′δm∓1,m′ ,
one finds K± =

∑
m α

±
ma

†
mam∓1. The closed shell corresponds to the state |n−⟩, such that

the occupation numbers of all the states are 0 except that nQkm = 1, for m = −l, . . . , l.
Obviously, K± maps this state into the vector with occupation numbers greater than 1,
i.e. into the vanishing vector.
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Fermi’s golden rule, 104
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field operators, 82
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Fock’s, 93
fundamental set, 16
fundamental variables, 13

good quantum numbers, 26

harmonic, 89
Hartree’s, 93
homogeneous, 3

Ideal measurement, 10
inhomogeneous, 3
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interaction picture, 32
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interior degrees of freedom, 55
ionic Schrödinger equation, 89
ionization energies, 95
irreducible tensor (operators), 60

Liouville equation, 27
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maximal weight, 46
mean, 3
measurement, 2
minimal wave packet, 21
minimal wave packets, 21
mixed states, 3
mixture, 3
mixtures of the second kind, 20
momentum representation, 18

non-correlated, 19
nondegenerate, 6
number of particles operator, 82

occupancy number, 30
occupation number operator, 31, 82
occupation numbers, 70
orthogonal polynomial, 109
orthogonal polynomials

classical, 109
Hermite’s, 109
Jacobi’s, 109
Laguerre’s, 109
Legendre, 109
Legendre’s
associated, 109

partial scalar product, 19
partial trace, 19
partition function, 10
passive interpretation, 41
path or functional integral, 35
Pauli correlation, 73
Pauli exclusion principle, 72
Pauli matrices, 56
permanent, 73
Planck’s constant, 15
plane waves, 18
populations, 13
predictive, 10
preparations, 10
probability amplitude, 13
probability density, 7
propagator, 33
pure states, 3

quantization, 14

quasi classical limit, 35

reduced density matrix, 20
reduced matrix element, 60
reduced operators, 19
relativity principle, 36
retrospective, 10
Rodrigues equation, 109

scattering amplitude, 106
Schrödinger equation, 25
second quantization, 80
selection rules, 61
selective, 10
separable, 19
sharp value, 3
shell, 78
Slater determinant, 73
special functions, 108
spherical harmonics, 51
spin matrices, 56
spin-orbit, 64
split, 85
Square of angular momentum, 47
standard basis, 46
standard components, 45
standard form, 48
state, 1
state space, 5
stationary states, 26
statistical operator, 8
statistical sum, 10
subensemble, 3
superoperators, 12
superposition principle, 5
superselection observable, 61
superspace, 12
supervariable, 37
symmetric, 69
symmetric operators, 74, 77
symmetrizer, 69
System, 1

time ordered product, 25
time ordering, 25
Total cross section, 105
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transition probability, 8
translational operator, 17
trial set, 90

universal covering, 47

vacuum state, 30, 81
virial theorem, 27
virtual states, 101

wave equation, 25
wave function, 17
Wick’s rotation, 35
Wienner measure, 35
Wigner, 39
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