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INTRODUCTION

Powerful method of deduction, accurately extracting relevant characteristics of the studied

object and allowing transparent interpretation of results, established the symmetry as one

of the most important concepts in physics. Its techniques connect various fields of physics,

offering a unified view to diverse phenomena. This distinguished status originates in the

importance of symmetry as a physical property both of space-time and of physical systems.

During the development of modern physics, this property has been more and more under-

stood as the essential one. Nowadays, it is known that symmetry is the source of primary

characteristics of physical systems, to mention only mass and spin, or various types of the

fundamental interactions.

Symmetry based considerations require application of group theory, one of the leading

fields of contemporary mathematics. Simultaneous rise of the concept of symmetry in physics

and of the corresponding technique in mathematics reminds of a similar history of another

great idea of physics: development of the mathematical analysis was indispensable for the pre-

cise formulation of the notion of continuity of the physical processes1. Mathematical analysis

was necessary to understand the fundamental principles of mechanics, though the intuition of

the physicists previously enabled to solve many related problems, even considerably complex

ones. Without analysis, the natural notion of change, evolution, would not be operative.

Investigating this notion, Newton opened a new epoch not only in physics, but in mathe-

matics, too. Thus, both continuity and symmetry show mutual permeation of physics and

mathematics, inherited from their common origin, antic geometry. Galileo’s description of

this relationship is: ”The book of the nature is written in the language of mathematics”.

The first considerations explicitly based on symmetry appeared during early research

of minerals. Characteristic shapes of various crystals have always attracted attention of the

scientists. Yet in 1611 Kepler thought about the cause of the invariant form of the snowflakes.

Delisle in 1783 stated the precise relations among the angles and the edges of minerals.

The end of the 18th and the beginning of the 19th century brought in early intimations of

atomic physics; the classical idea about the elementary constituents of matter matured to

the modern cognition by works of Dalton, Avogadro, Bercelius and others. The notion of the

structure of matter got connotation of the arrangement of different atoms. In such a milieu

the regular shapes of the minerals were no longer left to admiration of geologists, but became a

1In Greek, συµµετρια denotes regularity, accordance; ”continuity” comes from the notion κoινoς, for
common acting (the older word is συνεκς).
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challenge and milestone for new theory. Our predecessors in the dawn of atomistics unerringly

conjectured that external visage reflected interior anatomy, arrangement of pieces of matter.

Indeed, the laws observed in minerals were among the milestones in promoting atomistic ideas.

After having realized the integral rates of the elements in molecules, Dalton learnt about the

integral relations between the angles in crystals (attending the lectures on mineralogy), and

this finally assured him in the atomistic hypothesis. The problem of determination of possible

structures and their relation to observable shapes of minerals arose; a method was looked for

to convert the contents of the observation, the regularity of the shapes, into conclusions on

the structure, manifesting once again how far-reaching the new theory was.

And, the method was growing simultaneously but independently in the neighborhood —

in mathematics, only articulation of the contents in the appropriate form was waited for.

It was necessary to formalize the intuitive sense of the shape’s regularity as a set of the

symmetries — operations transforming the shape into itself. A succession of such operations

is a new symmetry, and all of them form the algebraic structure of the group, being intensively

studied by the mathematicians in these decades. In the works of Euler (1761), Lagrange and

Vandermonde (1771) this structure is implicitly used, and Evariste Galois (1811-1832) called it

group for the first time in 1830, while his last letter to Gauss and Jacobi (written in the evening

before he was killed in a duel) contained many important results. Intense research during the

19. century (Gauss, Abel, Cartan, Klein, Jordan and other famous mathematicians) led to the

contemporary axiomatization of the abstract group (Cayley, 1854) and group with analytic

properties (Lie, 1895). At the very beginning of the 20. century Frobenius formulated the

theory of representations of groups, which has proved to be the most important part for the

physics.

Classification of crystal structures was reduced to classification of their symmetry groups.

With help of the group theory only, in 1890, Fedorov and Schönfliess independently derived

all of the 230 possible crystal lattices. Much before the first experimental technique capable

to observe the crystal structure directly was invented (1912, X-ray diffraction, Laue, Friedrich

and Knipping)!

Connection between symmetry and conservation laws shows profound penetration of the

concept of symmetry into physics. More then 2000 years passed from the metaphysical inkling

of the immutability of motion, to the precise formulations of the conservation laws of mass and

energy (in the middle of the 19th century). Afterwards, the interplay between conservation

laws and symmetry was rapidly revealing and in 1918 it obtained its present form in the work

of E. Noether. Quantum theory, established itself in the same period by Planck, Einstein,

Schrödinger, Pauli, Heisenberg, Eugen Wigner and many other physicists, as well as the

mathematicians von Neumann and Weyl, additionally urged the development of the concept

of symmetry, giving it the most suitable form — representation of the symmetry group in

the state space of the system. This enabled a systematic use of conservation laws through

good quantum numbers, which founded the forthcoming leading role of symmetry in the

elementary particle physics in fifties of the last century: the experimental facts indicate some

of the conservation laws, singling out the minimal symmetry group of the system; then the
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groups containing this minimal one are looked for and used as a basis of various theoretical

models. Closing one more circle in the evolution of knowledge, such a concept of symmetry

recalls its origin: in the crowd of information on the elementary particles or minerals, the

symmetry is the key for its classification and explanation. As always, a qualitative advance

took place. In crystallography the symmetry operations had been known and transparent

(rotations, translations, reflections); only their classification had to be performed. On the

contrary, contemporary physics deals with symmetries having interpretation only within the

theory; the essence of the problem is not to classify, but to define possible symmetries. Thus,

from an unnoticed companion of the conservation laws, symmetry arose to be a cornerstone

of the theories of elementary interactions.

The concept of continuity, introduced originally in physics, did induce development of

mathematical analysis evolved into diverse contemporary branches. Many of them are far

away from physics, but connection is firmly maintained by differential geometry, maybe the

most important part of mathematics. Its development was permanently supported by physi-

cist, both by concrete results and by bringing in new ideas. Even the phenomena characterized

by discontinuity, singularities, being especially focused in modern physics, are described and

treated in terms of differential geometry. This resembles a lot to the status of symmetry. Some

of the symmetry based considerations can be performed without specific knowledge, but for

profound insight the group theoretical techniques are necessary. Growing of this mathemati-

cal branch has been influenced from the very beginning by needs of physics. The group theory

gives framework for studying symmetry breaking, the process of loosing symmetries. As a

rule, such processes are abrupt, with discontinuities subdued to laws emphasizing profound

relationship between continuity and symmetry. Therefore, intertwining of group theory and

mathematical analysis within differential geometry is natural and symbolic: the great ideas

of physics, continuity and symmetry, are joined in geometry, being the common origin both

of physics and mathematics. One more circle of knowledge is closing, the great one perhaps.

Considerations involving symmetry are performed in all fields of physics, and in all stages

of perceiving of physical problems. Technically, the application of symmetry gives significant

simplifications of the task, and sometimes this is tacit, intuitive, with no explicit appeal

to group theory. On the other hand, the primary postulate of physics, the principle of

relativity (Galileo’s or Einstein’s), is essentially a statement on the space-time symmetry, and

its meaning and far reaching consequences are most transparently and completely understood

within a systematic group theoretical analysis. Therefore, one approach to the concept of

symmetry is studying various aspects of its applications related to one system, i.e. within one

discipline of physics (e.g. solid state, molecular or elementary particle physics). Contrariwise,

there are attempts to extract common characteristics of the symmetry based analyses in

various fields; such a view point requires formulation of physical problems in the standardized

form, sublimating ingredients necessary for symmetry techniques.

Following the latter scheme, this text begins by introducing symmetry adapted bases and

irreducible tensor operators, singling out the group projectors as the main tool of the symme-

try based methods. After this follow general considerations of application of symmetry within
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various approximate techniques. In the hierarchy of a physical theory, the contents (general

physical principles and concrete facts which are involved in the formulation) and methods of

solution are intertwined in many ways. Only exceptionally the answer is obtained directly

from the first principles. Typically, a series of approximations is introduced and each of them

effectively redefines the problem, introducing slightly different physical conditions with ap-

propriate laws. The Art of Deduction in physics is to weave the way to a solvable problem,

which, despite of various modifications, faithfully reflects the initial one, at least in the con-

text of the studied properties. And this is the point where the symmetry is invaluable for its

exactness. Approximations performed in standard techniques preserve symmetry, providing

the exact treatment of the symmetry based characteristics. And, as these (characteristics) are

sufficiently important and numerous to greatly determine the studied phenomenon, a qualita-

tively good description is insured. (For example, the assumption that the interaction of two

particles is a function of their mutual distance only, implies that all rotations are symmetries

of such a system; this suffices to obtain selection rules for quantum transitions of the sys-

tem, independently of the concrete form of the interaction — Coulomb, harmonic or a more

complex one. Also, the fact that the particles of the system are identical, i.e. that all their

permutations are symmetries, yields a number of exact, surprisingly far reaching conclusions,

independent on the other details of the system.)

In the second chapter the most important nonrelativistic symmetries are reviewed. There

is no conceptual difference in the treatment of symmetries within relativistic and nonrela-

tivistic theories; only different space-time groups of symmetry are involved, and this choice

of the inertial transformations determines whether Galileo or Einstein relativity is proposed.

The permutational symmetries of identical particles are also studied in this chapter, because

of their specific relation to geometrical symmetries.

The third chapter deals with harmonic approximation, being the starting point of the most

of the physical models. It is shown how symmetry simplifies calculations, giving at the same

time classification of the degrees of freedom. The obtained picture, identifying the vibrations

near the minimum of the potential energy with the elementary excitations of the system,

underlies the fundamental notion of quasi-particles (including the particles themselves within

quantum field theory), whose classification is governed by symmetry.

Within the concept of symmetry, the notion of symmetry breaking appeared. As well

as normal vibrations, this phenomenon is observed in the various fields of physics: phase

transitions in crystals, Jahn-Teller effect in molecules and the symmetry breaking in field

theory, all of them are the same process of spontaneous symmetry breaking, described in the

fourth chapter.

Finally, in the last chapter it is studied how the adiabatic approximation, yet one quite

general theme of physics, is used to separate electronic and ionic subsystems in molecules and

crystals. This approach offers some general symmetry based conclusions: the translational

invariance suffices to understand the classification of crystals onto insulators and conductors;

no crossing of the energy bands of the same symmetry is allowed.

The importance of group theory for understanding and applying symmetry in physics has
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already been emphasized. To facilitate reading of the text, the most important notions and

results of this theory are sketched in the appendices. These notions are simple, except the part

related to the induction theory involving the projective representations. Therefore, an effort

is made to avoid the projective representations in the main text: the alternative approach

has been used whenever it was possible; otherwise, only a hint has been given. This task

could be performed only at the cost of excluding a review of the Galileo group; consequently,

symmetry treatment of mass and spin, and classification of the equations of motion in the

nonrelativistic physics have been skipped. To justify this compromise, simply note that such

considerations are really relevant only within relativistic physics, and in that case analogous

study (of the Poincare group) is much simpler.
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Chapter 1

PRINCIPLES OF APPLICATION OF
SYMMETRY

Numerous fields of physics, using immense bunch of methods, investigate different systems:

atoms, molecules, crystals, elementary particles, etc. Still, the structure of all these theories is

the same: object of investigation is analyzed to get formal description of its (studied) behavior

in terms of relevant parameters. This introduces the notion of the state of the system, being a

particular choice of values of these parameters. The set of all physical states is state space, S.
Essentially, the prediction expected from theory is dynamics of system, i.e. change, evolution

of states during the time. More formally, initial state x evolves along curve x(t) in S, such
that x(0) = x. Evolution is consequence of basic laws, usually expressed in the form of specific

variational principle. As a result, there appears fundamental dynamical quantity H, which,

sublimating all the information about the evolution, completely determines the dynamics. In

this scheme, the physical system is identified with the pair (S, H).

In this sense quantum mechanics is a typical theory: the state space is postulated to be

a vector (Hilbert) space, while the dynamics is governed by the hamiltonian operator H in

this space [3, 17]. In other theories the nature of S i H may be different. For example, the

classical mechanical state space, the phase space, may not be vector space; still, locally, in the

vicinity of some point, the relevant entities are structured as in the quantum case1. Therefore,

mathematical formalism developed for quantum mechanics is applicable, at least locally, to

all physical theories.

1.1 Symmetry of system

Described (quantum like) formalism enables to introduce symmetry of the system by the

language of the representations of the groups in the state space. This framework is empowered

to formalize precisely intuitive notions and assumptions related to symmetry.

1E.g. phase space of a point particle moving along a circle is cylinder: for each point on the circle,
momentum may be any real number. This is manifold, and locally it can be identified with R2, with evolution
generated by some symmetric matrix.

1
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Symmetries of the system are the transformations of the state space, bijections of S onto

itself, which do not change dynamical law: if a symmetry maps the state x into the state

y, than the evolution curve x(t), starting at x, is also mapped into the evolution curve y(t)

starting at y, meaning that the same transformation maps at any instant t the state x(t) to

the corresponding state y(t). The immediate consequence is that the set of symmetries is a

group (§ A.1.1): successive action of symmetries is a symmetry (closeness), composition of

mappings is associative, identical transformation is obviously symmetry of the system, as well

as the inverse mapping of any symmetry.

Figure 1.1: Symmetry. The transformation g is symmetry if it commutes with the evolution of the

system, i.e. if the diagram is commutative.

In quantum mechanics (S is vector space, andH is the hamiltonian operator) the described

invariance of the dynamics is expressed as the commuting of the operators representing sym-

metry transformations in S with H. Further, as the modules of the scalar products of the

states are measurable transition probabilities, and the states are normalized vectors, trans-

formations of symmetry must leave scalar product invariant. This implies that the operators

representing symmetries are unitary or anti unitary, as the famous Wigner’s theorem (§ B.2)
shows. This is the point where the group of all unitary (and antiunitary) operators commuting

with the hamiltonian appears2:

GH = {U ∈ U(S) | [U,H] = 0}; (1.1)

it is called the the total symmetry group of the system or the symmetry group of the hamilto-

nian.

The group GH is not the group of symmetry which is directly used. In fact, it contains

many unitary operators without any obvious physical interpretation. These cannot be noted

a priory, without the formalism imposed by the quantum mechanics. Therefore, one usually

starts with the subgroup G of GH defined in more intuitive way. The physical context of

the considered problem singles out some group of transformations, G, and elements of this

group only are the possible candidates for symmetries. For example, when the geometrical

symmetries are looked for in non-relativistic mechanics, G is the Euclid’s group (§ 2.1.3),

while in elementary particle physics this role is taken by some orthogonal and unitary groups,

2With the exception of time reversal, only unitary operators are sufficient; this is tacitly assumed when
the group U(S) of the unitary operators in S is used in the next expression.
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combined with Poincare’s group. However, these transformations do not act in in S (in the

examples above the transformations are in Euclid’s and Minkowski’s space), and the group G
is not group of the (anti) unitary operators in S. To imbed it into the quantum formalism,

it is represented by such operators: homomorphism D, mapping g ∈ G into the operator

D(g) ∈ U(S), is established, providing linear action (§ A.1.4) of G in S. Then G is the

maximal subgroup of G containing only the elements commuting (when represented) with H,

i.e. G is the intersection of G with the group of all the symmetries of the system (S, H):

G
def
= {g ∈ G | D(g) ∈ GH} = {g ∈ G | [D(g), H] = 0}. (1.2)

Consequently, there may be some symmetries of H, which are not the elements of G, and
therefore they are not included in G. Most of these symmetries do not have any intuitive

interpretation at the considered level of theory. Still, their complete discarding may have

consequences to the scope and efficiency of theory (later on some of these questions will be

elaborated), and sometimes they are a posteriori searched for. Note that introduction of

G makes the definition of G is somewhat arbitrary, depending on the level and purpose of

research, but exactly this restriction (to a familiar group G) makes the relevant group G easy

to determine.

To summarize this analysis, the triple (S, H,D(G)) is suitable characterization of the

physical system with symmetry group G acting in the state space by the representation D.

Since each operator D(g) is either unitary or anti unitary (Wigner’s theorem), only unitary

or anti unitary representations of groups in the state space are to be considered3. It turns out

that only time reversal (§ 2.6.1) is represented by the anti unitary operator, while all other

symmetries can be studied within the simplest framework of the unitary representations. As

for the Lie groups (§ A.1.2), their generators, {l1, . . . , ln}, are represented in S by hermitean

operators, and interpreted as certain physical observables. These operators, D(li), commute

with H, since the operators representing the elements of group do.

A useful notion is the group of symmetry of the state, Gx, defined as the subgroup of G

leaving invariant the state x, i.e. Gx is the little group or the stabilizer of x (§ A.1.4):

Gx
def
= {g ∈ G | D(g) |x⟩ =|x⟩}. (1.3)

Note that different states of the same system may have different groups of symmetry.

Technically, utilization of symmetry can reduce the complexity of the problem. For exam-

ple, the analysis can be performed only for some part of the state space, while the conclusions

can be extended to other states, due to symmetry. Nevertheless, the best known applications

and the most important phenomenological manifestations of symmetry, are the conservation

laws. Commutation of the symmetries with hamiltonian implies that the properties of the

system based on symmetries or their generators (in the case of Lie groups) are conserved dur-

ing the evolution. E. g., if the state of the system is initially an eigenvector for the operator

3Since the collinear vectors after normalization give the vectors differing only by the phase factor, and
all of them correspond to the same physical state, the projective (anti)unitary representations (§ A.2.7), and
covering groups could be used, but this cumbersome approach proved to be inefficient.
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D(g), then during the evolution it remains the eigenvector for the same eigenvalue of this

operator: D(g) |x(t)⟩ = α |x(t)⟩. The number of independent conservation laws is related to

the structure of the symmetry group. Note that if G is not the maximal symmetry group of

H, there can be some conservation laws which cannot be derived from G: just these ”strange”

conservation laws point out to the overlooked symmetries (in fact, contemporary physics uses

some completely artificial new types of symmetries, without any obvious interpretation, which

have been noticed only by such conservation laws.

1.2 Symmetry adapted eigenstates

Since the representation D(G) is unitary, it is the orthogonal sum of its irreducible compo-

nents, D(G) = ⊕s
µ=1aµD

(µ)(G), and introduces the decomposition of the space S onto the

irreducible subspaces: S = ⊕µS(µ) = ⊕µtµS(µtµ). In the standard or symmetry adapted basis,

[8], {| µtµm ⟩|µ = 1, . . . , s; tµ = 1, . . . , aµ;m = 1, . . . , |µ|} (|µ| is the dimension of the µ-th

irreducible representation) of the space S, the matrices representing the operators of D(G)

are block-diagonal, with the diagonal submatrices being irreducible matrix representations:

D(g)| µtµm ⟩ =
∑
m′

D
(µ)
m′m(g) |µtµm

′⟩. (1.4)

It will be assumed that the standard basis is orthonormalized.

It is well known from the linear algebra that if two operators commute, then the eigensub-

spaces of the first one are the invariant subspaces for the second one. This enables to use the

symmetry to obtain the stationary states, i.e. the states which are not observably changed

during the evolution. Indeed, these states are the eigenstates of H. Therefore, being invari-

ant for D(G), each eigensubspace of H can be decomposed to some irreducible subspaces.

As a consequence, the symmetry adapted basis (1.4) can be chosen among the eigenvectors

of H, and such basis will be called stationary standard (or symmetry adapted) basis. The

same irreducible component may appear in the different eigenspaces of H, and therefore the

eigenvalues of H can be labeled by the index of the irreducible representation and the index

of its appearance: H| µtµm ⟩ = Eµtµ | µtµm ⟩.
The previous conclusion is important for several reasons. The possibility to simplify the

eigenvalue problem of H (by the breaking into many problems of the lower dimension) appears

immediately. This is most efficiently performed by the group projector technique. The group

operators

P
(µ)
mm′

def
=

nµ
|G|

∑
g∈G

d
(µ)∗

mm′(g)D(g) (1.5)

commute with H. Especially, P
(µ)
mm are the projectors onto the aµ-dimensional subspaces

S(µ)
m

def
= spann({|µtµm⟩|tµ = 1, . . . , aµ}). Therefore, there exists a common eigen basis for H

and P
(µ)
11 in S(µ)

1 , i.e. the eigen basis for the reduced operator P
(µ)
11 H. These basis vectors

are standard stationary vectors {| µtµ1⟩|tµ = 1, . . . , aµ}, which should be mapped by the

operators P
(µ)
m1 to obtain the rest of the standard eigen basis (the same eigenvalue of H for
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same tµ): |µtµm⟩ = P
(µ)
m1 |µtµ1⟩. In the presented algorithm, one aµ-dimensional eigenproblem

is solved for each µ, instead of the initial one in the whole space. Note that the group

operators P
(µ)
mm′ can understood as the |D| × |D| blocks of the |µ||D|-dimensional modified

group projector Gµ(D) = 1
|G|
∑

g∈G d
(µ)∗(g)⊗D(g), projecting onto subspace of the (multiple)

identity representation (i.e. on the fixed points) of the representation d(µ)
∗
(G) ⊗ D(G) in

the space Sµ∗ ⊗ S. This observation is the starting point of the modified group projector

technique (Appendix C), as it is easier to deal with single projector Gµ(D) with convenient

algebraic properties, especially when the D(G) is induced representation.

|µtµm⟩

S(µtµ)

S(µ)

S(µ)
mS . . . . . .

...

...

Figure 1.2: Symmetry adapted basis. The state space S is decomposed onto the multiple irreducible

subspaces S(µ). Each S(µ) is decomposed itself in two ways: either onto aµ isomorphic nµ-dimensional

irreducible subspaces S(µtµ), tµ = 1, . . . , aµ (vertical), or onto nµ isomorphic aµ-dimensional subspaces

S(µ)
m , m = 1, . . . , nµ (horizontal). The intersection of S(µtµ) and S(µ)

m is one-dimensional, and spanned by the

standard vector |µtµm⟩.

The subspace S(µtµ), spanned by the vectors | µtµm ⟩ (m = 1, . . . , nµ, tµ fixed) is irreducible

for the group action. All its vectors are eigenvectors ofH, for the same eigen value Eµtµ . Thus,

H acts in S(µtµ) as the scalar operator. In other words, since P (µtµ) def
=
∑

m | µtµm ⟩⟨ µtµm | is
the projector onto this subspace, the action of H in S(µtµ) is in fact P (µtµ)H = EµtµP

(µtµ). It

is clear now that the dynamics of the system is reduced into the irreducible subspaces of the

group: all the states from the same irreducible subspace evolve in the same way, remaining in

that subspace. In fact, this is a form to express the conservation laws, giving the possibility

to establish the dynamical equations on the symmetry ground. If G is the symmetry group of

the system, each dynamical law must provide the decomposition of the state space onto the

irreducible subspaces of the group G, to enable the evolution within these subspaces, in the

described manner. In principle, this condition suffices to derive the equations of motion of the

elementary systems (when the symmetry group is a priori equal to the group of relativity);

this is especially important within the relativistic quantum field theory. In the same way the

Bloch’s theorem (§ 2.3.1) or the Schrödinger’s equation of the free particle (§ 2.1.3) can be

interpreted.
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The question if the eigen subspaces of H are irreducible for G, naturally arises in the

context of the symmetry labels of the eigenvalues. The essential part of the problem is

enlighten by the following

Teorem 1 The eigen subspaces of H are irreducible subspaces for the group GH of all the

unitary operators in S commuting with H.

Indeed, if Si denotes the i-th eigen subspace of H, and U(Si) is the set of the unitary operators

in S acting as the identity in S⊥
i , then obviously GH = ⊗iU(Si). The groups U(Si) are

the irreducible representations of themselves, and therefore, at the same time these are the

irreducible representations of the group GH (for each i the representation D(U1, . . . , Ui, . . . ) =

1⊗ · · · ⊗ 1⊗ Ui ⊗ 1 · · · = Ui is irreducible representation of the group GH).

The theorem explains the appearance of the accidental degeneracy, which is situation when

the eigen subspaces ofH are not irreducible forG. This means that there are unitary operators

in S commuting with H, which represent no elements of G. Therefore these operators are not

covered by the considered symmetry group, and G is not maximal; it can be supplemented

by certain additional symmetries (maybe with no manifest physical interpretation), such that

the eigen subspaces of H become irreducible for the extended group. Only in this sense can

be introduced the irreducibility postulate, requiring the irreducibility of the eigen subspaces of

H. There are famous examples of the accidental degeneracy, being consequence of the hidden

symmetry of H: Kramers’ degeneracy of fermions (§ 2.6.1), is caused by the time reversal; the

degeneracy in the Coulomb’s field is greater than it is required by the spherical symmetry, and

a posteriori the additional symmetry isomorphic to the group SO(3,R) is revealed (§ 2.1.2).

1.3 Transformation of the operators

The operators in S form the vector space S ⊗S∗ (it is called the superspace). Also, it is well

known that each operator in S, determines a linear operator in the dual space S∗, and, finally,

in the S ⊗ S∗. If the initial operator is unitary, the generated operator on S ⊗ S∗ is unitary

again (with respect to the scalar product (A,B)
def
= Tr(A†B)). Therefore, the representation

D(G) of G in S determines the representation D̂(G) in S ⊗ S∗ (homomorphism is easily

verified) acting on the arbitrary operator A as: D̂(g)A
def
= D(g)AD−1(g). Obviously, the

representation D̂(G) is equivalent to the direct product (§ A.2.5) D(G)⊗D∗(G).

The reduction of the representation D̂(G) can be performed in the standard way, giving

the decomposition of the operator space onto the mutually orthogonal subspaces, invariant

for D̂(G); this are called the tensor subspaces. The operators of the irreducible tensor sub-

spaces are called the irreducible tensors (more precisely, the irreducible tensor operators).

The components of the tensor operator are the operators of some basis in the tensor sub-

space. Clearly, the group projector technique can be used to determine the standard tensorial

basis: if D̂(G) = ⊕s′
µ=1a

′
µD

(µ)(G), the standard components of the tensors in S ⊗ S∗ are

{A(µtµ)
m |µ = 1, . . . , s′; tµ = 1, . . . a′µ;m = 1, . . . nµ}, and for the given matrices of the irre-
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ducible representations of the group G, these satisfy the relations analogous to (1.4):

D̂(g)A(µtµ)
m = D(g)A(µtµ)

m D−1(g) =
∑
m′

D
(µ)
m′m(g)A

(µtµ)
m′ . (1.6)

When the standard components of the tensors are known, the determination of the oper-

ators with given transformational properties is enabled. In fact, it is usual that the transfor-

mational properties of some physical quantity are known (e.g. it is invariant under the group

action, or it is transformed according to some other representation). Then this quantity is in

the state space represented by the linear combination of the standard tensor components with

same characteristics, and the coefficients in the combination are related to the concrete phys-

ical problem. For example, the angular momentum and the magnetic field are transformed

according to the same irreducible representation of the group O(3,R), but they are different

combinations of the standard tensor components.

The product of two tensor components transforms as

D(g)A(µ)
m B(ν)

n D−1(g) =
∑
m′n′

D
(µ)
m′m(g)D

(ν)
n′n(g)A

(µ)
m′B

(ν)
n′ .

Thus, the products for all m and n span the invariant subspace in S ⊗ S∗, carrying the

direct product of the representations, D(µ)(G) ⊗ D(ν)(G). This representation may not be

irreducible, and its decomposition, the Clebsch-Gordan’s series (§ A.2.5),

D(µ)(G)⊗D(ν)(G) = ⊕λa
µν
λ D

(λ)(G), (1.7)

shows the possible types of the transformational properties of the product of the tensor

operators.

Frequently, the symmetry group G is obvious, while the exact form of the hamiltonian is

unknown. This means that the available information about the system does not suffice to find

the hamiltonian (e.g. the interaction potentials of some of the components of the systems are

too complicated to be predicted from the experimental data). Then the theoretical model,

i.e. the hamiltonian compatible to the observed physical evidence, should be proposed. Since

the symmetry is known, and the operators D(g) commute with the correct (but unknown)

hamiltonian, the model hamiltonian has to be chosen among the operators transforming

according to the identical representation of the group (such quantities are called scalars of the

group). This significantly restricts the set of suitable candidates. If some physical arguments

single out the quantities relevant for dynamics (e.g. the fields involved in the hamiltonian),

the problem takes the known form: how to compose a scalar from the given quantities.

The Clebsch-Gordan’s series of the group show which products of these quantities can be

used as the scalars. Thus, the symmetry condition that the potential must be scalar of

the group, severely restricts possible models, and combined with some additional criteria

(e.g. it is heuristic practice to choose the simplest one among the allowed models), it can

even single out the optimal one. In such approach the assumption that the potentials are

smooth functions is important, enabling to take the approximate polynomial of appropriate
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order as a model. This polynomial must be invariant one, and the elaborated technique

of the construction of the invariant polynomials can be employed (§ 4.1). The same type

of application of symmetry appears in the approximate techniques, when, even known, the

exact hamiltonian is too complicated, and the approximate one, still retaining the principal

characteristics of the system, is proposed (§ 1.7).

1.4 Wigner-Eckart’s theorem

Knowing the irreducible representations of the group G, and its action D(G) in the state space

S, some relevant physical conclusions can be derived immediately, applying the mathematical

formalism of the group theory. Probably the most frequently used analysis of this kind is

related to the matrix elements of the tensor operators. As soon as it is realized that there

is the standard basis in S, while in the operator space there is the basis of the standard

tensor components, it becomes clear that each matrix element of any operator (note that

the measurable predictions of the quantum theory are essentially these quantities) can be

expressed in terms of the matrix elements of the standard operators in the standard basis,

i.e. in terms of the purely symmetry based entities.

The formulation of the results related to the matrix elements is especially simple when the

group G is such that the coefficients aµνλ in the Clebsch-Gordan’s series (1.7) of its irreducible

representations are either 0 or 1. This assumption has the following consequence (§ B.3):

Teorem 2 The matrix element ⟨ αtαa | A(µtµ)
m | βtβb ⟩ is product of the Clebsch-Gordan’s

coefficient ⟨ µβαa | µm, βb ⟩ with the reduced matrix element, (αtα || A(µtµ) || βtβ), being the

same for all a, b and m:

⟨ αtαa | A(µtµ)
m | βtβb ⟩ = ⟨ µβαa | µm, βb ⟩(αtα || A(µtµ) || βtβ).

Obviously the condition aµνλ = 0, 1 provides the uniqueness, up to a phase factor, of the

Clebsch-Gordan’s coefficients. In the case that group does not fulfill this condition, the

Clebsch-Gordan’s coefficients must be fixed by some additional convention.

The Wigner-Eckart’s Theorem enables to calculate all of the nαnµnβ matrix elements

⟨ αtαa′ | A(µtµ)
m′ | βtβb′ ⟩, with same tα, tµ and tβ, when at list one of them, ⟨ αtαa | A(µtµ)

m | βtβb ⟩,
is known; only the appropriate change of the Clebsch-Gordan’s coefficients is to be performed

(⟨ µβαa | µm, βb ⟩ ̸= 0): ⟨ αtαa′ | A(µtµ)
m′ | βtβb′ ⟩ = ⟨ µβαa′ | µm′,βb′ ⟩

⟨ µβαa | µm,βb ⟩ ⟨ αtαa | A(µtµ)
m | βtβb ⟩.

The Clebsch-Gordan’s coefficients are characteristics of the group itself: being independent

on the actual physical context, they are tabulated or given as the numerical programs for

many groups. Frequently only the rates of the matrix elements are looked for, being equal to

the rates of Clebsch-Gordan’s coefficients, and then these purely group theoretical data are

sufficient. Even when the value of the matrix elements is necessary Wigner-Eckart’s theorem

is helpfull: some of them may be simple for calculation or even experimental estimation, and

this suffices to determine all others with same tα, tµ and tβ. Especially, when A is scalar

of the group (tensor operator of the identity representation) the Wigner-Eckart’s theorem
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reduces to the frequently used relation ⟨αtαa | A | βtβb ⟩ = δαβδab(αtα||A||βtβ), showing

that the nonvanishing matrix elements of scalar operator connect the vectors of the same

transformational properties.

1.5 Selection rules

The probabilities of the transition of the quantum system from one state to another, are

expressed through the matrix elements of the relevant operator, and their calculation, being

one of the typical tasks of the quantum physics, may serve as a useful illustration of the

application of the Wigner-Eckart’s theorem.

This is the most usual formulation of the problem: the system, being initially, at the instant

t = 0, in the stationary state |i⟩ (the eigen vector of the hamiltonianH0 of the isolated system),

is perturbed by the potential V (t); the probability to find the system in the stationary state |f⟩
of the hamiltonian H0 at the later instant t = τ is looked for (e.g. the perturbation acts only

during the interval (0, τ)). All the approaches to this task (including the scattering theory)

involve the matrix elements of the perturbation in the eigen basis of H0. For example, in the

simplest case of the time independent perturbation, V (t) = V , the transition probability is:

Wif (τ) = 2
1−cos

Ef−Ei
~ τ

|Ef−Ei|2 |⟨ f |V |i ⟩|2, where E denotes the corresponding eigen energies of the

hamiltonian.

Once the symmetry of the system has been noticed, the prerequisites for application of

the Wigner-Eckart’s theorem, the standard stationary basis and standard components of the

perturbation, become available. It is especially simple to determine when the probability

transition is zero, i.e. when the transition is forbidden. Obviously, Wβb7→αa = 0 whenever

the relevant Clebsch-Gordan’s coefficient is zero (for all the tensor components of the per-

turbation). Thus, the selection rules are obtained. A less refined insight to selection rules

gives the analysis of the Clebsch-Gordan’s series: when the coefficient aµβα in (1.7) is 0, all

the corresponding Clebsch-Gordan’s coefficients vanish. Also, it should be noted that the

transition may be forbidden by some other reasons, even when it is allowed by symmetry; in

such case it can be concluded that G does not describe the real (meaning maximal) symmetry

of system, i.e. that some of the symmetries are left aside.

When the symmetry is described by a Lie’s group, standard stationary basis is the basis of

the weights (the common eigen basis for the operators representing the Cartan’s subalgebra

— the maximal set of the commuting generators), while the elements of the algebra are

represented by the hermitean operators, usually having transparent physical interpretation

(momenta, angular momenta, etc.). The weights give the eigen values of the operators of

the Cartan’s subalgebra, and the tensor operators are also labeled by these values. It is well

known from the theory of the representations of the Lie’s algebras, that the weights of the

direct product of the representations are the sum of the weights of the factors; consequently,

the selection rules are essentially the conservation laws for the associated physical quantities.

The same contents of he selection rules can be observed for the finite groups, also (e.g.
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conservation of the parity with respect to the inversion or the reflections, the conservation of

the quasi momenta, quasi angular momenta, etc.).

1.6 Symmetry of the composed system

Within the described concept of the application of symmetry, the question of the symmetry

of the subsystem can be discussed, which is relevant in the cases when the considered system

is a part of some larger physical system. Two situations qualitatively differ. Firstly, it is

possible that the rest of the system does not interact with the considered subsystem, when

the transformations of one part do not influence the other one; then the total symmetry

group is the direct product of the groups of symmetry of the subsystems (§ A.1.5). In the

other case, when the subsystems interact, the total group is additionally restricted by the

symmetry of the interaction, and it become the intersection of the symmetry group of the

interaction with the direct product of the subsystem groups. This is one of the first symmetry

based observations in physics, formulated by P. Curie more then the century ago, and known

as the Curie’s principle. Frequently, the interaction is invariant only under the coincident

transformations common for the both subsystems, when the total symmetry is the intersection

of the subsystem groups.

1.7 Methods of approximation

If the system is not isolated, but weakly interacts with the surrounding, the perturbative

technique is suitable to correct the results obtained for the isolated system (with neglected

influence of the surrounding). The same method is used also when the dynamics of the system

is complex enough and prevent exact treatment: the approximation exactly encounters a cho-

sen main part of the hamiltonian, and afterwards the results are corrected in accordance with

the rest of the total hamiltonian. The formal treatment of these two situations is the same:

the basic (unperturbed) part of the hamiltonian, H, and the perturbation, V , appear. Mani-

festing the Curie’s principle, the total symmetry G′ is the intersection of the symmetry group,

G, of the unperturbed hamiltonian and the symmetry group of the perturbation. Therefore,

G′ is a subgroup of G (for the isolated system — the second case mentioned — it is important

to chose H and V such that both of them posses the real symmetry of the total system; then

G′=G, providing a priory the quality of the unperturbed and corrected results at least for the

symmetry based results). Therefore, the many dimensional irreducible representations of G,

related to the degeneracies of some eigen values of H, may not be irreducible for G′ anymore.

Indeed, in the corresponding irreducible subspace of the representation D(µ)(G) the group

G′ acts by the subduced representation D(µ)(G) ↓ G′, and it can be reducible according to

the compatibility relations § A.2.6: D(µ)(G) ↓ G′ = ⊕s
λ=1a

µ
λD

(λ)(G′). Since the vectors of the

different irreducible representations of G′ are necessary from the same eigen subspace of the

operator H + V , the compatibility relations describe the splitting of the energy levels of the
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unperturbed hamiltonian caused by the perturbation.

The amount of this splitting is estimated by the perturbation technique, [3, 16]: V is scalar

operator of the group G′, and for the standard basis {|µλtλl⟩|λ = 1, . . . , s; tλ = 1, . . . , aµλ, l =

1, . . . , nλ} in the considered subspace of the representation D(µtµ)(G), the Wigner-Eckart’s

theorem yields ⟨µλtλl | V | µλ′t′λ′l′ ⟩ = δλλ′δll′(µλtλ||V ||µλt′λ). Thus, in the matrix V the

scalar submatrices appear in the blocks connecting the equivalent irreducible representations

of the group G′. For example, if D(µ)(G) ↓ G′ = 2D(λ)(G′) + D(λ′)(G′), then the form

of is V =

aIλ bIλ 0
b∗Iλ cIλ 0
0 0 dIλ′

. The eigen values of this matrix are the corrections of the

unperturbed states, and their differences express the splitting of the unperturbed level. In

the case when the irreducible components of the subduced representation are different, the

block-diagonal matrix is obtained, simplifying the eigen problem. The symmetry analysis

can be performed for the higher order perturbations (since no novel symmetry technique is

introduced they will not be considered in this text).

Another important approximation technique is the variational method, [3, 18]. It is based

on the extreme properties of the eigen values; for example, the minimal eigen value of the

operator H is also the minimal value of the functional ε(|x⟩) def
= ⟨x| H |x⟩ (with the condition

that | x⟩ is normalized vector) on S. Therefore, for any chosen subset T ⊂ S of the trial

vectors the minimal value of this functional on T is a majorant of the minimal eigen value

of H (if T contains the ground state, the result is exact). Obviously, the validity of the

method is based on the choice of the set T . The symmetry can help already in this stage.

For example, it is known that the ground state of the most of the physical systems is totally

symmetric, i.e. invariant under the symmetry group. Therefore, the suitable candidates for

the trial states are the vectors from the subspace of the identity representation in S, that
is the fixed points of the group action in S. The analogous method is applicable for other

states: when the ground state is determined, the remaining eigenstates of the hamiltonian

are orthogonal, and the trial vectors can be chosen in accordance with this. If some other

physical reasons points to certain transformational properties of these states, the selection is

performed among the vectors of the subspace of the corresponding irreducible representation;

unless further restriction are imposed, this subspace is a priory the set of the trial vectors,

and the Rayleigh-Ritz’s method emerges.

In fact, the main characteristics of the Rayleigh-Ritz’s method is that the trial set is

a subspace T in S. The symmetry approach is especially straightforward if T is invariant

subspace for the group action. This assumption, meaning that D(G) commutes with the

projector P onto T , can be fulfilled always, by enlargening the initially chosen trial set.

Then the group action is reduced in this subspace to the representation DT (G) = PD(G)P .

The approximation is introduced when the operator H is substituted by the operator PHP

in T , (if T is invariant for H also, the obtained results are exact, and not approximate).

Since D(G) commutes both with P and H, then it commutes with PHP also, and the

standard formulation of the problem, (T , PHP,DT (G)), is obtained. This can be viewed as
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a sort of approximate localization of the interaction to the trial subspace (tacitly performed

when the matrix elements of the hamiltonian in this subspace are considered), yielding an

approximate ”isolation of the subsystem” described by the state space T . Further steps

are usual: diagonalization of PHP with help of the irreducible components DT (G). The

method of the approximation makes the possibility to introduce the group of symmetry of the

”isolated” subsystem, being the maximal group of T , and this is obviously the most efficient

application of symmetry.

Nevertheless, for the traditional and experimental reasons, seemingly different, explicitly

variational, point of view is usual . The set {| i⟩|i = 1, . . . , n} of the linearly independent

vectors is chosen, and T is defined as their linear span. Therefore, trial vectors are linear

combinations | x⟩ =
∑

i ci | i⟩, while the coefficients ci become variational parameters of

the functional: E(| x⟩) = E(c1, . . . , cn). The basis vectors | i⟩ may not be orthonormal,

and the Gram’s matrix Sij = ⟨i | j ⟩ may not be the identity. Denoting by h the matrix

hij = ⟨i | PHP |j⟩, the variational extreme (constrained by the normalization of the vectors)

is found as the solution of the system of homogeneous linear equation over the coefficients ci:

(h− ϵS) |x⟩ = 0 or
∑
j

(hij − ϵSij)cj = 0, i = 1. . . . , n. (1.8)

(|x⟩ is represented in the basis |i⟩, becoming a column with the coefficients ci). These equations

are equivalent to the eigen problem of the operator PHP , since they are the projections

of the equation (PHP − ϵI) | x⟩ = 0 onto the vectors of the initial basis; consequently,

the subspaces of the variational extremes are simultaneously the eigen subspaces of PHP .

Possible advantages of the variational point of view may be found in the explicit utilization of

the representation of the group and choice of the suitable initial basis (usually reflecting some

natural assumptions on the localization, frequently enabling to estimate ”overlap integrals”,

Sij and the matrix elements hij; e.g. Hückel’s method of the molecular orbitals, § 5.3).
In the studies of complex systems, like molecules and crystals, significant simplification is

introduced by the adiabatic approximation. The dynamics of the total system is decomposed

onto the dynamics of two subsystems, the ”light” and the ”heavy” one. The underlying

assumption is that the evolution of the ”heavy” system is slow enough, providing the picture of

the evolution of the ”light” system in the field of the frozen ”heavy” subsystem. This approach

is suitable for very efficient application of symmetry. Due to the necessary specific techniques,

it will be considered separately (§ 5.1). Analogously, very general harmonic approximation, is

the starting point of the different perturbative techniques, and the essence of some important

physical models (§ 3).



Chapter 2

NONRELATIVISTIC SYMMETRIES

The intuitive picture of the matter constituted of the elementary (within the assumed level

of observation) parts, is closely related to the notion of locality. In fact, the ingredients of

the structure are usually spatially separated, each of them occupying certain domain in the

space. Within the quantum theory this picture is slightly changed, but its essential contents,

the space-time based parametrization of the states, is preserved: the states are functions over

the space-time coordinates, and the state space appears as the space of functions over the

configurational space. The complete description of a real system requires such a space, and

this is the form of locality condition in the quantum theories1. In this state space the group of

symmetry acts by the coordinate representation: the geometrical transformation g, originally

defined on the configurational space (§ A.1.4), is represented by the operator D(g) acting

on the state space vectors, i.e. on the coordinate functions f(x), as D(g)f(x)
def
= f(g−1x).

(It is often convenient to work with other spaces, but then some models, and not the real

systems, are considered; for example, sometimes physical situation allows formal factorization

of the system, such that study of the separate degrees of freedom, e.g. spin ”subsystem”, is

possible.)

As any other representation, the coordinate one determines representation in the operator

space (§ 1.3). It is suitable to describe the transformation of the operators under the action

of the symmetries. The operators of the position, momentum, angular momentum and other

physical quantities, being defined in the coordinate representation, must transform in accor-

dance with the empirically well established transformation rules of the original quantities.

For example, the rotation R = (Rij) changes coordinates x to x′ = Rx, and in the coordinate

representation the analogous law, x̂′ = D(R)x̂D†(R) =
∑

j Rjix̂j must be fulfilled. In this

sense, the coordinate representation determines the transformation laws of the operators of

the coordinates and other physical quantities.

On the other hand, the symmetry group of the elementary physical system, such as the

point particle with no subsystems or the interactions, is the symmetry group of the space, i.e.

the group of relativity. The state space of such system must be irreducible for this group, since

1Precisely, locality condition imposes the rigged space of the Hilbert’s space L2(R3) or L2(R4), in order
to include the description of the completely localized states by the Dirac’s δ-function.

13
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otherwise, as it has been explained in § 1.2, the larger symmetry group could be introduced,

with the additional transformations of symmetry, which essentially reflects some unobserved

structure of the system. Thus, the state space of the elementary system carries the irreducible,

eventually projective, representation of the relativity group. Consequently, the locality condi-

tion requires that the representation of the symmetry group, suitable to describe elementary

system acts in the space with defined observables corresponding to (and having transforma-

tion properties of) the coordinates. Such representation may be the irreducible component,

D(µ)(G), of the reducible coordinate representation. The condition establishing that the sys-

tem (described by the state | ψ⟩) belongs to some irreducible subspace, P (µtµ) | ψ⟩ =| ψ⟩, is
the equation of motion of the free elementary system.

In the nonrelativistic physics, the Galileo’s group is postulated as the group of relativ-

ity. Together with the spatial symmetries (translations and rotations), it contains the time

translations and Galileo’s boosts (the transformations describing transition to the system of

reference moving uniformly with regard to the initial one; from the point of view of sym-

metry, the relativistic and the nonrelativistic physics differ just in these transformations).

The construction of the irreducible representations of the Galileo’s group is a complex task2,

[14], even more complicated then for the corresponding relativistic Poincare’s group; since the

notion and classification of the nonrelativistic elementary particles is not substantial for the

contemporary physics, this construction will be avoided.

Therefore, the main attention will be paid to the geometrical symmetries. These are the

isometric transformations [5, 9] of the Euclid’s 3-dimensional space (preserving the distance in

R3), i.e. the elements of the extended Euclid’s group E3 = T 3∧O(3,R). Each element of this

semidirect product is uniquely factorized onto R ∈ O(3,R) and t ∈ T 3 (t is the vector from

R3 for which the translation is performed), and the transformations of the Euclid’s group are

given in the Koster-Seitz’s form (R|t)x def
= Rx+ t.

When the isotropy of the system is provided, the symmetry group is at least SO(3,R),

and if the homogeneity is also the property of the system, the Euclid’s group, T 3 ∧ SO(3,R),

is found. Discrete many-particle systems cannot be neither isotropic nor invariant under

continuous subgroup of the translational group T 3, and their geometrical symmetries are

subgroups of the Euclid’s group. Especially, only discrete subgroups of T 3 can be involved,

and each such subgroup (except the trivial one, {(I|0)}) is infinite, manifesting the periodicity

of the system in certain directions. Therefore, the discrete many particle systems are divided

into the following classes:

(i) The systems with no translational periodicity (e.g. the molecules). Their symmetries

form a subgroup of O(3,R). The transformations of such groups leave the point of the

2In fact, only the projective representations with the nontrivial factor system (§ A.2.7) satisfy the locality
condition; the constant with the physical contents of mass appears in the factor-system (the covering group
is nontrivial extension of the Galileo’s group, and the new generator corresponds to the mass of the system).
Therefore, for each mass the separate set of the representations is constructed, and in the nonrelativistic
quantum theory, the superposition of the states with different masses is forbidden, due to their different
transformation properties.
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coordinate origin invariant, and therefore they are called point groups, [9, 20].

(ii) The systems periodical in one direction (polymers, quasi one dimensional subsystems

of the crystals). Their symmetry group, besides the translations (generated by the

single element), includes some of the orthogonal transformations leaving the axis of the

periodicity invariant; thus they are called line groups, [24].

(iii) The symmetries of the system periodical in two directions (quasi 2-dimensional subsys-

tems of the crystal, layers) are the translations (two generators with the independent

vectors of translation) combined with the orthogonal transformations leaving the plain

of the periodicity invariant. These groups are known as diperiodic groups, [10].

(iv) The systems with three directions of periodicity (crystals); their symmetries, besides

the orthogonal ones, are the translations (generated by 3 independent vectors): space

groups [23, 20].

The translational periodicity in one or two directions does not concern the dimensionality

of the system. All these groups describe symmetries of 3-dimensional systems; lower dimen-

sional system is treated as the special case, with symetry described also by some of these

groups.

In what follows, the Euclid’s group will be examined at first, to introduce the geometrical

symmetries, and in the rest of chapter the more detailed analysis of the symmetries of the

enumerated classes of the discrete systems. More attention is paid to the point and space

groups, since they are well established in the physics of the discrete systems. The time

reversal is traditionally studied together with the spatial symmetries, due to their mutual

intertwining, which results in the Kramers’s degeneracy and the construction of the magnetic

groups. Similarly, the permutational symmetry of the systems of identical particles yields

the classification of the physical systems onto the fermions and bosons; its deep connection

with the geometrical symmetries is manifested through the relationship between the spin (the

behavior of the system under the rotations) and the statistics (behavior with respect to the

permutations), which is explained within the relativistic theories.

2.1 Geometrical symmetries

The Euclid’s group is semidirect product of the translational and the group of the rotations in

the space R3. Such structure enables simple construction of the irreducible representations,

based on the representations of the subgroups. Besides, the study of the translational and the

rotational groups gives a number of the physically relevant facts, and therefore these groups

will be independently considered at first.
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2.1.1 Translations

The group of the translations, T 3, is Abelian, being the direct product of three groups of the

translations along the coordinate axes. Therefore, each vector k ∈ R3 determines one unitary

irreducible (one-dimensional) representation of T 3:

∆(k)(I|t) def
= e−ikt. (2.1)

In the coordinate representation, the translational operator acts on the function over R3 as

D(I|t)f(x) def
= f(x − t) (the passive picture is assumed: the operation is performed on the

coordinate system). The subspace corresponding to the irreducible representation ∆(k)(T 3)

is given by the functional equation D(I|t)f(x) = e−iktf(x), yielding the equation f(x− t) =

e−iktf(x). The well known solutions of this equation are the plane waves, f(x) = Ceikx, and

consequently, to each irreducible representation of the translational group there corresponds

the one-dimensional subspace in the coordinate representation3.

The generator of the translations along the x-axis is represented (§ A.2.1) by the operator

D(lx)f(x) =
∂f(x−tx,y,z)

∂tx
|tx=0 = − ∂

∂x
f(x), and analogous relations hold for the other coordi-

nates. Clearly, the generator of the translation, multiplied by i~, is identified to the momentum

operator, pi = −i~ ∂
∂xi

, and the translation itself is represented by the operatorD(I|t) = e−
i
~ tp.

The condition that the function f(x) is from k-th irreducible subspace, becomes at the gen-

erator level the differential equation ∂
∂xi
f(x) = ikif(x), i.e. pif(x) = ~kif(x). Therefore, the

plane wave is also the eigen state of the momenta, with the eigen value ~k; thus the vector k
defining the irreducible representation (multiplied by ~) is the momentum of the free particle

in the state corresponding to the representation k.

It should be emphasized that the performed procedure, determination of the irreducible

representations of the group, and separation of the corresponding subspaces in the coordinate

representation (yielding the functional equations at the level of the group, and the differential

equations at the level of the generators of the Lie’s group), is one of the most usual ways to

apply the symmetry (§ 1.2; analogous equations, obtained for the total group of the relativity,

are the equations of motion, such as the Schrödinger’s or the Klein-Gordon’s equation.)

2.1.2 Rotations and reflections

The group O(3,R) is the 3-dimensional compact, but unconnected Lie’s group, [5, 13]. There

are two connected components, and the component containing the identity is the subgroup

SO(3,R), such that O(3,R) = SO(3,R) ⊗ {e, P}, where P = −I is the spatial inversion.

Therefore the representations of O(3,R) are determined by the representations of the group

SO(3,R).

Each rotation in R3 is determined by the angle α and the axis (given by the unit vector

a = (a1, a2, a3)) around which the (right-handed) rotation is performed. This provides the

3The plane waves are normalized to the Dirac’s δ-function, emphasizing both the necessity of the rigged
Hilbert’s space, and the importance of the locality condition.
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bijective correspondence of the rotations and the 3-dimensional matrices from SO(3,R):

R(α,a) =

(
cosα+a21(1−cosα) a1a2(1−cosα)−a3 sinα a1a3(1−cosα)+a2 sinα

a1a2(1−cosα)+a3 sinα cosα+a22(1−cosα) a2a3(1−cosα)−a1 sinα
a1a3(1−cosα)−a2 sinα a2a3(1−cosα)+a1 sinα cosα+a23(1−cosα)

)
, α ∈ [0, π]; (2.2a)

the interval of the angle α follows from the fact that for α > π, R(α,a) = R(2π−α,−a). Also,

it can be decomposed onto the three rotations for the Euler’s angles φ ∈ [0, 2π], θ ∈ [0, π]

and ψ ∈ [0, π] around the coordinate axes z, x and z, respectively (this ”z-x-z” convention

is used throughout the text). This provides the bijective correspondence of the rotations and

the 3-dimensional matrices from SO(3,R):

R(φ, θ, ψ) =

(
cosφ cosψ−cos θ sinφ sinψ − cosφ sinψ−cos θ sinφ cosψ sinφ sin θ
cosψ sinφ+cos θ sinψ cosφ cos θ cosφ cosψ−sinφ sinψ − cosφ sin θ

sinψ sin θ cosψ sin θ cos θ

)
. (2.2b)

The correspondence between the two parameterisations is realized, noticing that if on the unit

sphere a has spherical angles (φ, θ), then it can be got from the x-axis by rotations R(φ, θ, 0),

and then it is clear that R(φ, θ, α) = R(α,a); this also explains the used intervals for the

Euler angles. The group SO(3,R) is nontrivially (double) connected, and its representations

are found as the representations of the universal covering group4 SU(2). To each element R

of the group SO(3,R) two elements, U and −U , of the group SU(2) are associated. Namely,

each element of SU(2) can be expressed in either of the angle-axis or Euler angles forms:

U(α,a) =

(
cos α

2
− ia3 sin

α
2

−(a2 + ia1) sin
α
2

(a2 − ia1) sin
α
2

cos α
2
+ ia3 sin

α
2

)
, α ∈ [0, 2π] (2.3a)

U(φ, θ, ψ) =

(
e

i
2
(φ+ψ) cos θ

2
e

i
2
(φ−ψ) sin θ

2

−e
i
2
(ψ−φ) sin θ

2
e−

i
2
(φ+ψ) cos θ

2

)
, φ, ψ ∈ [0, 2π], θ ∈ [0, π]. (2.3b)

Then, the mapping

h(U(φ, θ, ψ))
def
= R(φ, θ, ψ) (2.4)

is the (covering) homomorphism of SU(2) onto SO(3,R), which both U(α,a) and −U(α,a) =
U(α + 2π,a) maps to R(α,a) (especially, I2 and −I2 are mapped to I3). In the space

S with the representation D(SU(2)), the operators D(U) and D(−U) (i.e. D(h−1(R)) are

associated to the element R. If these two operators are equal (then the D cannot be faithful

representation of SU(2)) the ordinary representation of the rotational group is obtained. On

the contrary, if D(U) and D(−U) are different (e.g. the representation of the group SU(2)

is faithful), the two valued representation of SO(3) is established: to each element R the

pair of the operators correspond, and this is two valued correspondence. Rigorously this

is not the representation, since the homomorphism condition is fulfilled only in the sense

of the multiplication of the pairs: the product of any of the operators corresponding to

R, with any operator corresponding to the rotation R′, is one of the operators of the pair

representing RR′. If only one operator from each pair is fixed, then the product satisfies

D(R)D(R′) = f(R,R′)D(RR′), where f(R,R′) is 1 or −1, depending on the choice of the

4This is (§ A.2.7) simply connected group, homomorphically mapped onto SO(3,R).
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pair representative; hence, this becomes the projective representation of the group SO(3,R),

with the factor-system f (§ A.2.7).
The irreducible representations of the considered groups can be found by the standard

method developed for the Lie’s groups, based on the generators. The set of the rotations

R(α,a), around the fixed unit vector a, is the one-parameter subgroup (§ A.1.2). Therefore,
the operators representing these rotations are

D(Rαa) = e−iαSa , (2.5)

where Sa = −i~D(la) = a·S =
∑

i aiSi (Si are coordinate angular momenta) is the hermitean

operator of the a-component of the angular momentum. Above exponential identity relating

the angular momenta to the generators of the rotations is the well known property property of

the Lie’s groups (§ A.2.1), and analogous relation of the momenta and translations has been

noted in the previous Subsection. However, this fact enables construction of the irreducible

representations by the (standard in the theory of Lie’s algebras) method based on the angular

moments. The result is well known: the irreducible representations are completely charac-

terized by the half integrals l = 0, 1
2
, 1, . . . , each of them being 2l + 1-dimensional; in the

corresponding irreducible subspaces the angular momenta are complete observables, with non

degenerate eigen values l, l − 1, . . . ,−l + 1,−l. Usually, the eigen basis of the z-component,

S3, of the angular momentum is used, meaning that the matrix representing l3 is diagonal

with the mentioned eigenvalues on the diagonal. Also, the irreducible representations are

uniquely characterized by the square of the angular momentum. Namely, the operator of the

square of the angular moment (Kazimir’s operator), S2 def
=
∑3

i=1 S
2
i , in the subspace of the

l-th irreducible representation acts as the scalar operator l(l + 1)~2I.
The exponential form (2.5) provides more sophisticated point of view, free of vague notion

of ”two-valued representations”: the actual group dealt with is SU(2), and its elements are

spin-rotations around arbitrary axis a for angle α ∈ [0, 4π], obtained from (2.5) when coor-

dinate angular momenta are spin matrices; with convention about choice of the rotational

axis this gives (2.3a). In odd dimensional spaces it acts by its (integer) representation D(j)

with kernel kerD(j) = {I2,−I2}, containing rotations for φ = 0 and φ = 2π (around arbitrary

axis), respectively. This action is not effective, as kerD(j), represented by identity matrix,

fixes any point of the space, and exactly this ineffective action in three-dimensional space

(j = 1) is rotational group, while in higher dimensions (for j=2,3,. . . ) faithfully represents it.

On the other hand, in the even dimensional spaces (half-integer j) describing systems with

odd number of fermions, the representations of SU(2) are faithful, and group acts effectively

through spin-rotations on the spinors (vectors of these spaces; this explains why half-integer

representations are also called spinor representations).

When the exponent of the diagonal form is found, it appears that the rotation for 2π

is represented by the identity matrix only if l is integer, and only such representations are

the representations of the group SO(3,R); the remaining half integral ones are two valued.

Since the set of all the rotations for the same angle is exactly one conjugation class of the

rotational group, the character of the irreducible representation can be found as the trace of
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the exponent of the diagonal matrix l3:

χ(l)(φ) =
sin 2l+1

2
φ

sin φ
2

.

Obviously, the characters are real, and there is no representations of the III kind (§ A.3);

the character test (or direct examination) shows that the halfintegral representations are

pseudoreal (II kind), while for the integral ones the real form exists (I kind).

In the coordinate representation, the rotations act as D(R)f(x) = f(R−1x). Espe-

cially, for the rotations around the z-axis, D(Rφez)f(x) = f(x1 cosφ + x2 sinφ,−x1 sinφ +

x2 cosφ, x3), and the corresponding generator satisfies D(l3)f(x) =
∂
∂φ
(D(Rφez)f(x))|φ=0 =

(x1
∂
∂x2

−x2 ∂
∂x1

)f(x). Analogous relations hold for the other generators: D(li) =
∑

k ϵijkxj
∂
∂xk

.

The identification of these operators to the angular momenta is obvious: Sa = −i~D(la). The

condition that the state f(x) is in the l-th irreducible subspace, D(R)f(x) = D(l)(R)f(x),

is usually expressed at the level of the generators. Using the mentioned property of the

square of the angular momentum, this condition becomes (in the spherical coordinates)∑3
i=1D

2(li)f(x) = ( 1
sin2 θ

∂2

∂φ2 + 1
sin θ

∂
∂θ

sin θ ∂
∂θ
)f(x) = −l(l + 1)f(x). The solutions of this

differential equation are the spherical harmonics, Y m
l (θ, φ), with the integral l (multiplied by

the arbitrary function of the radial coordinate), which simultaneously satisfy the equation

S3f(x) = m~f(x) = −i~ ∂
∂φ
f(x), i.e. D(Rφez)f(x) = e−imφf(x).

The Clebsch-Gordan’s series of the irreducible representations,

D(l)(SU(2))⊗D(l′)(SU(2)) =
l+l′∑

l′′=|l−l′|

D(l′′)(SU(2)),

give the well known rule of the addition of the angular momenta, and in the associated

selection rules the conservation of the angular momenta is easily recognized.

The irreducible representations of the group O(3,R) can be determined now. Each

integral representation D(l)(SO(3,R)) gives (§ A.2.8) two representations, D(l,±)(O(3,R)):

D(l,±)(R) = D(l)(R) i D(l,±)(PR) = ±D(l)(R). Nevertheless, for the halfintegral (two-valued!)

representations of the group SO(3,R), the same method shows that to the spatial inversion

correspond both of the operators ±I2l+1, and only one two-valued representation of the group

O(3,R) is obtained: the element PR is represented by the same pair of the operators as the

element R ∈ SO(3,R).

2.1.3 Euclid’s group

The irreducible representations of the Euclid’s group are derived from the known representa-

tions of its subgroups of the rotations and the translations, by the inductive procedure (the

Abel’s subgroup T 3 is invariant). The representations of the extended Euclid’s group are

afterward found by the induction from Euclid’s group, being subgroup of the index two.

Since D(k)((R−1|0)(I|t)(R|0)) = D(k)(I|R−1t) = e−ik(R−1t) = e−i(Rk)t = D(Rk)(I|t), the
orbit of the irreducible representation D(k)(T 3) is the sphere with the radius |k| = k. Taking
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for the orbit representative the vector ka (a is an arbitrary unit vector), the stabilizer for k > 0

is the semidirect product of the group T 3 with the group of the all rotations around a. The

latter is C∞ = SO(2) (§ 2.2.1), with the irreducible representations Am(Rφez) = e−imφ. In the

case k = 0, the stabilizer is the complete Euclid’s group, and the series of the representations

is obtained from the known irreducible representations of the rotational group SO(3). Thus,

the irreducible representations of the Euclid’s group are characterized by the pair (k,m) for

k > 0 and m = 0,±1, . . . , and for |k| = 0, by the pair (0, l), l = 0, 1, . . . . If the covering

group is considered, m and l take also the halfintegral values.

In the coordinate representation, as it has been shown already, the translations and the

rotations are generated by the momenta and the angular momenta. Hence, k corresponds

to the momentum of the system, and m to the projection of the angular moment onto the

vector k. Therefore the irreducible subspace (k ̸= 0,m) of the Euclid’s group distinguishes

the states |km⟩ with the same kinetic energy of the center of mass (i. e. the same absolute

value of the total momentum |P | = k~) and the projection of the angular momentum in the

direction k of the motion of the center of mass equal to m~. For k = 0 the center of mass of

the system is in rest, and the total angular momentum is reduced to the interior one, while

its value is determined by the index l (within the classical theory, this is possible only for the

many particle system).

For the single free particle, the angular momentum is zero, and the corresponding irre-

ducible subspace is defined by the condition P 2 = k2~2. In the coordinate representation this

is the Schrödinger’s equation of the spinless free particle: (∇2 + k2)f(x) = 0.

As for the extended Euclid’s group, it should be noted that the spatial inversion changes

the sign of the momentum, while the angular momentum remains the same. Thus the projec-

tion of the angular momentum on k changes its sign. This means that two representations of

the group T 3 ∧ SO(3,R), with the same k > 0 and opposite m ̸= 0 yield one representation

of the Euclid’s group; in the case m = 0, the representation (k, 0) gives two representations

of the Euclid’s group. Finally, when k = 0, and the representation is essentially determined

by the representation of the rotational group, the representations are classified by angular

momentum and the parity, (k = 0, l,±), as described in the previous subsection.

2.2 Molecules: point groups

The symmetry groups of the linear molecules are Lie’s groups, to differ from all other discrete

systems. Thus they will be studied separately.

2.2.1 Linear molecules

Any linear molecule is invariant under all rotations, R(ϕ), around its axis (z-axis, by default).

These rotations form Lie’s group SO(2,R), which is in the molecular physics [3] denoted by

C∞. The remaining symmetries must leave the z-axis invariant. Such transformations are

vertical mirror planes, σv (planes containing z-axis), horizontal mirror plane (xy-plane), σh,
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rotations U for π around horizontal axis, or their combinations with the rotations around

z-axis. Since σhσv = U , if any two of these three symmetries are observed, the third one

is present also. When σv is conjugated by the rotation R(ϕ), another vertical mirror plane,

R(ϕ)σR−1(ϕ), rotated for ϕ with respect to the initial one, is obtained. Therefore, if there

is one vertical mirror plane in the symmetry group, there are all others too. The analogous

result is easily verified for the horizontal U axes of symmetry.

In this way all the symmetry groups of the linear molecules are classified: C∞, C∞v =

C∞ ∧ {e, σv}, C∞h = C∞ ⊗ {e, σh}, D∞ = C∞ ∧ {e, U} and D∞h = C∞v ⊗ {e, σh}. Their

structure enables simple construction of the irreducible representations (the representations

are unitary, since the groups are compact).

Since C∞ is Abel’s group, its irreducible representations are one-dimensional, and the

homomorphism condition is D(R(ϕ)) = e−imϕ; the periodicity, R(2π) = e, implies that m is

integer. Thus, the irreducible representations of this group are Am(R(ϕ)) = e−imϕ, m =

0,±1,±2, . . . .

The representations of the groups C∞v and D∞ are found by induction from the halving

subgroupC∞. These groups are isomorphic, and their representations are equal (although dif-

ferently denoted). Due to the relation σvR(ϕ)σv = R(−ϕ), the σv-conjugated representation

of Am(C∞) is A−m(C∞). Consequently, the representation A0(C∞) is selfconjugated, giving

two representations of the group C∞v, namely A0(C∞v) and B0(C∞v). All other orbits con-

tain two representations of C∞, with opposite m, and each such pair gives one 2-dimensional

representation, Em(C∞v) (as for the group D∞, the one-dimensional representations are de-

noted by A+
0 and A−

0 , instead of A0 and B0). The representations of the group C∞h are

A±
m(C∞h) (this follows since C∞h is the direct product of C∞ with the cyclic group {e, σh}).

Similarly, using the direct product structure of the groupD∞h, the irreducible representations

of this group are found: A±
0 (D∞h), B

±
0 (D∞h) i E

±
m(D∞h).

The representations are denoted in accordance with the physical contents of the good

quantum numbers for the systems with the corresponding symmetries. Thus, m is the pro-

jection of the angular momentum on the z-axis, A and B shows the parity with respect to

the vertical mirror plane, while + and − characterize the parity with respect to the reversal

of the direction of the z-axis. The Clebsch-Gordan’s series are easily found, and the selection

rules following from the Wigner-Eckart’s theorem manifest the conservation of the parities

and of the z-component of the angular momentum. The greatest dimension of the obtained

irreducible representations is 2, and this is the maximal degeneracy induced by symmetry.

2.2.2 Nonlinear molecules

The point groups of symmetry of nonlinear molecules are finite. There are 7 infinite series

and 7 separated groups, [3].

Axial point groups are those leaving z-axis invariant, and they are classified into the 7

infinite families, with one group for positive integer n within each family: Cn (cyclic group

generated by Cn = R(2π
n
)) of the order n, S2n = Cn + C2nσhCn (cyclic group with the
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generator C2nσh) of the order 2n, Cnv = Cn ∧ {e, σv} of the order 2n, Dn = Cn ∧ {e, U}
of the order 2n, Cnh = Cn ⊗ {e, σh} of the order 2n, Dnh = Cnv ⊗ {e, σh} of the order 4n

and Dnd = Cnv + U ′Cnv (U ′ is the horizontal axis bisecting the angle between the adjacent

vertical mirror planes of Cnv) of the order 4n.

The remaining groups are: T , the group of the rotations leaving the tetrahedron invariant

(of the order 12), Td the group of all the symmetries of the tetrahedron (of the order 24),

Th = T ⊗ {e, P} (of the order 24), O the group of the rotational symmetries of the cube (of

the order 24), Oh = O⊗{e, P} the group of the all symmetries of the cube (of the order 48),

Y the group of the rotational symmetries of the icosahedra (of the order 60) i Yh = Y ⊗{e, P}
group of the all symmetries of the icosahedron (of the order 120). In the above relations P

denotes the spatial inversion.

The representations can be obtained by the standard inductive methods. For the axial

groups it suffices to note their hierarchy: Cn and S2n are cyclic, Cnv, Dn and Cnh have

Cn as the halving subgroup, and Cnv is halving subgroup in Dnh and Dnd. Therefore their

representations can be derived directly or by the induction (§ A.2.8) from the halving subgroup

in the two steps at most. Analogous, but slightly more complicated structural analysis yields

the representations of T , O and Y , and then the representations of the remaining groups are

easily found.

In all these cases the selection rules express conservation of the z-component of the angular

momentum. Due to the finite order of the rotational axis, the representations with the

quantum number m differing by the multiple of the order of the principle axis, n, are same.

This is manifested in the form of the conservation law: the quantum numbers are added

modulo n, and the selection rule is m +m′ .
= m′′, meaning that m′′ = m +m′ + zn (z is an

integer). Such rule is called the conservation of the quasi angular momentum. As for other

rotational axis as well as for the parities (mirror planes, inversion and rotations for π), the

analogous conservation laws are easily established.

2.3 Crystals: space groups

The common property of the crystals, [4], is their discrete translational symmetry, described

by the translational group T . The additional orthogonal symmetry, depends on the concrete

compound, and therefore in the solid state physics the translational invariance is always

considered, while only in the study of some specific crystall its whole space group is involved.

2.3.1 Translational group and lattices

The translational group is discrete Abelian group, generated by three independent vectors in

R3. These vectors, a1, a2 i a3, define the primitive translations, ( I |ai ), which generate

infinite cyclic groups Ti = {( I |ziai ) | zi ∈ Z}. The whole translational group is the direct

product T = ⊗3
i=1Ti, and each element of T is product ( I |z ) = ( I |z1a1 + z2a2 + z3a3 )

given by triple of integers (z1, z2, z3).
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Acting on any point of R3 (e.g. (0, 0, 0)), the translations of T generate periodically

arranged set of points in R3. This is an orbit of T , called the lattice with the periods ai, and

the elementary cell being the box with the edges ai.

The choice of the periods of the given lattice is not unique. Let the (a)[x] be matrix with

columns being the vectors of the periods a1, a2 i a3 represented in the basis {x1,x2,x3}
of the space R3. If S is the operator mapping original periods to another ones, a′, i.e.

a′
i = Sai, then (a′)[x] = S[x](a)[x] (here S[x] is the matrix representing the operator S in the

basis {x1,x2,x3}). Especially, if xi = ai, then (a)[a] is 3-dimensional identity matrix, and

(a′)[a] = S[a]. Since primed basis is also a basis of periods, a′
i is an integral linear combination

of the vectors a1, a2 and a3, and matrices (a′)[a] and S[a] are with integral elements. Further,

starting from the periods a′
i, the same argument shows that the elements of (a)[a′] = S−1

[a′] and

S−1
[a′] are integral. But it is known that the operator S is represented by the same matrices in

both bases it connects, i.e. S−1
[a′] = S−1

[a] ; hence, both of the matrices S[a] and S
−1
[a] are integral.

This means that the group GL(3,Z) describes the different choices of the periods of the given

lattice (GL(3,Z) < GL(3,R)).

As the determinant of the integral matrix is integer itself, and the determinant of the of the

inverse is inverse of the determinant, it follows that elements of GL(3,Z) satisfy detS = ±1.

Moreover, a determinant is independent of the representative basis, and the last equation is

valid in any basis (although the matrix S is not necessarily integral in any basis). Especially,

in the Descartes’s basis, ei, determinant det(a)[e] = [a1,a2,a3] (mixed vector product) is

volume of the original elementary cell, while det(a′)[e] = detS[e] det(a)[e] is volume of the

final one. Thus, for any choice of the periods elementary cell is of the same volume.

The irreducible representations of the translational group are easily found, since T is

the direct product of the cyclic groups. In fact, for the cyclic group Ti, generated by the

elementary translation (I|ai), the irreducible representations are D(ki)( I | ziai ) = e−ikiziai ,

where ki is any complex number. Among them, unitary representations are distinguished by

real values of ki. The representations D
(ki)(Ti) and D

(ki+Kiz)(Ti) are the same for Ki =
2π
ai

and

any z ∈ Z, meaning that nonequivalent representations are found for ki ∈ (− π
ai
, π
ai
]. Hence,

irreducible representations of the whole translational group T are D(k)( I |z ) = e−ikz, with

k = k1b1 + k2b2 + k3b3, and

b1 = 2π
a2 × a3

[a1,a2,a3]
, b2 = 2π

a3 × a1

[a1,a2,a3]
, b3 = 2π

a1 × a2

[a1,a2,a3]
.

Vectors bi form a basis of the inverse lattice, and the corresponding elementary cell includes

the nonequivalent unitary representations of T : k+K and k give the same representation if

and only if K = z1b1 + z2b2 + z3b3 is the vector of the inverse lattice.

Usually, instead of the elementary cell of the lattice the Wigner-Seitz’s cell is used: this is

the domain including all the points of R3 which are closer to the origin of the lattice (z = 0)

than to any other point z ̸= 0 of the lattice. Obviously, this domain is bounded by the planes

perpendicular to the vectors connecting the adjacent points of the lattice and halving these

vectors. It has the same volume as the elementary cell, but its shape has the orthogonal sym-

metry of the crystal. Analogous construction in the inverse lattice is known as the Brillouin’s
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zone, and its symmetry is very important in the construction of the irreducible representa-

tions of the space groups. Therefore, it is assumed that the vector k, labeling the irreducible

representations of T , takes on the values from the Brillouin’s zone. According to the general

principles of the applications of symmetry, § 1.2, the eigenvalues of the hamiltonians related

to the various properties of crystal are labeled by good quantum number k. Therefore, the

eigen energies are functions (hyper surfaces), Ek,tk , over the Brillouin’s zone: these energy

bands are one of the general characteristics of the physics of the crystals.

In order to simplify some calculations, the Born-von Karman’s periodical conditions are

frequently mentioned in theoretical studies of crystals: the requirement ( I | ziai )Ni =

( I | Niziai ) = ( I | 0 ) is introduced, meaning that the groups Ti are substituted by fi-

nite cyclic groups of order Ni. To provide physical justification for this simplification, loose

arguments about physically equal conditions at the boundaries of the crystal, or finiteness of

real crystals, are usually invoked. Nevertheless, Born-von Karman’s conditions describe the

lattice on a 3-dimensional torus, which topologically differs from the real crystal; this can

lead to some problems and artifacts of theory. On the other hand, finiteness of real crystals

makes results obtained with use of infinite translational groups approximate, though for many

properties difference between N periods and infinite structures are negligible for N of order

10. Especially, when effects related to the boundaries of real crystal are studied, none of the

approaches offers reliable predictions.

If D(T ) is a representation of translational group, the group projector (§ A.2.4) of the irre-
ducible representation D(k)(T ) is P (k) = 1

|T |
∑

z e
ikzD(I|z). In the coordinate representation,

the component of the function from the subspace S(k) of D(k)(T ) is found as the projection

ψ(k)(x) = P (k)f(x) = 1
|T |
∑

z e
ikzf(x−z) = eikxu

(0)
k (x), where u

(0)
k (x) =

∑
z e

ik(z−x)f(x−z).

The functions u
(0)
k (x) are invariant under translations (translations simply permute terms in

the sum). This result is known as the Bloch’s theorem [31]: each function transforming ac-

cording to representation k (i.e. D( I |z )ψ(k)(x) = e−ikzψ(k)(x)) is plane wave eikx (k from

the Brillouin’s zone) multiplied by a periodical function u
(0)
k .

This conclusion enables to consider only the translationally invariant factors instead of

the whole functions, leading to the specific form of the dynamical law. The reduction of the

hamiltonian operator into the multiple irreducible subspace S(k) of the translational group,

gives, for each k in the Brillouin’s zone, the Schrödinger’s equation for the periodical functions

u
(0)
k ; therefore, the eigenvalues are the functions of k, realizing the mentioned scheme of the

energy bands of the crystal. Moreover, the periodicity of the functions u
(0)
k enables their

expansion in the Fourier’s series, u
(0)
k (x) =

∑
K fk,KeiKx (the sum is over the vectors of the

inverse lattice), and the functions can be found or modeled through the coefficients fk,K .

Hence, typical solid state theoretical approach to consider various quantities through their

Fourier’s coefficients originates in the translational symmetry. Later on, § 3.3 and § 5.4,

all these consequences will be illustrated during the study of the phonons and electrons in

crystals.

Clebsch-Gordan series of the irreducible representations are easily calculated, since they

are one-dimensional: D(k)(T ) ⊗ D(k′)(T ) = D(k′′)(T ), where k′′ .
= k + k′ = k + k′ +
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K (equality modulo vector of the inverse lattice). The Wigner-Eckart’s theorem implies

⟨ k′′λk′′ |V k′λk′ |kλk ⟩ = 0, if the condition k′′ .
= k + k′ is not fulfilled. In the condensed

matter physics, ~k is interpreted as the quasi momentum of the considered subsystem in the

crystal, and the last selection rule becomes conservation law of the quasi momentum; the fact

that this quantity is defined up to the vector of the inverse lattice is manifested by the non

vanishing K in some processes (these are called indirect or Umklapp processes to distinguish

from the direct ones with K = 0 ares).

2.3.2 Crystal systems

All orthogonal transformations leaving a lattice invariant form a group called holohedry or the

singony, PH . This is a finite point group, being the maximal subgroup of the full orthogonal

group O(3) with elements permuting the lattice points. Periodicity of the lattice restricts the

set of holohedries. In fact, if the rotation for ϕ leaves the lattice invariant, its representative

matrix in the basis of the periods must be integral, and thus its trace, 1 + 2 cosϕ, too. It

follows that the angle of rotation (assumed to be less or equal to π) can take the values 2π
n

for n = 1, 2, 3, 4, 6 (R(2π) = R(0) for n = 1). Only the point groups (listed in § 2.2.2) with
these values of n may be symmetries of the lattice. There are 32 such groups and they are

called crystallographic point groups:

C1, C2, C3, C4, C6, C2v, C3v, C4v, C6v, S2
def
= Ci, S4, S6, C1h

def
= Cs, C2h, C3h, C4h,

C6h, D2, D3, D4, D6, D2h, D3h, D4h, D6h, D2d, D3d, T , Th, Td, O i Oh(the groups with

same geometrical contents are encountered only once: D1 = C2, C1h = C1v, D1h = C2v and

D1d = C2h; these are the mutually conjugated subgroups of O(3,R)).

The space inversion is obviously symmetry of the lattice: if a is lattice vector, then −a

also belong to the lattice; this implies that the candidates for the holohedries are only the

groups containing the inversion. Also, it is obvious that invariance of the lattice under C3

yields also invariance under C3v; similar results are obtained for C4 and C4v, and C6 and

C6v. Consequently, the invariance under the transformations from S6, C4h and C6h implies

the symmetry of the groups D3d, D4h and D6h, respectively. Thus, altogether there are 7

holohedries: S2, C2h, D2h, D4h, D6h, D3d and Oh. Holohedries form partially ordered set,

[4, 8], with respect to the subgroup relation, A < B:

D6h>D3d

∨ ∨
Oh > D4h> D2h>C2h > S2

Given the holohedry, PH , different lattices can be formed, suitably choosing periods of T .

The set of all such lattices is called the crystal system (of the holohedry PH). Two lattices of

the same holohedry PH are considered as equivalent if they can be continuously transformed

one to another such that the holohedry of the lattice in any of the intermediate position is at

least PH . This means that, after some homotetical mapping, two equivalent lattices can be

identified by the action of the transformation from O(3,R). It appears that there are at all
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14 nonequivalent lattices, called Bravais’s lattices, distributed over 7 crystal systems (Table

2.1).

Successive action of the elements of PH and T leaves lattice invariant. The intersection

of PH and T is the identity element only. Finally, when a lattice translation is conjugated

by an element from PH , another lattice translation is obtained, meaning that T is invariant

subgroup of the total lattice symmetry group. It follows that the total group of symmetry of

the lattice with holohedry PH (for any of the associated Bravais’s lattices) is SH = T ∧ PH .

2.3.3 Space groups

Having considered orthogonal symmetry of the translational lattices only, the crystal systems

and the Bravais’s lattices are obtained, with the symmetry groups SH = T ∧PH . Nevertheless,
these are not all symmetry groups of real crystals. In fact, when real crystals are studied,

besides the geometrical arrangement, the symmetry of the atomic physical properties must be

encountered. Also, atoms in crystals are not positioned only in the lattice sites: translational

invariance allows crystals containing several equal but slightly mutually translated Bravais’s

lattices occupied by (different or same) atoms. Thus, certain atoms appear in the interior of

elementary cell. In this sense, Bravais’s lattices are also called ”empty” lattices. Obviously,

the total symmetry group of a crystal contains all the translations of the lattice, but the

orthogonal subgroup is less than that of the lattice, while some of the orthogonal elements

may become the symmetries of the crystal only when combined with the translations.

Each real crystal uniquely defines its translational symmetry group T , defining afterward

the crystal lattice and its symmetry, PH . On the other hand, real crystal determines its

group of geometrical symmetries, the space group of the crystal, S. Clearly, S contains all

pure translations, i.e. T is its subgroup. Also, if (R |x) is an arbitrary element of the group S,

and (I |z) is an element from the subgroup T , the conjugated element, (R|x)(I |z)(R|x)−1 =

( I | Rz ) is pure translation, thus belonging to T . This shows that translational subgroup

is invariant in S; also, it follows that the orthogonal factor R of any element of the group

S leaves lattice invariant, i.e. R is an element of PH . Also, it can be easily verified that

group is the set of such orthogonal elements which combined with certain translations give

symmetry transformations of the crystal. This group is called the isogonal point group, PI ,

and it is obviously a subgroup in PH . However, note that the elements of PH and PI may not

be symmetries of the crystal (i.e. these groups may not be subgroups of S).

Still, for each element R of PI there exists vector r such that ( R | r ) is in S. This

determines uniquely the coset (R | r )T = {(R | r + z )} of the translational subgroup in S.

Further, this coset contains exactly one element, (R | fR ), with vector fR from the interior

of the elementary cell of the crystal (there is z such that fR = r + z). If fR ̸= 0, then R is

not symmetry of the crystal, and fR is called the fractional translation; in this way the screw

axes, (Cn |f ) and the glide planes, (σ |f ), are obtained (Fig. 2.1).

On the other hand, since T is invariant subgroup, the coset multiplication is well defined:

(R | fR )T (R′ | fR′ )T = (RR′ | fR + RfR′ )T = (RR′ | fRR′ )T . The orthogonal factors are
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multiplied as in PI , enabling to identify PI to the corresponding factor group: PI = S/T .

Since PI < PH , all of the 32 crystallographic point groups can be distributed over the

holohedries, such that each is uniquely (due to the introduced partial ordering on the set of

the holohedries) associated to the minimal holohedry containing it. This procedure provides

total of 32 crystal classes distributed among 7 systems. The definition of the isogonal group

(its elements are obtained by forgetting for the translational parts of the transformations of

the space group), shows that, even when PI is not subgroup of S, some characteristics of the

crystals will be preserved after the transformations by the elements of this group: these are

the properties determined by the directions in the crystal only, independent on the details

of the arrangements of the atoms along these directions. In fact, all the directions along

which the arrangement of the atoms is equal up to some translation (including fractional

ones), are equivalent for such properties, and PI appears as the group of the symmetry of the

directions, connecting the mutually equivalent directions. It is commonly considered that the

macroscopic properties depend on the directions in the crystal only, and in this context PI is

taken as the group describing the macroscopic symmetries [4].

Table 2.1: Space groups: for each crystal system, the number of the Bravais’s lattices (BL), the
holohedry (PH), and the corresponding crystal classes (represented by the associated isogonal
point groups, PI), with the number of the spaces groups within each class, are presented.

System BL PH PI

1 Triclinic 1 S2 C1(1),S2(1)
2 Monoclinic 2 C2h C1h(4),C2(3),C2h(6)
3 Rombic 4 D2h C2v(22),D2(9),D2h(28)
4 Tetragonal 2 D4h S4(2),D2d(12),C4(6),C4h(6),C4v(12),D4(10),D4h(20)
5 Rombohedral 1 D3d C3(4),S6(2),C3v(6),D3(7),D3d(6)
6 Hexagonal 1 D6h C3h(1),D3h(4),C6(6),C6h(2),C6v(4),D6(6),D6h(4)
7 Cubic 3 Oh T (5),Th(7),Td(6),O(8),Oh(10)

It became clear that translational and isogonal point groups, together with fractional

translations, completely determine one of the space groups. Various choices of fractional

translations differ space groups from the same crystal class. Two space groups are considered

as equivalent if they are conjugated as the subgroups of the Euclid’s group. Then there

are 230 nonequivalent space groups, distributed over 32 crystal classes (table 2.1). Their

main common characteristics is the invariant translational subgroup; the corresponding factor

group, isomorphic to the isogonal point group, specifies the crystal class and the crystal

system. If the isogonal group is also subgroup of the space group, i.e. if all fractional

translations vanish, the structure of the space group is S = T ∧ PI (to see this it suffices to

repeat the discussion on the analogous relation for the symmetry group of the lattice); there

are 73 such groups, known as the symorphic space groups.

Since the set of translations is commutative invariant subgroup of any space group, the
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irreducible representations can be found by the induction from this subgroup (§ A.2.8). The
orbit of the representation D(k)(T ) of the translational group is the set of the vectors of

the Brillouin’s zone, called the star of k; these vectors are mapped one to another by the

elements of the isogonal group. If vector k is in the interior of the Brillouin’s zone, outside

the plains and the axes of symmetries (this is called general position), the stabilizer is the

translational subgroup, T , itself, and the order of the orbit is |PI |. On the contrary, when

k = 0, the stabilizer is the whole space group, S, and the order of the orbit is 1. Between these

extreme cases, there are vectors of special positions, called (Lifshic’s points): their stabilizer

are nontrivial subgroups of S and the orders of their orbits are less then |PI |. When the

representative vector is chosen for each star and its stabilizer is determined, the allowable

irreducible representations are to be found; then, inducing these representations from the

stabilizer to the total space group, the irreducible representations of S are obtained.

Construction of the allowable representations is the main difficulty in this algorithm, [23].

For the symorphic group S = T ∧ PI , the stabilizer Sk is semidirect product of T and the

subgroup Pk of the isogonal group. The allowable representation of Sk are found as direct

products of D(k)(T ) with the irreducible representations of Pk (the later are called little

representations). Even for nonsymorphic groups, the stabilizer Sk is a space group, with

same translational subgroup as S, and the isogonal group Pk being a subgroup of PI . It

turns out that the procedure is similar to the case of symorphic groups, but in the role of

little representations appear projective representations of Pk (§ A.2.7, [11]), or, equivalently,
irreducible representations of the covering group of Pk. The dimensions of the irreducible

representations of the space groups are 1, 2, 3, 4, 6 or 8.

The described construction causes that among the labels of the irreducible representations

of the space groups is the vector k of Brillouin’s zone, indicating the orbit (star) of induction.

Therefore, the selection rules obtained when Clebsch-Gordan’s coefficients are calculated,

manifest the conservation of quasi-momenta. As for the quasi angular momenta and parities,

they are related to the isogonal group; therefore, they are conserved only if the corresponding

symmetries are also in the space group (i.e. if the associated fractional translation is zero),

but, depending on representations, these conservation rules are satisfied in other cases.

2.4 Layers: diperiodic groups

The diperiodic groups can be treated along the same lines as the space groups. Also there are

some structural similarities to the line groups, enabling easier construction of the irreducible

representations. Systems with such symmetries were rarely analyzed in the solid state physics

until, during this decade, high temperature superconductivity and planar dislocations in the

crystals have been related to diperiodic symmetry.

Each diperiodic group is a subgroup of some of the space groups. Since one diperiodic

group can be subgroup of different space groups, all those 3-dimensional holohedries differing

only by the translations in the direction outside the plain of the diperiodic lattice, give the

same two dimensional holohedry (same refers to the corresponding Bravais’s lattices). The
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isogonal groups satisfy crystallographic conditions for the order of the principle rotational

axis derived for the crystals. Therefore they are subgroups of the crystallographic point

groups which leave the lattice plain invariant. There are 10 such groups at all: Cn and Cnv

for n = 1, 2, 3, 4, 6; other point groups either act in the lattice plane (xOy) as some of the

encountered, or do not leave this plane invariant. The holohedry can be any group containing

the inversion in the lattice plane, i.e. the rotation C2. When, for the reasons discussed in

§ 2.3.2, the groups C3,C4 i C6 are left out, the remaining groups, C2, C2v, C4v and C6v are

the holohedries. The reflection σh acts trivially on the lattice, and it is not considered as

its symmetry; still, diperiodic physical system may not be two dimensional, and σh may be

nontrivial symmetry. Therefore, in this context it is usual to enlarge the holohedries by σh,

yielding C2h (monoclinic system, 7 groups), D2h (rombohedral, 41), D4h (tetragonal, 16) and

D6h (hexagonal, 16).

Analogously to the line groups, each diperiodic group is weak direct product of the gener-

alized 2-dimensional translational group Z and the point group P : D = ZP. The generalized

translational group, Z, is two dimensional, and describes the periodical arrangement of the

elementary motifs along two independent directions in the xOy-plane. It can be formed of

the generalized one-dimensional translational groups leaving the xy-plane invariant, and these

are: the pure translational group T along an axis in the plane, the screw axis group 21 with

the C2 axis in the plane, the glide plane group Th of the horizontal, xy, glide plane, and the

glide plane group Tv of the vertical glide plane (containing z axis). The point factors are

chosen among the enumerated 10 axial crystallographic point groups.

The list of all diperiodic groups (in the numerical, [27], and international notation), fac-

torized in the described form PZ, is given in the Table 2.2.

2.5 Polymers: line groups

Polymers, nanotubes and subsystems of the structures periodical in two or three directions

(e.g. spin subsystem of 3-dimensional crystal can be periodical in one direction only) are

typical systems periodical along one direction. In this section any such system will be called

polymer.

Clearly, polymer is infinite along the direction of the periodicity (z-axis, by convention);

thus, it is infinite series of the finite identical units, called monomers. These are regularly

arranged along z-axis: the n-th monomer is obtained from the previous one by the same

transformation z = (R|v) mapping the n-th monomer to the next one. If certain monomer is

singled out as the initial one, then all others can be obtained from this by the successive action

of z. Therefore, the group L of geometrical symmetries of polymer contains infinite cyclic

(therefore Abel’s) subgroup, Z, generated by the element z. On the other hand, monomer

itself may have some symmetry group, P , being one of the point groups. Thus, the elements

of L are combinations (products [25]) of the symmetries of the arrangement of monomers

(group Z) and the internal symmetries of the monomer (group P ).

The generator z certainly translates along z-axis, and its most general form is z = (R|v)
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Table 2.2: Factorization of diperiodic groups. For each group Dg, its holohedry H, isogonal point

group I, factorization PT and international symbol [27] are given. The last column points to the table in

Ref. [?], with irreducible representation of the group.

Dg H I P T Int. simb. Tabela Dg H I P T Int. simb. Tabela

1 C2h C1 T p1 2 41 D2h D2h C2vTh p 2
a
21
m

2
m 11

2 S2 S2T p1̄ 3 42 D2h D1dT
′
h p 2

n
2
m

21
a 17

3 C2 C2T p211 3 43 D2h D121Th p 2
a
2
b
21
a 12

4 C1h C1hT pm11 2 44 D2h C2hT
′
v p 2

m
21
b

21
a 15

5 C1h Th pb11 2 45 D2h C221Th p 2
a
21
b

21
m 10

6 C2h C2hT p 2
m11 3 46 D2h C2vT

′
h p 2

n
21
m

21
m 17

7 C2h C2Th p 2
b11 4 47 D2h D2hT

′ c 2
m

2
m

2
m 14

8 D2h D1 D1T p112 5 48 D2h C2vT
′
h c 2

a
2
m

2
m 18

9 D1 21 p1121 7 49 D4h C4 C4T p4 19
10 D1 D1T

′ c112 13 50 S4 S4T p4̄ 19
11 C1v C1vT p11m 5 51 C4h C4hT p4/m 19
12 C1v Tv p11a 7 52 C4h C4T

′
h p4/n 20

13 C1v C1vT
′ c11m 13 53 D4 D4T p422 21

14 D1d D1dT p11 2
m 6 54 D4 C42

′
1 p4212 22

15 D1d S221 p11 21
m 8 55 C4v C4vT p4mm 21

16 D1d D1dT
′ c11 2

m 14 56 C4v C4T
′
v p4bm 22

17 D1d S2Tv p11 2
a 8 57 D2d D2dT p4̄2m 21

18 D1d S2T
′
v p11 21

a 15 58 D2d S42
′
1 p4̄21m 22

19 D2 D2T p222 6 59 D2d D2dT p4̄m2 21
20 D2 C221 p2221 8 60 D2d S4T

′
v p4̄b2 22

21 D2 C22
′
1 p22121 15 61 D4h D4hT p 4

m
2
m

2
m 21

22 D2 D2T
′ c222 14 62 D4h D2dT

′
h p 4

n
2
b

2
m 23

23 C2v C2vT p2mm 6 63 D4h C4hT
′
v p 4

m
21
b

2
m 22

24 D1h D1hT pmm2 5 64 D4h D2dT
′
h p 4

n
21
m

2
m 23

25 D1h C1h21 pm21a 7 65 D6h C3 C3T p3 24
26 D1h C1v21 pbm21 7 66 S6 S6T p3̄ 27
27 D1h D1Tv pbb2 7 67 D3 D3T p312 26
28 C2v C2Tv p2ma 8 68 D3 D3T p321 25
29 D1h D1Th pam2 9 69 C3v C3vT p3m1 26
30 D1h 21Th pab21 9 70 C3v C3vT p31m 25
31 D1h D1T

′
h pnb2 13 71 D3d D3dT p3̄1 2

m 28
32 D1h C1vT

′
h p nm21 13 72 D3d D3dT p3̄ 2

m1 28
33 C2v C2T

′
v p2ba 15 73 C6 C6T p6 27

34 C2v C2vT
′ c2mm 14 74 C3h C3hT p6̄ 24

35 D1h D1hT
′ cmm2 13 75 C6h C6hT p6/m 27

36 D1h D1T
′
h cam2 16 76 D6 D6T p622 28

37 D2h D2hT p 2
m

2
m

2
m 6 77 C6v C6vT p6mm 28

38 D2h D2Th p 2
a

2
m

2
a 11 78 D3h D3hT p6̄m2 26

39 D2h D2T
′
h p 2

n
2
b
2
a 17 79 D3h D3hT p6̄2m 25

40 D2h C2hTv p 2
m

21
m

2
a 8 80 D6h D6hT p 6

m
2
m

2
m 28
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Figure 2.1: Generalized translational groups: screw axis TQ(f), pure translations T (a),
achiral (zig-zag) screw axis T2(f), and glide plane T ′.

(i.e. v = vez ̸= 0), with the orthogonal transformation R leaving the z-axis invariant. Such

elements are R(ϕ), σv, σh and U . Irrespectively of v, the elements (σh|v) and (U |v) cannot
generate infinite cyclic group (their square is the identity). Thus, the possible generators of

the groups of the monomers arrangements are (CQ|f) and (σv|f), where Q is real number

not less than 1. Since (σv|f)2 = (I|2f) is pure translation, in the second case there is

translation period a = 2f . In the first case, only if Q is rational number, there is a pure

translation: if Q = q/r, with r being nonnegative integer, less than q and coprime with

q, than (Cr
q |f)q = (I|qf); otherwise, systems are called incommensurate or modulated. To

summarize, (CQ|f) and (σv|f) generate the groups of the generalized translations, Z: screw

axes TQ (infinite family of the groups generated by (CQ|f)) and glide plane, T ′ (generated by

(σv|12)); pure translational group, T , is a special case of screw axis with Q = 1 (Fig. 2.1).

Note that some elements of the full symmetry group P ′ of monomer may not leave z-axis

invariant. Nevertheless, such elements are discarded when L is constructed, i.e. P is the

maximal axial subgroup of P ′: P = P ′ ∩D∞h.

Since each symmetry of the polymer is composed of the elements of the subgroups Z

and P , the whole group is the product L = ZP , implying the equality ZP = PZ (weak

direct product, § A.1.5). Test of this condition for each generalized translational group (Z =

TQ,T
′) and each axial point group (P = Cn,S2n,Cnv,Cnh,Dn,Dnd,Dnh) gives all the line

groups in the factorized form. Encountering that some of the obtained products are different

factorizations of the same group, all of the 13 infinite families of the line groups are found

(Table 2.3).

As well as for the space and diperiodic groups, when exists, translational subgroup is

invariant in the line group, and corresponding factor group is isomorphic to the isogonal group,

PI , obtained when the translational parts of the line group transformations are neglected. The
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Table 2.3: Line groups. For each family of the line groups the international symbol, different
factorizations, generators, the subgroup L(1) and the isogonal point group PI , are given. Here,
Tcd and U ′ are the glide plane and horizontal axis bisecting vertical mirror planes of P . For
the groups of the families 1 and 5, q is a multiple of n (instead of r the helicity in the
international symbol is given by its modular inverse p = n(r−1|q/n|)). For the first and fifth
family, when Q is irrational, the isogonal groups are C∞ and D∞, respectively.

International symbol Factorizations Generators L(1) PI

n even n odd
1 Lqp TQ ⊗Cn zrq , Cn TQ ⊗Cn Cq

2 L(2n) Ln T ∧ S2n z0, C2nσh T ⊗Cn S2n

3 L(2n) Ln/m T ∧Cnh z0, Cn, σh T ⊗Cn Cnh

4 L(2n)n/m T2nCnh = T2nS2n z12n, Cn, σh T2nCn C2nh

5 Lqp22 Lqp2 TQ ∧Dn zrq , Cn, U TQ ⊗Cn Dq

6 Lnmm Lnm T ⊗Cnv = Cnv ∧ Tcd z0, Cn, σv T ⊗Cn Cnv

7 Lncc Lnc Cn ∧ Tc zv, Cn T ⊗Cn Cnv

8 L(2n)nmc Cnv ∧ T2n = Cnv ∧ Tcd z12n, Cn, σv T2n ⊗Cn C2nv

9 L(2n)2m Lnm T ∧Dnd = Tc ∧Dnd z0, Cn, U
′, σv T ⊗Cn Dnd

10 L(2n)2c Lnc TcS2n = TcdDn zv, Cn, U
′ T ⊗Cn Dnd

11 Ln/mmm L(2n)2m T ∧Dnh = TcDnh z0, Cn, U, σv T ⊗Cn Dnh

12 Ln/mcc L(2n)2c TcCnh = TcDn zv, Cn, U T ⊗Cn Dnh

13 L(2n)n/mcm
T2nDnh=T 2nDnd

=TcDnh=TcDnd
z12n, Cn, U, σv T2n ⊗Cn D2nh

families 2, 3, 6, 9, 11 are symorphic, as well as the families 1 and 5 for Q = 1.

Irreducible representations of the commensurate line groups can be obtained by the method

described for the space groups. Nevertheless, the specific structure of the line groups allows

significantly simpler procedure, applicable to the incommensurate ones, too. The groups of

the first family are direct products of cyclic groups, and their (one dimensional) irreducible

representations are easily calculated. The groups of the families 2-8 have halving subgroups

from the family 1, while themselves are halving subgroups of the groups in the remaining

families. Thus, the method of the induction from the halving subgroup can be completely

performed to find the irreducible representations of the line groups.

These are characterized by the quantum number of helical quasi momentum k̃, related

to the screw-axis subgroup; it takes values from the helical Brillouin’s zone (one dimensional

interval (−π/f, π/f ] in this case). When there is translational subgroup (Q rational and glide

plane), usual quasi momentum k can be used, with values from the linear Brillouin’s zone

(−π/a, π/a]. Additional labels originate from the point group (z component of the angular

momentum, different parities). Corresponding selection rules manifest conservation of quasi

momenta and parities. From the described procedure it is clear that possible dimensions of

the irreducible representations are 1, 2 and 4.
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2.6 Magnetic symmetries

The frequent symmetry of the systems and the corresponding equations, the time reversal,

due to its physical contents, slightly differs with respect to the previously studied symmetries,

and requires different treatment within quantum mechanical formalism.

2.6.1 Time reversal

The Wigner’s theorem (§ B.2) restricts the quantum mechanical operators associated to the

symmetries onto the unitary and antiunitary, [5, 18]. The most important antiunitary rep-

resented operation is the time reversal, θ. Indeed, if θ is symmetry of the system, then

the operator Θ, representing θ, commutes with H. On the other hand, for arbitrary state

| x, t⟩ obviously holds Θ | x, t⟩ = U(−t)Θ | x, 0⟩, implying the relation ΘU(t) = U(−t)Θ,

i.e. Θe
i
~Ht = e−

i
~HtΘ. This is compatible with assumed [Θ, H] = 0 only if Θ is antiuni-

tary5. It is obvious that θ leaves the coordinates invariant, ΘqΘ† = q, and commutes with

the geometrical transformations, ΘD(R|a)Θ† = D(R|a). Only the antiunitarity of Θ makes

this property compatible to the obvious change of sign of the momentum and the angular

momentum (generating the translations and the rotations): ΘpΘ−1 = −p i ΘlΘ−1 = −l.

Another important property of the time reversal is that it is involutive transformation,

θ2 = e; thus, Θ2 does not change the physical state of the system, i.e. each ray in the state

space must be invariant for it, and this is accomplished only by Θ2 = cI, with c = ±1, for

antiunitary Θ (in fact, |c| = 1 since Θ2 is unitary, and Θ2Θ† = Θ = Θ†Θ2, gives c = c∗, since

U † is antiunitary and nonsingular). If Θ2 = I, there is basis in S with real vectors, meaning

that they satisfy conditions Θ |i⟩ =|i⟩ (for any vector |x⟩, the vector |x⟩+Θ |x⟩ is real). The
operator Θ acts as the complex conjugation of the columns representing the vectors in this

basis, while the real matrices represent in this basis the linear operators commuting with Θ.

In the second case, Θ2 = −1, no such basis exists, but each vector | x⟩ is orthogonal to the

conjugated vector Θ |x⟩6; therefore in each invariant subspace of Θ, there is basis consisted

of the pairs of the orthogonal conjugated vectors. Obviously, the dimension of such subspace

is even; in the basis {| x1⟩, . . . , | xn⟩,Θ | x1⟩, . . . ,Θ | xn⟩}, the linear operator commuting

with Θ are represented by the matrix of the form

(
a b

−b∗ a∗

)
(a and b are n-dimensional

submatrices). Consequently, the operator Θ can be factorized as Θ = TK, where T is unitary

operator, and K is the antiunitary operator of the complex conjugation of the columns in

some basis; from Θ2 = ±I and K2 = I it follows that, in the basis in which K is the complex

conjugation, the matrix representing T satisfies TT ∗ = ±I.
If G is group of the geometrical transformation (or some other transformations commuting

with θ), and D(G) its linear irreducible representation in S, the properties of D(G) partly

5The attempt to treat Θ as unitary operator, implies that this operator anticommute with the hamiltonian;
consequently, the eigen energies would appear in the pairs of the opposite signs, contradicting both to the
existence of the lower bound to the energy and to the independence of the energy on the signs of the velocities.

6Antiunitary operators satisfy (Θx,Θy) = (x, y)∗ for all x and y. Thus: (x,Θx) = (Θx,Θ2x)∗ =
(Θx,−x)∗ = −(x,Θx) = 0.
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determine the representation of θ, [12], since the representative operators also commute,

D(g) = ΘD(g)Θ† = TD∗(g)T †. Schur’s lemas (§ A.2.2) immediately give T = 0 for the

representations of the III type (§ A.3). If D(G) is a representation of the I kind, there is

a basis such that D(G) is real, i.e. D(g) = ΘD(g)Θ† = TD(g)T †, yielding T = eiϕI and

TT ∗ = I. Also, if TT ∗ = I, the representation R(g) = (T + eiαI)−1D(g)(T + eiαI) (for

any α such that T + eiαI is nonsingular) is equivalent to D(g) and real (since R∗(g) =

(T + eiαI)−1∗(T ∗D(g)T )(T + eiαI)∗. Therefore, it becomes clear that the case TT ∗ = −I
corresponds to the representations of the II kind, when Θ2 = TT ∗ (but not T ) commutes

with D(G) and satisfies the Schur’s lema. It follows that the irreducible subspaces of the

representations of the second kind of any group are even dimensional, with the time reversal

operator characterized by Θ2 = −I.
Let D(G) be reducible real representation, and S ′ its subspace carrying real irreducible

representation D′(G). For D′(G) of the I kind, this subspace is irreducible, while for the

representations of the II and III it can be decomposed onto the pair of the irreducible sub-

spaces, S(µ) and S(µ)∗ (of the same dimensions). In the latter case, there is basis in S ′, such

that the representative matrices of D′(G) are block-diagonal: D′(g) =

(
D(µ)(g) 0

0 D(µ)∗(g)

)
.

With T ′ =

(
0 eiφIµ

eiφIµ 0

)
, the operator Θ′ = T ′K0 commutes with D′(G), while its square

is Θ2 = I ′. It is shown above that these conditions are fulfilled also for the representations of

the I kind, and consequently the direct sum ⊕Θ′ is also the involutive operator commuting

with D(G): if D(G) is real representation, time reversal can be represented by the antiunitary

involution. The condition that D(G) and H commute, provides the reduction of H into the

irreducible subspaces. Therefore, for the representations of the I kind, the reduced operator

H ′ in S ′ can be represented by real matrix, with real eigen vectors; for the representations of

the II and III kind, in the basis in which D′(G) is decomposed (to the pair of the conjugated

irreducible representations), the reduced operator takes the form H ′ =

(
Hµ 0
0 H∗

µ

)
(since H

and D(G) commute the matrix is block diagonal, and the blocks are conjugated because H

and commutes with Θ).

The representation of rotational group in the orbital space is decomposed to the integer

irreducible components, being of the I kind (real); furthermore, although the components

(except the identical one) of the representation of the translational group are of the III kind,

they appear in the complex conjugated pairs. Therefore, in the orbital space time reversal

is represented by the involutive operator, and in the appropriate basis it can be identified

with the operator of the complex conjugation of columns. On the contrary, in the spin space

of the halfinteger spin, the corresponding representation of the group SU(2) is half integer,

and of the II kind. In the eigenbasis of the third component of spin, Sz, the condition

ΘSΘ† = S implies Θ = eiπSyK (for the integer spin, (eiπSyK)2 = 1 and the same definition

is retained). Therefore, for the system invariant under the time reversal, with the halfinteger

spin, the invariant subspaces for Θ, including the eigenspaces of the hamiltonian, are even

dimensional. This property is known as the Kramers’s degeneracy, [28]. It should be noted



2.6. MAGNETIC SYMMETRIES 35

that the condition Θ2 = −I coincides to the fact that within halfinteger representations to the

rotation for 2π (this is identical transformation, as well as θ2 is) two operators are associated,

I and sa −I; in fact, the underlying requirement of the compatibility with the universal

covering group (with doubly covered rotations) makes this type of the representing of the

time reversal necessary.

2.6.2 Magnetic groups

Magnetic groups are the groups containing the elements which combine the geometrical trans-

formations and the time reversal, [21, 12]. Since θ is involution commuting with the geometri-

cal symmetries, each magnetic group, M , contains the halving subgroup G of the pure spatial

symmetries. Two cases are possible: if θ is symmetry of the system (e.g. there is no magnetic

field in the hamiltonian, and the potential is time independent), thenM = G⊗{e, θ} = G+θG;

on the contrary, when θ is not symmetry itself, but there is spatial transformation s, such

that system is invariant under θs, then M = G + θsG (of course, s ̸∈ G since then θ is

symmetry of the system). The first type is called the magnetic gray group, and the other one

is the magnetic black and white group. The black and white group is isomorphic to the group

G + sG, of the spatial transformations. Hence, for each geometrical group, G, the family of

the magnetic group is formed, containing one gray group, G1′ = G ⊗ {e, θ}, and one black

and white group, G(H) = H + θsH for each halving subgroup, H, in G (all the groups G(H)

are isomorphic to G).

Due to the special properties of the time reversal, the magnetic groups are represented

by the corepresentations, (§ A.3): the coset containing θs (s = e for the gray groups) is rep-

resented by the antiunitary operator. Irreducible corepresentations define symmetry based

properties of the vectors and the operators, and their dimension determines the degeneracy

of the eigen subspaces of the hamiltonian. The method used for the unitary representations

to obtain the standard tensors, and possible properties of the physical systems of the given

symmetry, can be applied analogously to the magnetic groups and their corepresentations.

Especially when the spin systems are considered, the time reversal becomes nontrivial op-

eration, which is used in the classification of the possible ferro- or antiferromagnetic orders.

In the construction of the irreducible corepresentations by the ∗-induction method, the ir-

reducible representations of the spatial part of the magnetic group are used; those of the II

and III kind give the corepresentations of the doubled dimension (this enables the uniqueness

of the representing of the elements). Restricting to the spatial symmetries, the additional

degeneracy of the eigen energies seems to be accidental.

The magnetic groups and their corepresentations are derived for most of the geometrical

groups. There are 24 infinite families of the axial point groups (7 of them are families of the

gray groups) and 11 (5) magnetic groups related to the spatial groups T , Td, Th, O and Oh,

[21]. Among them there are 90 (32) magnetic crystallographic point groups, enumerating the

magnetic crystallographic classes for 1421 (230 gray) magnetic space groups, [23]. Similarly,

there are 68 (13) infinite families of the magnetic line groups, [25].
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2.7 Spin groups

After classification of the magnetic groups it became clear that there were magnetic systems

with spin arrangements which did not match any of the magnetic groups, i.e. that these

groups are insufficient to describe the complete variety of the magnetic orderings in the real

compounds. This refers to the conical helimagnets (observed in the fifties of the 20th century),

and in particular to incommensurate spin order (which does not match the periodicity of the

lattice). Therefore need for an extension of the magnetic groups was obvious, and this inspired

several attempts, which finally resulted by the spin groups. During the past decade many

of the nanosystems, having quasi one-dimensional spin subsystems [?] have the described

peculiar properties, which reinforced interest for these groups.

At first, note that here spin (magnetic moment) of an atom is a vector s (of the expected

values of the spin observables Si, i = x, y, z) in the spin space which is the three dimen-

sional real space (in the theory of magnetism this is usually called classical approximation).

Consequently, geometrical transformations of symmetry in this space are represented by real

(thus orthogonal) matrices. More precisely, if atomic system consists of the atoms positioned

at xi, then the corresponding spin arrangement is given by a spin field over atoms, i.e. by

the pairs (xi, si) for each atom (this includes also magnetically inactive atoms, for which

si = 0). Then, if the symmetry transformation g maps an atom from x to gx, the corre-

sponding spins are s(x) and s(gx). Thus, for consistent symmetry based description of the

spin field transformations, it is necessary that transformations of the spins correspond to the

geometrical transformations, i.e. that s(gx) = Dsp(g)s(x), where Dsp is the mentioned three

dimensional orthogonal representation of the symmetry group, called spin representation, i.e.

homomorphism of G into O(3).

As a result, explicating the fact that spin space is independent on the atomic space, the

spin arrangement is described by the pairs (xi, si), and the action of the symmetry group on

the pairs is defined by

(g,Dsp(g))(x, s)
def
= (gx, Dsp(g)s). (2.6)

The set of pairs GDsp = {(g,Dsp(g)) | g ∈ G} is a group with respect to the multiplication

(g,Dsp(g))(g′, Dsp(g′)) = (gg′, Dsp(g)Dsp(g′)). Since Dsp is representation of the symmetry

group G, the group GDsp , called spin group is obviously isomorphic to G.

Note that each spin representation generates one spin group. Thus the problem of classifi-

cation of the spin groups reduces to the classification of the nonequivalent spin representations.

This problem can be solved using the irreducible representations of G. In fact, one should

find all possible combinations of the irreducible representations of G, which as a direct sum

give a three-dimensional real representation of G. Recall that there are three types of the

irreducible representations d(G): real ones, those which are equivalent to the conjugated but

without equivalent real representation, and complex representations. In the last two cases,

instead of d(G), real form is achieved with the representation d(G) + d∗(G) of the doubled

dimension. Thus, one concludes that irreducible components of Dsp may be of the dimen-

sion 1, 2 or 3 for real type, and only 1 for the other two types. Having this in mind, all
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possible combinations can be systematically find, and all nonequivalent spin groups derived.

Of course, for one spin representation, their equivalent forms RDspRT for R ∈SO(3) may be

realized. The spin groups are found for point, space [?] and and line groups.

In general, magnetic system consists of several orbits. Then, the symmetry group inde-

pendently acts on each of the orbits, and the definition (2.6) should be generalized. In fact,

let the coordinates of the symcell be X0 = (x10, . . . ,xn0), where xi0 is position of the i-th

orbit representative. Accordingly, S0 = (s10, . . . , sn0) is spin of the symcell, being vector in

the space R3n. Than the group action on the spins is independently described for each orbit

by its spin representation Dsp
i , giving:

(g,Dsp(g))(X0,S0)
def
= (gx10, . . . , gxn0;D

sp
1 s10, . . . , D

sp
N sn0). (2.7)

It becomes clear that the total spin representation is direct sum of the orbital ones:

Dsp = Dsp
1 ⊕ · · · ⊕Dsp

n . (2.8)

Spin groups are successfully used in the description of the spin arrangements. Namely, to

this end it is necessary to give spins in the symcell atoms, and then the spin group distribute

them over the whole system. This can be utilized also in the prediction of the possible spin

arrangements. For this purpose classification of the orbits of the group is needed together with

stabilizers of orbit representatives, as well as all single orbital spin representations. Then, for

each orbit, independently all allowed spin representations should be applied to all allowed

spins of the orbit representative. Precisely, for each element g of the stabilizer Gx of the orbit

representative at x, the fixed point condition

Dsp(g)s(x) = s(x) (2.9)

provides uniqueness of the spin vector. If such allowed vector s(x) exists, the spin representa-

tion is allowed itself. In particular, ferromagnetic order appears when allowed vector is fixed

point (i.e. obeys (2.9)) for each element of the group G; for antiferromagnetic order one has

Dsp(g)s(x) = ±s(x) for all symmetries of the system.

Finally, note that ordinary magnetic group correspond to the spin group with axial vector

representation as Dsp, while to obtain black-and-white magnetic group the elements of the

subgroup H are represented by Dsp(h) = Dav(h), and those from the coset sH by Dsp(sh) =

−Dav(sh). Obviously, the matrix −I3 takes the role of the time reversal Θ; in fact, the time

reversal was introduced because there is no geometrical transformation reversing all axial

vectors.

2.8 Double groups

The well known physical arguments justify that the systems with the half-integer spin are

related to half-integer representations of the group SU(2). Therefore, when such systems

are studied, SU(2) is unavoidably used instead of the rotational group. This must be taken
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into account when the spin systems with discrete spatial symmetries are considered, and

two-valued representations (due to rotational symmetries) of the symmetry group naturally

appear. They can be found by the procedure neatly following the one used to find such

representation of the rotational group (§ 2.1.2). In fact, the double (covering) group is found

firstly, and then its (ordinary) representations. Some of them are two-valued and the others

ordinary representations of the initial symmetry group [3, 8].

If P+ < SO(3,R) is a point group containing rotations only (Cn, Dn, T , O or Y ; including

n infinite), then P̃+
def
= h−1(P+) of SU(2) corresponds to P+ by the homomorphism (2.4).

However, besides identity I2, h
−1(e) contains ẽ = −I2, commuting with all other elements

of P̃+, and each rotation C = R(α,a) in P+ corresponds to spin-rotations C̃ = U(α,a)

and ẽC̃ = −U(α,a) in P̃+. The easiest way to find the group structure of the rotational

double point groups is to find spin rotations (2.3b) for the generators by the same Euler

angles as for ordinary rotations. For example, Cn structure is determined by the generator

Cn = R(2π/n, ez) satisfying condition Cn
n = R(2π, ez) = e; the corresponding spin rotation

C̃n = U(2π/n, ez) of C̃n is of order 2n, as C̃n
n = U(2π, ez) = ẽ, and only squared gives

C̃2n
n = (4π, ez) = e, making C̃n algebraically isomorphic to C2n. Similarly, for Dn, the

generators Cn and U = R(π, ex) satisfy Cn
n = U2 = (CnU)

2 = e (CnU = R(π, b), with

b = R(π/n, e)a); automatically, C̃n
n = Ũ2 = ẽ, thus Ũ is of order four, and the intersection

of the two cyclic subgroups generated by C̃n and by Ũ is {e, ẽ}. Consequently, double group

is D̃n = C̃n + Ũ C̃n, with (C̃nŨ)
2 = ẽ (as the direct check gives; this enables standard

construction of the irreducible representations), but not a semidirect product as Dn.

For other point groups, P−, the double groups are constructed from the double groups

of the rotational subgroup, which is halving subgroup in P−. Precisely, each such group has

rotational subgroup P+ of index two, and the coset consisted of the rotations multiplied by

spatial inversion P . There are only two structural possibilities: either P− = P+ + PRP+

(for some rotation R out of P+) or P− = P+ + PP+ = P+ ⊗ {e, P}. In the first case

P ′ = P+ + RP+
∼= P− is subgroup in SO(3,R), and P̃− is isomorphic to P̃ ′ = P̃+ + R̃P̃+

with the same irreducible representations (as a reminder to geometric source, it is convenient

to retain symbol PR̃ in the algebraic structure P̃− = P̃+ + PR̃P̃+). In the second case

P̃− is isomorphic to the direct product of P̃+ ⊗ {e, P}. Thus, in all the cases the relation

between the group and its rotational (sub)group, is completely preserved at the level of double

groups. After construction of the double groups, their irreducible (ordinary) representations

are constructed by the standard methods.

The two valued representations and the double groups of the other geometrical symme-

tries can be found using the structure of the relevant groups: the isogonal point groups are

substituted by their double groups (recall that the necessity for double group construction

stems from the nontrivial topology of the rotational group; translations and spatial inversion,

when involved, obviously do not contribute to complexity of the total topology), and then to

(R |x ) the elements ( R̃ |x ) and ( ẽR |x ) are associated. Finally, when the time reversal is

involved for the systems with half integral spin, the double magnetic and spin groups must

be considered.
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At the moment in the literature are available double crystallographic point groups, double

spatial groups and magnetic groups of these two. For all of them irreducible representations

(corepresentations) are also found.

2.9 Identical particles: permutations

Due to the intuitively obvious fact that the permutation of the identical particles can cause

no observable effect, the symmetrical group SN must be included in the symmetry analysis

of the system with N identical particles. Straightforward and simple application of group

theory in this case gives one of the most beautiful illustrations of the essential importance of

the symmetry in physics.

The order of the group SN is N !, and each of its elements — permutations — is the

composition of a number of the transpositions, the most simple permutation of two particles.

Therefore, there is the index-two subgroup AN of all even permutations (composed of even

number of the transpositions), and the corresponding coset decomposition is SN = AN + τAN
(τ is any transposition, or another odd permutation). Consequently, for each N there is

one-dimensional (thus irreducible) alternative representation of SN : A
−(π)

def
= (−1)π (as it is

usual, the same symbol, π, is used for the permutation and its parity). Additionally, there is

the important fact in the theory of the symmetric groups, that the identical, A+(SN) (given

by A+(π)
def
= 1), and the alternative, A−(SN), representations are the only one-dimensional

representations of SN .

If S is the state space of one particle, and {| 1⟩, . . . , |n⟩}, is its basis, then the principles

of quantum mechanics a priory prescribe that the state space of the system of N particles is

SN = S ⊗ · ⊗ S︸ ︷︷ ︸
N

. In the basis

| i1, . . . , iN⟩
def
=| i1⟩1 ⊗ · · ·⊗ | iN⟩N , i1, . . . , in = 1, . . . , n, (2.10)

the permutation π of the particles is manifested as the permutation of their states, defining

the representative operator D(π) |i1, . . . , iN⟩ =|iπ1, . . . , iπN⟩. This representation of SN is not

irreducible, since there are at least two invariant subspaces: the symmetrical, SN+ , and anti-

symmetrical, SN− , subspaces are multiple irreducible subspaces of the representations A±(SN),

determined by the corresponding group projectors, called symmetrizer and antisymmetrizer,

P± = 1
N !

∑
π(±)πD(π). Requirement that the action of the permutation is not observable,

means that the physically relevant states are transformed according to the one-dimensional

representations of SN , i.e. that these states are from the subspaces SN± . Moreover, if | +⟩
is from SN+ , while | −⟩ is from SN− , the transposition τ maps | x⟩ = α | +⟩ + β | −⟩ to

vector which is not proportional to | x⟩, which points out the observable difference of the

two vectors. Consequently, the superposition of the states of the different parity is forbidden,

and the physically relevant part of the space SN is either SN+ or SN− , only. Bosons are par-

ticles described within symmetric subspace, and fermions are related to the antisymmetric
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one. Within the relativistic quantum theory, the locality condition (§ 2) determines that the

spin of the bosons is integral, while the spin of the fermions must be half-integral, [29]. Note

that the permutational symmetry is, in contrast to the previously studied space-time symme-

tries, given as the group of symmetry of state, and this caused the restriction of the a priory

state space SN , by the so called superselection of a subspace. Consequently, the physically

meaningful operators, i.e. those representing physical quantities, must reduce in the relevant

subspace, which immediately shows that these operators are invariants of the group SN , that

is they must commute with the operators representing permutations.

A number of important results can be derived using the (anti)symmetrizers. Each vector

| x ⟩ =| i1, . . . , iN ⟩ of the basis (2.10) defines n-tuple of the occupation numbers p(x) =

(p1(x), . . . , pn(x)): pk(x) is the number of appearance of the state | k ⟩ among the single-

particle states | i1⟩, . . . , | iN⟩ forming |x⟩; obviously, pk(x) ≥ 0 and
∑n

k=0 pk(x) = N .

Definition of D(π) shows that this operator maps |x⟩ into a state with the same occupation

numbers. Consequently, the matrix element Dxx′(π) vanishes if p(x) ̸= p(x′), and the same

holds for the matrix elements of (anti)symmetrizer. But this matrix element is the scalar

product of the states obtained by the (anti)symmetrization of the non-correlated basis vectors

| x⟩ and | x′⟩: ⟨x | P±P± | x′⟩ = ⟨x | P± | x′⟩. Therefore, the (anti)symmetrized vectors with

different occupation numbers are mutually orthogonal.

On the other hand, if p(x) = p(x′), there is a permutation ρ such that D(ρ) | x⟩ =| x′⟩.
Thus, the projections satisfy

P± |x′⟩ = 1

N !

∑
π

(±)πD(πρ) |x⟩ = (±)ρP± |x⟩, (2.11)

i.e. the (anti)symmetrization of any vector of the basis (2.10) with given occupation numbers

gives the same vector (up to the sign for the fermions). The previous result, concerning the

orthogonality of such states, shows that the spaces SN± can be obtained as follows: for each

possible choice of the occupation numbers, p, choose from the basis (2.10) arbitrary vector

| x⟩ with p(x) = p, and (anti)symmetrize it to get the vector | p⟩±; for all different p, the

vectors |p⟩± are mutually orthogonal and span SN± .

To find the dimension of the bosonic and fermionic space, the number of the independent

vectors | p ⟩ must be calculated. Due to their orthogonality, it remains to find which of

them are nonvanishing. Since the matrix elements D(π) is either 1 or 0, the scalar product

⟨x | P+ | x⟩ = 1
N !

∑
π⟨x | D(π) | x⟩ is always nonvanishing (no cancellation is possible, and

⟨x | D(e) | x⟩ = 1). Hence, for each choice of p there is exactly one nonzero vector | p⟩+ in

SN+ , and dimSN+ =
(
N+n−1

N

)
. In the case of fermions, it can be seen that if for some k the

corresponding pk(x) is greater than 1 (e.g. i1 = i2 = k), there is at least one transposition

permuting only the particles in the same state (the first and the second particle in the same

example), and this transposition does not change the corresponding vector |x⟩. Then, for the
antisymmetrized vector P− |x⟩ the equation (2.11) gives ⟨x| P− |x⟩ = ⟨x| P−D(ρ) |x⟩ = −⟨x|
P− |x⟩ = 0. Eventually, the nonvanishing vectors |p⟩− are those with the occupation numbers

0 or 1, all together dimSN− =
(
n
N

)
of them. In fact, this is Pauli’s principle, transparently
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derived from symmetry only. In both the cases (bosons and fermions), the normalization of

the obtained nonvanishing vectors |p⟩± gives the basis of the occupation numbers.



Chapter 3

NORMAL MODES

Harmonic oscillations are among basic types of dynamic of systems. Possibility of their ex-

act description both in classical and in quantum mechanics, caused attempts to reduce even

more complex situations to this one within different approximations. Just this method of the

harmonic approximation1 underlies indispensable (quasi)-particle model in quantum mechan-

ics. In this sense study of harmonic oscillations (irrespectively of the contents they have in

a particular situation) is fundamental part of all physical theories, and fruitful incorporation

of the symmetry in this problem has far reaching importance.

3.1 Harmonic potential

A complex physical system, composed of n atoms (here ”atom” is used in almost original

antic meaning: elementary, at the accepted level of study, constituent of the system, i.e.

ion, molecule, electron, etc., depending on the context), is described by the 6n-dimensional

phase space, within the classical mechanics, [1], and by the orbital Hilbert’s space with 3n

coordinates and momenta in the quantum mechanics. To each atom 3 Descartes’s orthonormal

vectors are attached both in the configuration and momentum spaces, and the basis of the

whole space is:

{| q, αi ⟩, | p, αi ⟩ | α = 1, ..., n; i = 1, 2, 3}. (3.1)

In this way vector
∑

αi(qαi| q, αi ⟩ + pαi| p, αi ⟩) of the phase space becomes a column of

coordinates

(
q
p

)
= (q11, . . . pn3)

T . The basis (3.1) is chosen to satisfy canonical commutation

relations2

[qαi, qβj] = [pαi, pβj] = 0, [qαi, pβj] = cδαβ δ
i
j.

Under canonical transformations the vectors of the configuration space change contragredi-

ently with respect to the vectors of the momentum space.

1χαρµoνη or χαρα means joy, happiness.
2In order to treat simultaneously both classical and quantum framework, less standard notation is used in

this chapter. Constant c and braces [ , ], stand for 1 and Poisson’s bracket in classical mechanics, while for i~
and operator commutator in quantum mechanics; ~ is Planck’s constant.

42
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Configuration of stable equilibrium, i.e. the point of the minimum of potential, will be

chosen as the origin of the coordinates. Therefore, the coordinate qαi is the displacement of

the atom α from the equilibrium position along i-th direction. The harmonic approximation

is obtained when the potential is expanded into the power series over the displacements, and

all the terms of the order higher than two are rejected. Since the constant term V (0) can be

always removed from the hamiltonian, and the first derivatives in the linear terms vanish in

the equilibrium, the hamiltonian becomes:

H =
1

2

∑
αi

1

mα

p2αi +
1

2

∑
αβij

V αi
βj qαiqβj =

1

2

(
q, p

)
H

(
q
p

)
, H =

(
V 0
0 M−1

)
, (3.2)

where the matrix V = (V αi
βj ) = ( ∂2V (0)

∂qαi∂qβj
) is symmetric and nonnegative (due to the stability

of the equilibrium point), while M = (Mαi
βj ) = (mαδ

α
β δ

i
j) is positive diagonal matrix. In this

sense, the hamiltonian is given by the matrix H .

If the matrix V is diagonal, the whole system can be considered as the set of the non

interacting linear harmonic oscillators, with the well known properties both in the classical

and in the quantum theory. Since V is symmetric, it can be diagonalized, with use of its

eigenbasis. However, in order to perform the canonical transformation in the phase space,

this transition to the eigenbasis of V in the configurational space, must be accompanied by

the contragredient transformation in the momentum space, which may cause the appearance

of the non diagonal terms in M . To overcome this problem, the scalar product is changed

firstly: the new one is in the momentum space defined by the metric M−1. As M is diagonal,

the basis vectors | p, αi ⟩ remain orthogonal, but they must be normalized by the factor
√
mα.

To achieve canonical transformation, this is accompanied by the multiplication of | q, αi ⟩
by 1√

mα
, corresponding to the change of metric of the configuration space to M . Thus, the

kinetic energy determines the metric of the phase space, and the orthonormal basis is:

{| Q, αi ⟩ = 1
√
mα

| q, αi ⟩, | P , αi ⟩ =
√
mα| p, αi ⟩ | α = 1, ..., n; i = 1, 2, 3}. (3.3)

The point with coordinates

(
q
p

)
in the basis (3.1) is in the basis (3.3) represented by the

column

(
Q
P

)
, with the coordinates Qαi =

√
mαqαi, Pαi = 1√

mα
pαi. Using the dynamical

matrix

W =M− 1
2VM− 1

2 =
∑
αβ

Eαβ ⊗Wα
β , Wαi

βj =
1

√
mαmβ

V αi
βj

(Eαβ is the standard basis in the space of n-dimensional matrices: Eαβ
ηρ = δαη δ

β
ρ ), which is

obviously symmetric and nonnegative, (3.2) reads:

H =
1

2

(
Q, P

)
HM

(
Q
P

)
, HM =

(
W 0
0 I

)
. (3.4)

The identity matrix standing for the kinetic part of the hamiltonian (momentum space)

is invariant under arbitrary change of basis. Thus, the transition to the eigenbasis of the
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potential energy, W , can be deliberately performed and accompanied by the contragredient

transformation in the momentum space, giving the final basis in the whole space:

{| Q, ωkl ⟩, | P , ωkl ⟩ | l = 1, ..., nk,
∑
k

nk = 3n}, W | Q, ωkl ⟩ = ω2
k| Q, ωkl ⟩.

In the coordinates Qki, Pki of this basis, the hamiltonian obtains the characteristic form (as

for the quantum theory, the star denotes adjoined operator):

H =
1

2

∑
ki

(P 2
ki + ω2

kQ
2
ki) =

1

2

∑
ki

~ωk(b∗kibki + bkib
∗
ki). (3.5)

The second expression is in the coordinates of the basis

{| b, ki ⟩ =
√
~
| Q, ωki ⟩ − iωk| P , ωki ⟩√

2ωk
, | b∗, ki ⟩ =

√
~
| Q, ωki ⟩+ iωk| P , ωki ⟩√

2ωk
}. (3.6)

These coordinates satisfy the bosonic commutation relations

[bki, b
∗
lj] = bδkl δ

i
j, [bki, blj] = [b∗ki, b

∗
lj] = 0

(b = −i and b = 1 in the classical and quantum mechanics). The vectors of the eigenbasis,

being linear combinations of the displacements of the different atoms, describe the independent

vibrations of the whole system. Therefore they are known as the normal modes. When the

system is in the equilibrium position, all the normal coordinates vanish, meaning that non

vanishing of any of them reflects excitation of the system. The dynamics in the vicinity of the

equilibrium is reduced to the independent exciting of certain normal excitations. Therefore,

these normal excitations in the various theories are elementary particles or quasi particles,

and the equilibrium state, when the excitations are absent, is called vacuum. After the

quantization, the bosonic coordinates become the operators, b†ki and bki, while the hamiltonian

gets the familiar form H =
∑

ki ~ωk(b
†
kibki +

1
2
). The eigen energies of each single term in the

hamiltonian are equidistant (~ωk(nki+ 1
2
), nki = 0, 1, ... ), which justify the particle picture: by

creation of the boson of energy ~ωk from the vacuum, the operator b†ki performs the transition

from the state | . . . , nki, . . .⟩, to the state | . . . , nki + 1, . . .⟩.

3.2 Application of symmetry

It has turned out that the determination of the normal modes has been reduced to the solution

of the eigenvalue problem of the dynamical matrixW , since the basis in the momentum space

is easily obtained as the canonically conjugated to the eigenbasis of W in the configurational

space. Therefore, the application of symmetry, performed along the lines described in the

chapter § 1, can simplify, and in some cases completely solve this problem.

For application of the group theoretical methods, [6], the starting point is to note that

the configurational space, Hq = R3n, can be understood as the space Rn, with the vectors
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of the absolute basis corresponding to different particles; therefore, each particle contributes

by its own configurational space R3, with the coordinates being its displacements from the

equilibrium. Thus the total configurational space is reconstructed in the form Hq = Rn ⊗R3

(this type of mathematical objects is called fibber bundle, to reflect that the total space is

”bundle” of the ”fibbers” R3, attached to the particles). The sets {| q, αi ⟩ =| α⟩ | i⟩} and

{|Q, αi ⟩ = 1√
mα

|α⟩ |i⟩} are uncorrelated bases of the product space. All this refers also to the

momentum space, Hp, and the phase space H = Hq ⊕Hp = Rn⊗ (R3 ⊕R3). The introduced

picture allows to factorize the geometrical transformation leaving the system invariant: the

first factor permutes the atoms (and as for the symmetries only the atoms of the same type

are mutually permuted), while the second acts the in R3, describing the transformation of the

coordinates (and the momenta) of the single particle. The last factor is in fact the polar vector

representation, both for the coordinates and for the momenta. Thus, to each element g of the

symmetry group G, there corresponds the orthogonal matrix Dd(g)
def
= DP (g)⊗Dv(g) acting

inHq (or inHp) asD
d(g)|Q, αi ⟩ =

∑
βj D

P β
α(g)D

vj
i (g)|Q, βj ⟩, i.e. with the matrix elements

Ddβj
αi(g) = DP β

α(g)D
vj
i (g). Here, DP (G) is the permutational representation of G, giving the

action of the group on the atoms of the system; Dv(G) is the polar-vector representation of

G, which is essentially defined by the geometrical contents of the symmetry transformation,

and does not depend on the system considered.

The dynamical representation of G, constructed above, commutes with M and V , and,

therefore with W . This means that the standard formulation of the problem is achieved,

(S = Sq, H = W,D(G) = Dd(G)), and the usual procedure should be applied to find the

standard stationary basis. For each irreducible representation appearing in the decomposition

of Dd(G), the group projector P
(µ)
1 and its range H(µ)

q1 should be determined. The dynamical

matrix, W , is reduced in this subspace. and the eigen problem of the matrix W (µ1) = P
(µ)
1 W

is to be solved, giving the standard stationary basis in Sq:

{| Q, µtµm ⟩ | µ = 1, ..., s; tµ = 1, ..., aµ;m = 1, ..., nµ} W | Q, µtµm ⟩ = ω2(µtµ)| Q, µtµm ⟩.

As usually, this basis determines the canonically conjugated basis i | P , µtµm ⟩ in Sp.
Note that the presented procedure is based on the complex representations of the group G.

This has implicitly introduced the complex configurational space C3n (instead of the real one,

R3n), with 3n additional degrees of freedom (the complexified space can be also considered

as the real decomplexified space with doubled dimension). Also, the vectors | P , µtµm ⟩, are
transformed according to the contragredient, i.e. conjugated representation D(µ)∗(G), in the

momentum space. Since the new coordinates and momenta, Qµtµm and Pµtµm, may not be

real anymore, the scalar product (3.4) becomes:

H =
1

2

∑
µ,tµ,m

(P ∗
µtµmPµtµm + ω2(µtµ)Q

∗
µtµmQµtµm),

where Q∗
µtµm, Qµtµm, P

∗
µtµm and Pµtµm are independent variables. On the other hand, the

formulation of the problem itself warranties that there are real coordinates. This apparent
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controversy, introduced by the application of symmetry, is also resolved by the group theory

when the reality, (§ 2.6.1), of the dynamical representation Dd(G) is encountered:

(i) if D(µ)(G) is real representation (type I), then W (µ1) is symmetrical matrix, with real

eigenvectors, and the displacements are described by the real coordinates;

( ii) if D(µ)(G) is pseudoreal representation (type II), then its frequency number in Dd(G),

aµ, is even, as well as the degeneracy of the eigenvalues of the hermitean operatorW (µ1),

and the real basis can be chosen in the same way and with the same consequences as in

the case

(iii) if D(µ)(G) is complex representation (type III), when aµ = aµ∗ , and W (µ1) = W ∗(µ∗1)

(µ∗ is label of the representation conjugated to D(µ)). Since W (µ1) and W (µ∗1) are

hermitean, with real eigenvalues, the last relation implies that their eigenvalues are

equal, while the columns representing the corresponding eigenvectors in the basis (3.3),

are mutually conjugated: ⟨Q, αi | µtµm ⟩ = ⟨Q, αi | µ∗tµ∗m ⟩∗ for tµ = tµ∗ .

In other words, since the dynamical representation is real, and the initial hamiltonian is

invariant upon the time reversal, the irreducible corepresentations of the magnetic group

G ⊗ {e, θ} are essentially involved. Therefore, for the representations of the types II and

III, the real, but still not standard, eigenbasis in S(µtµ)
q ⊕ S(µ∗tµ)

q for W can be found (and

supplemented by the canonically conjugated basis in S(µtµ)
p ⊕ S(µ∗tµ)

p :

| Q,µtµm, r ⟩ =
| Q,µtµm ⟩+ | Q,µ∗tµm ⟩√

2
, | Q,µtµm, i ⟩ =

| Q,µtµm ⟩ − | Q,µ∗tµm ⟩
−
√
2i

,

(3.7)

| P ,µtµm, r ⟩ =
| P ,µtµm ⟩+ | P ,µ∗tµm ⟩√

2
, | P ,µtµm, i ⟩ =

| P ,µtµm ⟩ − | P , µ∗tµm ⟩√
2i

.

In this basis the displacements are real, while the hamiltonian is:

H =
1

2

∑
I

∑
tµm

(P 2
µtµm + ω2(µtµ)Q

2
µtµm) +

1

2

∑
II,III

′
∑
tµm

∑
l=r,i

(P 2
µtµml + ω2(µtµ)Q

2
µtµml) =

=
~
2

∑
I

∑
tµm

ω(µtµ)(b
∗
µtµmbµtµm + bµtµmb

∗
µtµm) +

~
2

∑
II,III

′
∑
tµml

ω(µtµ)(b
∗
µtµmlbµtµml + bµtµmlb

∗
µtµml)

(the primed sum,
∑ ′, is over the half of the set of the complex representations – types II

and III ). The later expression is in the basis {| b, µtµm ⟩, | b∗, µtµm ⟩} for the real, and

{| b, µtµm, r ⟩, | b∗, µtµm, r ⟩, | b, µtµm, i ⟩, | b∗, µtµm, i ⟩} for the complex representations.

Note that in the case of the complex representations, the vectors labeled by r (or i) do not span

an irreducible subspace, and the basis is not a standard one. Nevertheless, the coordinates

bµtµm,r, b
∗
µtµm,r (analogously for i) satisfy the bosonic commutation relations.

Since the canonical transformation are manifested as the mutually contragredient change

of bases in the coordinate and in the momentum space, the coordinates in the basis of the



3.2. APPLICATION OF SYMMETRY 47

type (3.6), formed directly with the vectors of the standard basis, would not have neither

the expected symmetry properties, nor they would satisfy the bosonic relations. Therefore,

another basis is introduced for the complex representations in the space S(µtµ)
q ⊕ S(µ∗tµ)

q ⊕
S(µtµ)
p ⊕ S(µ∗tµ)

p :

{ | b, µtµm ⟩ =

√
~

2ω(µtµ)
| Q, µtµm ⟩ − i

√
~ω(µtµ)

2
| P , µ∗tµm ⟩,

| b∗, µtµm ⟩ =

√
~

2ω(µtµ)
| Q, µ∗tµm ⟩+ i

√
~ω(µtµ)

2
| P , µtµm ⟩,

| b, µ∗tµm ⟩ =

√
~

2ω(µtµ)
| Q, µ∗tµm ⟩ − i

√
~ω(µtµ)

2
| P , µtµm ⟩, (3.8)

| b∗, µ∗tµm ⟩ =

√
~

2ω(µtµ)
| Q, µtµm ⟩+ i

√
~ω(µtµ)

2
| P , µ∗tµm ⟩ }.

At very last, in the coordinates of this basis, the hamiltonian obtains form (3.5) (with slightly

changed meaning of the symbols!):

H =
1

2

∑
µtµm

~ω(µtµ)(b∗µtµmbµtµm + bµtµmb
∗
µtµm).

Since Qµtµm =
√

~
2ω(µtµ)

(bµtµm+ b∗µ∗tµm) i Pµtµm = i
√

~ω(µtµ)
2

(b∗µtµm− bµ∗tµm), the bosonic com-

mutation relations are easily verified. Note that the subspaces of the conjugated irreducible

representations cannot be separately considered, because the corresponding conjugated coor-

dinates, which are simultaneously used, are transformed according to them. Finally, while the

creation operators in the previous hamiltonian connect different irreducible representations,

in the last one they induce complex displacements. The standard usage of the coordinates

in the so called canonical quantization, originated the incompatibility of this procedure with

the symmetrical coordinates, [33].

Using the properties of the dynamical representation, its explicit construction and the

reduction, being the most important steps in the calculation of the standard stationary basis,

are performed surprisingly simply. Since each element of the symmetry group connects the

atoms of the same sort, only the matrix elements of Dd(g) connecting such pairs of atoms

are non vanishing; in addition, the diagonal element is zero unless the corresponding atom

remains invariant under the transformation g. More precisely, DP
αβ(g) = δβ,gα, and, since the

character of Dd(g) is the product of the characters of the permutational and the polar vector

representations, the frequencies aµ in the decomposition Dd(G) =
∑

µ aµD
(µ)(G) are:

aµ =
1

| G |
∑
g

χ(µ)∗(g)χd(g), χd(g) = n(g)χv(g).
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This is the instance where the most powerful simplifications occur. Firstly, n(g) = χP (g) is

exactly the number of the atoms remaining fixed under the transformation g, and it is found

by simple inspection in each concrete problem. Secondly, the character of the polar-vectors

representation, χv(g), is independent of the problem. It is easily calculated, and well known

for any geometrical transformation: the translations do not change the vectors (because they

move both of its ends), and χv( I |z ) = 3; the character of the rotation for the angle φ is

χv(R(φ)) = 1 + 2 cos(φ); the product of the spatial inversion with the rotation has character

χv(PR(φ)) = −1−2 cos(φ). If the transformation g has no fixed points in R3, it a priori moves

all the atoms, and χd(g) = n(g) = 0; besides the pure translations, some other geometrical

transformations share this property. For example, if Rt = t, the action of (R|t) involves

a translational part, and χd(R|t) = 0, independently of the regarded system (warning: in

general, the non vanishing of the translational part t does not prevent the existence of the

fixed points of (R|t); e.g., for t = tez and R = σh, giving Rt = −t, the element (σh|tez) is
the reflection in the horizontal plane, z = t

2
, and each point of the plain is fixed).

Another important property of the dynamical representation, inherited from the permu-

tational factor DP (G), comes from the fact that the orbits of the group action on the system

are disjoint. The configurational (or phase) space of the single orbit is invariant subspace in

the configurational (phase) space of total system. Therefore, the dynamical representation

is reduced in the orbital subspaces, appearing as the sum of the dynamical representations

of the orbits. This inspired the attempts to classify all the possible orbits of the geometrical

groups in R3, in order to analyze the vibrations of arbitrary system of the given symmetry.

The dynamical representation involves all the displacements of the systems from the equi-

librium configuration: vibrations, translations and rotations. The translations and the rota-

tions are global motions of the system, which do not change the relative positions of the atoms,

and they should be separated in order to study only essentially vibrational degrees of freedom.

These global displacements are transformed according to the polar vector (translations) and

axial vector (rotations) representations, and the resulting normal modes correspond to the

irreducible components of these representations. Therefore, these components should be sub-

tracted from the dynamical representation, to achieve the vibrational representation, related

to pure vibrations. For the finite system, there are 3 translational and 3 rotational modes

if it is nonlinear, while for linear system any rotation around its axis is identical mapping

(thus not movement), and 2 axial vectors orthogonal to the system axis are rotational modes.

For the infinite systems the rotational modes do not exist (since far from the rotational axis

the displacements induced by the rotation are large), except when the system is quasi one-

dimensional, when the rotation around the system axis is the degree of freedom (this does not

refer to the exactly one dimensional systems: again, the mentioned rotation is not real motion

and the degree of freedom). In the spectrum of the harmonic hamiltonian, the translational

and the allowed rotational modes are characterized by the vanishing frequencies, reflecting

the fact that the since for translational and rotational hamiltonians are degenerated cases of

the harmonic one for the zero frequency (the constant in the quadratic term).

To illustrate these concepts, the isolated system, with the usual two-particle central in-



3.3. NORMAL MODES OF CRYSTALS 49

teraction, i.e. depending only on the distance rαβ = ||rα − rβ|| of the atoms) is considered.

Quite generally, its potential, V = 1
2

∑
α,β Vαβ(rαβ), is invariant under the rotations and the

translations of the whole system. The harmonic term in the equilibrium configuration Rα is,

[30]: 1
2

∑
α,β

d2Vαβ(Rαβ)

dr2αβ
(
Rαβ

Rαβ
(qα − qβ))

2. Therefore the coefficients in the expansion (3.2) are:

V αi
βj =

−Vαβ
Ri

αβR
j
αβ

R2
αβ

, for α ̸= β,∑
γ Vαγ

Ri
αγR

j
αγ

R2
αγ

, for α = β.

The direct inspection shows that the translational and the rotational displacements are the

eigenvectors of the dynamical matrix for the eigenvalue equal to zero. Indeed, a translational

mode is described by the equal displacements, vector a, of each atom, i.e. by the vector∑
αi ai| q, αi ⟩ in the configurational space; the requirement that this vector is the eigenvector

of V for the vanishing eigenvalue (for any a), gives the equality
∑

α V
βj
αi = 0, for all i, j and

β. In fact, these turn out to be the identities, when the derived values for the coefficients V αi
βj

are encountered. Analogously, the form of rotational modes is determined by the form of the

rotation, R(φ) = eAφ (A is a skew symmetric matrix): φ
∑

αij A
i
jRαj| q, αi ⟩. Such vector is

the eigenvector of V for the vanishing eigenvalue if
∑

α(RαjV
βk
αi − RαiV

βk
αj ) = 0, for all β, i, j

and k, and the last condition is fulfilled in the considered case.

3.3 Normal modes of crystals

It has been explained, § 2.3.1, that translational periodicity is the main characteristic of the

crystal structure, since the translational group, T , is always included in the symmetry group

of the crystal. Therefore, when the results referring to all crystals are looked for, methods

of the solid state physics [31] apply this symmetry only; the full space group treatment is

postponed for precise studies of the concrete compounds, [32, 33]. The consequences of the

translational symmetry only will be the subject of this section.

The irreducible representations of T are parameterized by the vectors of the Brillouin’s

zone. All of them are complex, except for k = 0 (the identical representation), and several

representations for k at the boundary of the zone (these are alternative representations), and

satisfy D(k)∗(T ) = D(−k)(T ). Therefore, the expressions bellow are simplified to involve only

the complex representations (consequently, the summations are performed over the half of

the Brillouin’s zone — BZ
2
).

The notation of the previous section can be slightly adapted to the crystal structure. Thus,

instead by the single index α, it is convenient to enumerate the atoms of the system by double

label, zα: the first part, z, being the vector with integral coordinates, zi = 0, . . . , Ni − 1,

specifies the elementary cell, and α = 1, ..., r distinguishes between the atoms in the cell.

The total number of the atoms3 is n = Nr, where N = N1N2N3. The basis (3.3) becomes

3In fact, the finite order of the translational group, |T | = N , is temporary introduced only to avoid the
question of normalization of the vectors; this technical assumption, with no relationship to the symmetry,
cannot disturb the results, since they are independent on N .
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| Q,zαi ⟩, and the dynamical representation is defined by:

Dd( I |l )| Q,zαi ⟩ = | Q, (l + z)αi ⟩.

Its matrices and characters

Ddzαi

z′α′i′( I |l ) = δzz′+lδ
α
α′δii′ χd( I |l ) = 3Nrδl,0, (3.9)

give, applying (A.1), the decomposition onto the irreducible components:

Dd(T ) =
∑
k

3rD(k)(T ).

Therefore, the dimension of each subspace H(k)
q is 3r (the index m is omitted since the

representations are one-dimensional). It is easily verified that the vectors

{| Q,kαi ⟩ =
√
NP (k)| Q, 0αi ⟩ = 1√

N

∑
z

eikz| Q,zαi ⟩ | α = 1, . . . , r; i = 1, 2, 3}

are orthonormal, forming the basis of H(k)
q . Due to the translational symmetry of the system,

Dd(T ) commutes with V andW . Using (3.9), this gives relationW zαi
z′α′i′ =W z−z′αi

0α′i′ among ma-

trix elements ofW . In the last basisW is in the reduced form: since ⟨Q,kαi |W |Q,k′α′i′ ⟩ =∑
z e

−ikzW zαi
0α′i′δ

k
k′ , S(k)

q is invariant subspace for W , and in this subspace the W acts as the

matrix Wαi
α′i′(k) =

∑
z e

−ikzW zαi
0α′i′ .

Solving the eigenproblem in each S(k)
q , the eigenvalues ω2

t (k) and the eigenbasis {| Q,kt ⟩ |
k ∈ BZ, t = 1, ...3r} (there is no need for the usual subscript of t, since T takes on the same

3r values independently of k) are found. Note that ωt(k) = ωt(−k), since W (k) = W ∗(k).

In the coordinates of this basis, the hamiltonian is:

H =
1

2

∑
kt

(P ∗
ktPkt + ω2

t (k)Q
∗
ktQkt).

To obtain the form of the system of the harmonic oscillators, the described methods for the

representations of the type III would be applied: either in the real basis (3.7) the hamiltonian

takes the form

H =
1

2

∑
k∈BZ

2

∑
t

∑
l=r,i

(P 2
ktl + ω2

t (k)Q
2
ktl) =

1

2

∑
k∈BZ

2

∑
t

∑
l=r,i

ωt(k)(b
∗
ktlbktl + bktlb

∗
ktl),

or, more frequently, substituting Qkt =
1√

2ωt(k)
(bkt + b∗−kt), Pkt = i

√
ωt(k)

2
(b∗kt − b−kt), the

basis (3.8) is used, to rewrite hamiltonian as

H =
1

2

∑
kt

ωt(k)(b
∗
ktbkt + bktb

∗
kt).
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In the solid state physic, after the quantization, the last expression describes the energy of the

thermal excitations of the lattice, i.e. the quasi particles, phonons, created by the operators

b†kt.

The usual physical reasons imply that the eigen frequencies, ωt(k), are continuous func-

tions on k. This means that for fixed t, these frequencies form the hyper surfaces over the

Brillouin’s zone, known as the vibrational bands. This is a special case of the energy bands,

(§ 2.3.1, § 5.4), manifesting the translational symmetry. It has been mentioned that there are

3 translational modes , transforming according to the identical representations, k = 0 (only

translational group is considered!), giving raise to the 3-fold degeneracy of the frequency

ω = 0. These three bands ωt(k)(t = 1, 2, 3) vanishing in the center of the Brillouin’s zone

(ωt(0) = 0) are called acoustic, to distinguish from the remaining optical bands (t = 4, . . . 3r).

In fact, for k = 0 the displacements of the atoms are same in any cell, but the acoustic mode

induces the same displacements of all the atoms within cell, displacing the cell in its eternity,

like the acoustic wave; in other modes the relative distances between the atoms within single

cell are oscillating, also. Clearly, the full space group treatment will relate the band index

t to the irreducible representations of the symmetry group of the elementary cell (which is

realized through the induced representations of the space group).

3.4 Analysis of the results

The obtained classification of the normal vibrations is directly observed in the spectroscopy

of the atoms and molecules. When the typical masses and force constants (characterizing

the interactions) are substituted in the harmonic potential, it turns out that the obtained

frequencies correspond to the infra red domain of the electromagnetic waves; being much

less then the energies of the electronic transitions, the corresponding spectral lines are easily

recognized. In the standard theoretical prescription, the transitions are described through the

interaction with the electromagnetic waves. In the first, dipole approximation, [2], relevant

for the most probable one-phonon transitions, the unperturbed hamiltonian is (3.2), and

the perturbation (being proportional to the dipole moment of the system) is transformed

according to the polar vector representation, Dv(G). To derive the selection rules, all the

Clebsch-Gordan’s coefficients for the irreducible components of Dv(G) should be calculated.

Assuming that the ground state of the system is symmetrical, i.e. corresponds to the identical

representation, Wigner-Eckart’s theorem gives that, within the dipole approximation, the

excited states allow normal modes transforming according to the irreducible components of

Dv(G). Therefore, these are called active modes.

The described method is easily generalized to other physical problems. Usually, only

the ”interior” space is changed: depending on the physical situation, instead of R3 (for the

mechanical motion), some other space, Sin, is attached to every atom. This implies the

change of the relevant representation of the symmetry group; analogously to the polar vector

representation, the another representation, Din(G) is defined in Sin.
For example, when the spin ordering is studied, the spin corresponding to the site (atom)
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α (α = 1, . . . , n) is described in the spin space S, forming total state space S⊗n, and the

general hamiltonian with pairwise interaction only is:

H = −
∑
αβ

SαJ
α
βSβ = −

∑
αβ

∑
ij

JαiβjSαi ⊙ Sβj. (3.10)

Here, ⊙ is matrix multiplication if α = β and tensor product otherwise, Sα is triple of the

spin operators associated to the site α, and Jαβ is three-dimensional tensor of interaction of the

spins in the sites α and β; clearly, terms are tacitly directly multiplied by identity operators

in all but α and β site-spaces. Depending on Jαβ various models are obtained: most frequently

it is assumed that this tensor is diagonal and depends only on the distance between sites (e.g.

nonzero only for the first neighbors) one gets generalizations of the Heisenberg’s hamiltonian,

which is isotropic since uses only scalar matrices (i.e. Jαβ become coupling constants).

Being intrinsically many-body problem, model (3.10) is not solvable in geneal, and a

typical approach is the variational one. Classical approximation takes uncorrelated spin

states |ψ1, ψ2, . . .⟩ (|ψα⟩ is the state of the spin of the site α) for the trial set. The derived

average energy is E(s) = −
∑

αβ sαJ
α
β sβ, where sα is the three-dimensional axial vector (with

components sαi = ⟨ψα | Sαi |ψα⟩), interpreted as the spin (correctly: spin operators averages)

of the site α. Thus, within this approximation ground state minimizes energy over spin

arrangements s = {s1, s2, . . . }. Obviously, it can be obtained as the minimal eigenvalue of

the ”classical” hamiltonian Hcl = −
∑

αβ E
αβ ⊗ Jαβ . This problem is quite analogous to that

of normal modes: the permutational representation is the same, only spin vectors are axial

(to differ from the polar displacements). Note that, as it is usual in the variational approach,

eigenstates corresponding to higher eigenvalues are not expected to give good description of

excitations, and perturbative methods are employed to get spin waves, also called magnons.

In this case the time reversal can be less trivially involved, as it reverses spins, which points

to the importance of the of the magnetic groups and their corepresentations. On the other

hand, as the lengths of the spin vectors are same along the orbits of the group (this is not

the case with vibrational amplitudes), spin groups give the most efficient way to find classical

ground state. Finally, let it be mentioned that the original quantum problem, being solved

only for some very special configurations and hamiltonians (e.g. for one-dimensional periodic

chain solution is known as Bethe anztz ), still is one of the greatest challenges of the condensed

matter theory; it can be expected that further substantial breakthroughs can be performed

only with systematic (though complicated) application of symmetry.

Further example of the analogous construction will be connected to electronic states of the

molecules and crystals, (§ 5.3): each atom gives a subspace of its electronic states, and these

chosen states are altogether used to construct the one electron states of the whole molecule

(or crystal).

The invariance of the potential in the Heisenberg’s method under the rotations (of the spin

operators) in each site of the lattice, introduces additional interior symmetry. The treatment

of such symmetries leads to the gauge theories; the formulation of such problems is based on

the differential geometry, making them beyond the scope of the text (still, some of the notions

will be implicitly introduced within the adiabatic method, § 5.1).



Chapter 4

SYMMETRY BREAKING

Symmetry breaking is common name for the processes in which the symmetry of the final

state is subgroup of the symmetry of the initial state. Many diverse and important physi-

cal phenomena (phase transitions, Jahn-Teller effect, Peierls transitions, symmetry breaking

in particle physics) fall into this class, and their unique explanation is perhaps the most

impressive success of the concept of symmetry.

4.1 Invariant functionals

Let S be real space carrying the representation D(G) =
∑

µ aµD
(µ)(G) of the group G.

Functional (real) on S, i.e. the map F : S → R, is invariant if F (D(g) |x⟩) = F (|x⟩) for all
|x⟩ ∈ S and g ∈ G. Functional is differentiable in |x⟩ ∈ S, if for any unit vector |y⟩ ∈ S the

real function of the real variable ε, F (|x⟩+ ε |y⟩), is differentiable in ε = 0.

Note that the linearity of the functional is not requested. Also, the differentiability of the

certain order is not necessary, although it customary to use the sufficiently smooth functionals;

in fact, for the simplicity, it is usually assumed that the physical functionals are infinitely

differentiable.

Frequently appearing functional in the spaces with scalar product is the square of the

norm of the vectors:

F (|x⟩) = ⟨ x |x⟩ =
∑
i

ξ2i = F (ξ1, . . . , ξn); (4.1)

here, ξi are the coordinates of the vector | x ⟩ in some orthonormal basis. This example

clearly illustrates how the choice of the basis transforms the functional in S to the function

of the coordinates: the function F (ξ1, . . . , ξn) from Rn to R, is differentiable if the functional

F (| x ⟩) is differentiable. The potentials of different physical systems can be understood

as the invariant functionals (over the configurational space in classical, or over the space

spanned by the observables of the coordinates in quantum mechanics); then the group of the

geometrical (or other) symmetries is easily incorporated. Especially, the harmonic potential

(§ 3) is quadratic functional. Another, quite general example is the functional obtained from

the hamiltonian of the system: V (| x⟩) = ⟨x | H | x⟩; its extremal points in S are the

53



54 CHAPTER 4. SYMMETRY BREAKING

eigenvectors of H.

In the coordinates of some chosen basis, the group action, D(g) |x⟩ =|x′⟩, takes the matrix

form ξ′i =
∑

j Dij(g)ξj, and the invariance of the functional reads

F (ξ1, . . . , ξn) = F (ξ′1, . . . , ξ
′
n) = F (

∑
j

D1j(g)ξj, . . . ,
∑
j

Dnj(g)ξj).

In the complex spaces the real coordinates can be introduced by the decomplexification pro-

cedure (consequently, the coordinates ξi and ξ
∗
i are independent). Also in this case, the square

of the norm is frequent example of the functional. Especially, the harmonic potential (§ 3)
The differentiability of the functional enables to expand it in the vicinity of arbitrary point

|x1⟩
F (|x1⟩+ ε |x⟩) = F (|x1⟩) + ε

∑
i

C
[1]
i ξi + ε2

∑
ij

C
[2]
ij ξiξj + . . . . (4.2)

Here C
[1]
i

def
= ∂F (|x1 ⟩)

∂ξi
, C

[2]
ij

def
= 1

2
∂2F (|x1 ⟩)
∂ξi∂ξj

and generally C
[r]
i1,...,ir

def
= 1

n!
∂rF (|x1 ⟩)
∂ξi1 ···∂ξir

; all these tensors

are symmetric with respect to the permutations of indices.

In the context of the symmetry breaking, the properties of the functional in the vicinity

of the fixed points of the group action are of especially important. Therefore, | x1⟩ will be

assumed to be such point, i.e. it will be from the subspace S(1) of the identity representation:

D(g) |x1⟩ =|x1⟩. The value of the functional in the point D(g)(|x1⟩+ε |x⟩) =|x1⟩+εD(g) |x⟩
(being also in the ε-vicinity of |x1⟩ due to the unitarity of D(G)) is given by (4.2) again, with

the coordinates ξi of the vector |x⟩ substituted by the new ones, ξ′i of |x′⟩ = D(g) |x⟩:

F (D(g)(|x1⟩+ ε |x⟩)) = F (|x1⟩) + ε
∑
i

C
[1]
i ξ

′
i + ε2

∑
ij

C
[2]
ij ξ

′
iξ

′
j + . . . .

Therefore, the r-th term reads

εr
∑
i1···ir

C
[r]
i1···irξ

′
i1
· · · ξ′ir = εr

∑
i1···ir

C
[r]
i1···irDi1j1(g) · · ·Dirjr(g)ξj1 · · · ξjr . (4.3)

Obviously, the coordinates in r-th term of the expansion form homogeneous polynomial of

r-the degree, transforming according to the r-th tensor power of the representation D(G).

Nevertheless, after the action on the (mutually commuting!) coordinates, only the symmetric

part of this tensor product remains (other parts mutually cancels). Thus, each term in

the expansion transforms according to the corresponding symmetric power (§ A.2.5) of the

representation D(G) (this can be equivalently explained by the contraction of the tensor

formed by the coordinates with the symmetric tensor C [r] of the coefficients).

The invariance of the functional induces additional properties of the expansion in the

vicinity of the fixed point. To provide the invariance of the whole functional, each order of

expansion must be invariant (due to the different exponent of ε). In other words, the r-th term

(4.3) is homogeneous invariant polynomial (of order r) in coordinates. Thus, the differentiable

invariant functional is expanded as a sum of the invariant homogeneous polynomials of the

group G. Since the homogeneous polynomial transforms according to the corresponding
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symmetric power of the representation D(G), invariant polynomial of the r-th degree, i.e.

polynomial transforming according to the identity representation of G, can be constructed

only if the identical representation appears in the decomposition of the symmetric r-th power

[Dr(G)]; if this is not the case, the r-th degree term of any invariant functional is absent.

In the previous example, the functional (4.1) is obviously invariant for the group O(n,R)

(U(n)), and the coordinates form quadratic invariant polynomial for this group. Also, (4.1)

can be understood as the second order expansion of some functional invariant for O(n,R)

(U(n)), in the vicinity of the coordinate origin (being the only fixed point in the considered

example). In fact, the quadratic functional obtained this way, is usully called the harmonic

approximation, as discussed in § 3.
The algorithm for the construction of the differentiable invariant functionals is easily

found using their derived properties in the vicinity of the fixed points (note that the set

of the fixed points is defined by the group action only, independently on the characteristics

of the functional under consideration). In the vector space Sr (of the dimension
(
n+r−1

r

)
),

spanned by the monomials of the order r over the coordinates, the action of the group G is

defined by the representation [Dr(G)]; the range S
(1)
r of the group projector of the identical

representation in Sr is the set of all invariant polynomials of the degree r. If the polynomials

{p[r]i | i = 1, ..., a
[r]
1 } are the basis in S

(1)
r , r = 1, 2, ..., the most general form of the invariant

differentiable functional is:

F (|x1⟩+ ε |x⟩) = F (|x1⟩) +
∑
r

εr
a
[r]
1∑
i=1

A
[r]
i p

[r]
i . (4.4)

Each choice of the coefficients A
[r]
i completely defines one invariant functional.

This reveals the importance of the invariant polynomials in the description of the system

with nontrivial symmetry1. Their calculation is relatively complicated task, and the suitable

mathematics is developed during last century, to achieve important result at its end [35, 36]:

for any representation of the compact group, there is the finite set, {pi(ξ1, . . . , ξn)|i = 1, . . . , q},
of the invariant polynomials over the coordinates of the representation, called the integral

basis, such that each invariant polynomial is a polynomial over this set: P (ξ1, . . . , ξn) =

P (p1, . . . , pq). This means that the classification of the invariant functionals can be performed

using the integral basis. Unfortunately, the proof is not constructive, and the algorithm to

find this basis is a problem itself, with complexity depending on the group structure and on

the dimension of the irreducible representation.

As usually, the implementation of symmetry in the physical problems, starts by the reduc-

tion of the relevant representation on the irreducible components and usage of the standard

basis. At first, note that the invariant polynomials of the first order can be made only by

the coordinates of the vectors from the subspace S(1) (the other coordinates are changed

1In fact, as it has been mentioned, the potential of the system is invariant functional, and in any phys-
ically relevant approximative method the potential is reduced to several invariant polynomials. Thus, their
importance in the prediction of the dynamics of the system is obvious even at this instance, independently of
the symmetry breaking processes considered in the rest of the chapter.



56 CHAPTER 4. SYMMETRY BREAKING

by the action of the group). The second order term of the invariant functional gives the

most convenient standard basis: the matrix C [2] of the coefficients in this polynomial can

be diagonalized, and its standard eigenbasis {| µtµm ⟩} in S is usually used to define the

coordinates ξµtµm. The group projector technique gives such basis as it has been explained

in the context of normal vibrations (§ 3), and only the main results will be summarized here:

(i) since C [2] is symmetric, the real standard basis can be used (even when the representation

D[2](G) contains the irreducible components of the types II and III, the conjugated pairs of the

irreducible components are joined into one reducible, called physically or real irreducible rep-

resentation of the group G); (ii) since the only quadratic invariant polinomial of the physicaly

irreducible representation is the sum of the squares of the coordinates p[2µ] =
∑

m ξ
2
µtµm, the

quadratic term obtains the diagonal form
∑

µtµ
A

[2]
µtµp

[2µ]. Thus, in the standard eigenbasis,

for |x⟩ =
∑

µtµm
ξµtµm| µtµm ⟩, the equality (4.4) becomes

F (|x1⟩+ ε |x⟩) = F (|x1⟩) + ε

a1∑
t1

A
[1]
1t1
ξ1t1 + ε2

∑
µtµ

A
[2]
µtµ

∑
m

ξ2µtµm +
∑
r>2

εr
a
[r]
1∑
i=1

A
[r]
i p

[r]
i . (4.5)

Naturally, the coefficients A
[2]
µtµ are the eigenvalues of the matrix C [2]; they correspond to the

eigen frequencies of the previous chapter, but their positivity is not necessary, unless some

additional requirement has been imposed (like the condition of the stable equilibrium in § 3).

4.2 Extremes of the invariant functional

Vanishing of the first order terms (over ε) is sufficient condition for the functional (4.5) to be

stationary at the fixed point |x1⟩. This point is a local minimum if all the coefficients A
[2]
µtµ are

positive (or equal zero, but then suitable conditions on the higher order terms are fulfilled).

Most relevant for the physical problems are the extreme properties of the functional in the

directions of the vectors of the defined symmetry [34], i.e. in the case when |x⟩ =|x, µtµ⟩ =∑
m ξµtµm| µtµm ⟩ is in the standard subspace S(µtµ). Moreover, the motions toward some

other fixed point are not to be considered, meaning that µ ̸= 1; consequently, the stabilizer

G|x ⟩ = G|x1 ⟩+ε|x ⟩ of the vector | x⟩ (and | x1 ⟩ + ε | x⟩) is proper subgroup of G = G|x1 ⟩.

Under these conditions, the invariant polynomials are formed by the coordinates ξµtµm, only.

The first order term vanishes immediately (as it has been explained), and this shows that in

the considered directions each fixed point of the group action is stationary for any invariant

functional. Therefore, for the normalized vector | x, µtµ⟩ (the norm is not essential in what

follows), (4.5) reads:

F (|x1⟩+ ε |x, µtµ⟩) = F (|x1⟩) + ε2A
[2]
µtµ +

∑
r>2

εr
a
[rµ]
1∑
i=1

A
[r]
i p

[rµ]
i ,

where the polynomials {p[rµ]i | i = 1, . . . , a
[rµ]
1 } span the subspace of the identical representa-

tion in the space spanned by the r-th order monomials over the coordinates ξµtµm.
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When the identical representation is not among the irreducible components of [D(µ)r ], then

a
[rµ]
1 = 0, and there is no r-th degree invariant polynomial. Thus, the term of order r in the

expansion (4.5) disappears (in the vicinity of the fixed point) along the direction of |x, µtµ⟩.
There are invariant polynomials of even orders for any irreducible representation: the square

of the norm of the vector, p[2µ] =
∑

m ξ
2
µtµm, is the unique quadratic invariant of any irreducible

representation, and its powers are even order invariants. Therefore, some odd-degree terms for

some irreducible representations disappear a priory (a
[rµ]
1 = 0 is sufficient condition, related to

the group only; other terms may vanish also, due to some specific properties of the considered

functional). The example of this type has been already used: a
[rµ]
1 = 0 holds for r = 1 and any

µ ̸= 1. If A
[2]
µtµ is positive (negative), |x1⟩ is minimum (maximum) for the chosen direction; if

A
[2]
µtµ = 0 the higher orders must be examined to determine the type of the stationary point.

For example, if A
[2]
µtµ = 0 and there are third order terms, then | x1⟩ is a point of inflection,

and if the third order terms vanish too, the sign of the fourth order term must be discussed.

It is also possible that the functional is constant along some direction, which is manifested as

the reduction of the expansion to the constant: F (|x1⟩+ ε |x⟩) = F (|x1⟩); this has been the

case for the translational and rotational modes of the harmonic potential. In such examples

|x1⟩ is not isolated extreme point2.

4.3 Spontaneous symmetry breaking

The physical theories are based on some invariant functional on the state space (e.g. potential

energy in the classical mechanics is the functional over the phase space), which governs the

dynamics of the system, in the sense that its minimal points are the equilibrium (stationary)

states of the system (the states taken by the isolated system). It has been shown that the

fixed points are stationary along the directions of the irreducible representations (except the

identical one). If the coefficient A
[2]
µtµ is negative, such point is maximal, and the system is

instable for the displacements along the vectors |x, µtµ⟩ from S(µtµ): it spontaneously departs

the state |x1⟩, and evolves in the direction of |x, µtµ⟩, being stabilized if some local minimum

lays along this line, or turns in some other direction at non minimal stationary points. The

symmetry of all the points along the line | x1⟩ + α | x, µtµ⟩ is the same, G|x,µtµ ⟩, meaning

that at the very beginning of the motion from | x1⟩ in the direction of the vector | x, µtµ⟩,
the symmetry of the system is instantaneously (i.e. discontinuously) diminished from G to

G|x,µtµ ⟩. This process is called the spontaneous symmetry breaking, since it occurs without

any external change of symmetry (note that there are systems with spontaneously broken

symmetry: the symmetry of their ground state — the stable state minimizing the mean value

of the hamiltonian — is a proper subgroup of the hamiltonian symmetry group, [3, 39]). Some

common characteristics of such processes will be studied in this section.

2In fact, the fixed points for the linear action of the group (given by D(G)) form the subspace S(1), and
they cannot be isolated. Their isolation can appear in the physical sense: the one-dimensional subspace in
the state space of the system describes the same physical state, while among the operators cρ collinear with
the statistical operator ρ, there is no other mixed state.
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The symmetry of the vector in S is defined as the group of the state (§ 1), i.e. the stabilizer
of that vector when G acts by the representation D(G). Thus, the symmetry of the point

|x⟩ ∈ S is the group G|x ⟩
def
= {g ∈ G | D(g) |x⟩ =|x⟩}. If G|x ⟩ is a proper subgroup of G, the

representation D(G) is not reduced to the identical representation in the subspace spanned

by |x⟩, but the subduced representation, D(G) ↓ G|x ⟩ is reduced, and it acts as the identical

representation in this subspace as well as in the subspace spanned by the vector |x1⟩+ ε |x⟩.
Let | x⟩ =| x, µtµ⟩ ∈ S(µtµ), where | x, µtµ⟩ is the vector of the standard basis found in

the previous section. In the space S(µtµ) the operators D(G) are reduced, and act as the

representation D(µ)(G). Therefore, in the lineal over | x, µtµ⟩ the subduced representation

D(µ)(G) ↓ G|x,µtµ ⟩ is reduced to identical representation, meaning that the coefficient aµ1 in

the compatibility relations D(µ)(G) ↓ G|x,µtµ ⟩ =
∑

ν a
µ
νD

(ν)(G|x,µtµ ⟩), is positive.

Useful generalization of the notion of the stabilizer is the epikernel, [37], of the rep-

resentation D(µ)(G) for the subspace S(µ)′ (being subspace in S(µ)). This is the maximal

subgroup Ek(G,S(µ)′) of G, such that all the vectors of subspace S(µ)′ are fixed points for

the subduced irreducible representation D(µ)(G) onto this epikernel. Obviously the kernel

of the representation is the epikernel for the complete carrying space of the representation:

ker(D(µ)(G)) = Ek(G,S(µ)) (this is the source of the name epikernel). Since the stabilizer

is also an epikernel, G|x,µtµ ⟩ = Ek(G, span(| x, µtµ⟩)), but in general case it is not required

that the subspace S(µ)′ is one-dimensional, the epikernel appears as a generalization of the

stabilizer. It is important in slightly more general theory, because it includes the cases when

G|x ⟩ acts as identity onto some vectors outside the lineal over | x⟩, and thus appears as the

epikernel of the many dimensional subspace. The epikernels of the different irreducible rep-

resentations of the group G are the symmetries of the states after the symmetry breaking.

Thus, list of the epikernels for all the irreducible representations of the group G gives the

possible symmetry groups of the system in the different states.

Let |y⟩ =|x1⟩+α |x, µtµ⟩ be the local minimum on the trajectory in the direction |x, µtµ⟩ of
the functional. Due to its invariance, the same extreme properties of the functional are found

at the points of the whole orbit of the vector |y⟩, i.e. at the points G |y⟩ = {D(g) |y⟩ | g ∈ G}.
This set is obtained by the action of the transversal (set of the cosets representatives) of the

stabilizer G|y ⟩ = G|x,µtµ ⟩ on |y⟩. Thus, all these points are minimal for the functional, and all

of them are of the form |x1⟩+ αD(µ)(g) |x, µtµ⟩. Accordingly, at |x1⟩ the functional equally

allows motions toward all these points of the orbit, and the system, being isolated, randomly

departs toward one of them. Since the orbit consists of the equivalent minima, if these points

are connected (making a continuous set), the functional enables deliberate transitions between

them; the tunnel effect in the quantum mechanics gives the non vanishing probabilities for

the transitions between the minima even if they form a discrete set. Therefore, if there is a

continuous set formed by the transversal of the stabilizer, i.e. if the coset space G/G|y ⟩ is a

manifold of the non zero dimension, the functional allows free motion along these continuous

parts of the orbits (these degrees of freedom are called Goldstone modes). An example appears

when the stabilizer is invariant subgroup, and the corresponding factor group is Lie group G′

(and this is the case whenever G = G|y ⟩ ⊗G′).
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In the vicinity of the minimal point | y⟩, the same analysis can be performed again, but

with the stabilizer G|y ⟩ in the role of the group G (since G|y ⟩ < G, the functional is still

invariant). Now, the whole space is decomposed onto the irreducible subspaces S(νtν) of the

stabilizer, and for the motions along the vectors from S(νtν) the series F (| y⟩ + ε | x, νtν⟩) =
F (|y⟩) + ε2Aνtν

∑
n ξ

2
νtνn + ... is found.

Since the subspaces of the different irreducible components of D(G) are mutually or-

thogonal, the vectors from the subspaces of the non identical irreducible representations are

orthogonal to all the fixed points, and especially to | x1⟩. Nevertheless, after the beginning

of motion along | x, µtµ⟩, some of the vectors from the standard basis in S(µtµ) are no more

orthogonal to the instant state, and the corresponding scalar products are proportional to the

distance from the fixed point: ⟨µtµm | (|x1⟩+ ε |x, µtµ⟩) = ε⟨ µtµm |x, µtµ⟩.

4.4 Phase transitions

Phase transitions are among main objectives of solid state physics. Although there are many

different types of them, inspiring many elaborated theories, some phenomenological char-

acteristics are quite general. (i) When the parameters of the system are varied (e.g. the

temperature is decreased), and some critical values attained and passed through, the crystal

with the space group G changes the structure; its new space group is G′ (the magnetic or the

double groups can be also taken into account, depending on their relevance for the transition).

(ii) It has been observed that the mean value of some physical quantity, Q, called the order

parameter, is changed during the transition from 0 (before the transition) to some other value

(after the transition). Landau’s theory [4, 38] describes such continuous phase transitions as

spontaneous symmetry breakings. It is based on the following common properties.

The state space S is the set of all the states of the system, meaning the real space of all

the observables, since this is the minimal linear space containing all the statistical operators.

Scalar product is standard: (A,B) = TrAB (observables are hermitean operators). The

functional relevant for the considered dynamics is free energy, being invariant with respect to

the space group G, and the equilibrium states are minimal points of free energy. The set of

all relevant thermodynamic parameters of the system (temperature, pressure, external fields

etc.) is denoted by T , and their possible values are points of the parameter space, being the

manifold defined by the ranges of the parameters. Continuous motion of the system defines a

curve in the parameter space, and the phase transition occurs when the critical point, T = Tc,

lies on this curve.

Before coming to Tc (the domain denoted by T−), the state of the system is the fixed

point ρ1(T−), being the minimal point of the free energy. In the critical point the state of the

system ρ1 = ρ1(Tc) is still stable. Nevertheless, after passing through Tc (domain T+), the

state ρ1 is not stable any more, and the transition occurs to the state with the symmetry G′.

The thermodynamic parameters are incorporated in the coefficients A
[r]
ir
, which are therefore

the functions A
[r]
ir
(T ). Continuity of these functions is assumed within the model. In the

simplest case (the generalization is straightforward), the order parameter is the element, Q,
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Figure 4.1: The evolution of the system in the parameter space, T , and in the state space,
S, during the phase transition. The curve Tc, confining the phases, solves the equation
A

[2]
µtµ(Tc) = 0.

of the standard basis in the space of the observables; this implies that the other observables

of the standard basis with vanishing mean values before the transition retain this property

immediately after the transition. Thus, the change of the mean value of Q, from TrQρ1 = 0

(before the transition) to non vanishing one after the transition, indicates that the system

evolves along the direction of ρ1 + εQ (in accordance with the last conclusion in § 4.3).

Consequently, if Q ∈ S(µtµ), then A
[2]
µtµ(T−) > 0 before the transition, and A

[2]
µtµ(T+) < 0

afterwards. Due to the continuity assumption, the parameters of the critical point fulfill the

equation A
[2]
µtµ(Tc) = 0. This equation determines the hyper surface confining different phases.

Stability of the state ρ1 implies that in Tc the third term of the expansion vanishes also (since

the quadratic term is 0). To differ from the previous one, this condition cannot be treated

as the requirement on the coefficient A
[3]
µtµ(Tc) yielding the equation over the parameters: the

dimension of the surface confining the phases in the parameter space would be less for two

then the dimension of the parameter space (two simultaneous equations for A
[2]
µtµ(Tc) and

A
[3]
µtµ(Tc)), and it could be bypassed — the transition and the symmetry breaking would be

avoided. Therefore, the third order term must be a priori annihilated by the symmetry based

condition: there is no third order invariant polynomial, i.e. [D(µ)3 ] does not contain the

identical representation. Finally, the stability of ρ1 at Tc is realized by the condition of the

positivity of the fourth order term.

Since the space groups are discrete, the orbit of the final equivalent stable configurations

is discrete, too. As it has been explained, the crystal randomly comes to one of them. In the

large enough realistic crystals, the parts of it are not correlated, and the transition occurs

independently in the different domains, showing the different choices of the orbit points. In

fact, the averaging over all the points of an orbit restore the initial symmetry, while the
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symmetry of each single point is its stabilizer, i.e. one of the epikernels of the group G.

Two tasks are usually considered within this theory. The Landau’s problem is to predict the

symmetry of the new phase, if the order parameter and the initial symmetry group are known

(e.g. it is known that in the ferromagnetic transition the order parameter is the corresponding

component of the axial vector of the magnetic field). The solution of this problem consists

of the encountering of the epikernels of the irreducible representation of the order parameter,

giving the list of the possible new symmetry groups. The inverse Landau’s problem is to find

the order parameter for the transition, when the symmetry groups of both the phases are

known. To solve it, all of the epikernels of all the irreducible representations should be found;

then the representations having the new symmetry group as one of the epikernels are selected,

and among them only those without identity component in the decomposition of the third

symmetrical power are retained. The candidates for the order parameters are the physical

quantities transforming according to one of these representations.

Incorporating some additional physical requirements, Landau’s theory can be used for

other predictions. Lifshic’s condition is frequent and useful example. It is assumed that the

new phase is spatially homogeneous, i.e. that the order parameter does not depend on the

coordinates, or equivalently that the gradient of the order parameter vanishes. Obviously, in

the free energy functional the components of the gradient must be incorporated, and the anal-

ogous expansion straightforwardly gives the group theoretical equivalent of the requirement:

there is no common irreducible component in the skew symmetrical square of the represen-

tation of the order parameter, and the polar vector representation. Incommensurate phase

transitions, crystal defects and some other phenomena are considered along the same lines.

Also, the critical exponents are introduced through the choice of the invariant polynomials

within different models of the free energy functional, [38].

4.5 Theories of the fourth order

In the different fields of physics the important role is given to the standard model, or φ4

theories, [39, 40]. This significant example of the spontaneous symmetry breaking is given by

the functional of the simplest nontrivial, but quite fruitful form:

F (|x⟩) = A[2]x2 + A[4]x4, (4.6)

(x is the norm of the vector | x⟩). Applicability of the results greatly increases if (4.6) is

interpreted as the fourth order expansion in the vicinity of |x1⟩ = 0 of some more complicated

functional, invariant under the group SO(n,R) (or U(n) in the complex case): |x1⟩ is obviously
the fixed point of this group, and zero order term is ignored since it does not influence the

physical results. Note that this is the fourth order invariant polynomial for the identifying

representation of the group (for the classical matrix groups, the group itself is one of its

irreducible representations — identifying representation, § A.2.1).
If {|i⟩|i = 1, . . . , n} is an orthonormal basis, and |x⟩ = ξn |n⟩, the potential takes the form

F (ξn) = A[2]ξ2n + A[4]ξ4n. The first and the second derivatives are F ′(ξn) = (2A[2] + 4A[4]ξ2n)ξn
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and F ′′(ξn) = 2A[2] + 12A[4]ξ2n. The point |x1⟩ = 0 is stationary (the first derivative vanishes

for ξn = 0), and to provide the maximality (which is the source of the spontaneous symmetry

breaking), it is sufficient that A[2] is negative (fig. 4.2). Then the next extreme in the direction

of the vector |x⟩) is at ξ0n =
√
−1

2
A[2]

A[4] . This point is minimum, since the value of the second

derivative at ξ0n is −4A[2] > 0.

Figure 4.2: The potential F (| x⟩) = A[2]x2 + A[4]x4 as the function of x and A[2] (right),
and as a function of x with two fixed values of A[2] (left): for A[2] ≥ 0, the point x = 0 is
minimum, and for A[2] < 0 the same point is maximum, causing instability of the system and

the transition to the minimal position x0 =
√
−1

2
A[2]

A[4] .

The form of the functional around this point is easily found substituting ξn = ξ0n + η in

(4.6):

F (η) = −A[2]2

4A[4]
− 2A[2]η2 (4.7)

+
√
−8A[2]A[4](

n−1∑
i=1

ξ2i )η +
√

−8A[2]A[4]η3 + A[4](
n−1∑
i=1

ξ2i )
2 + 2A[4](

n−1∑
i=1

ξ2i )η
2 + A[4]η4.

The coefficient of the quadratic term is in field theory interpreted as the half of the square

of the mass of the (quasi)-particle described by the field x; the quadratic terms correspond

to the free fields (without interaction interaction), while the interaction is represented by the

higher order terms. Thus, the expression (4.6) describes the multiplet of n particles, with

equal masses mξ =
√
2A[2], transforming among themselves under the action of the group

SO(n,R) (or U(n)). Negative square of the mass indicates instability of the system, resulting

in the transition to the new state. The dynamics is now governed by the functional (4.7), and

it describes one particle field, η, of the mass mη = 2
√
−A[2], interacting with the massless

fields ξ1, ..., ξn−1, called Goldstone’s bosons.

To understand this result, note that the direction of the n-th vector is chosen arbitrarily,

and any other vector from the subspace of the initial particles (in the initial subspace, Rn or

Cn, the orthogonal or the unitary group acts) could be used with the same result. Therefore,

it is clear that the found minimum must be continuously degenerate: the orbit of the point

ξ0n ̸= 0 is the sphere Sn−1. The stabilizer of the same point is the group SO(n−1,R), describing

the rotations in the subspace orthogonal to ξ0n. Therefore, the number of the generators of
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the symmetry group of the state has decreased from n(n−1)
2

initially, to (n−1)(n−2)
2

finally. The

remaining n− 1 generators determine the coset space of the stabilizer, being manifold of the

dimension n− 1; these cosets generate the orbit — the sphere Sn−1 (quite analogous results

can be obtained for unitary groups). Therefore, the motions restricted to this sphere are

free, and the excitations describing such motions are without quadratic term in the potential;

within the standard language of the theory, the corresponding (quasi)-particles are massless,

and these are the Goldstone’s bosons.

4.6 Adiabaticity and Jahn-Teller effect

When complex physical systems are studied, the technical difficulty to solve the obtained

equations, is usually surpassed by different approximation. In contrast to ones related to

specific problems, the adiabatic approximation belongs to the common methods of physics.

Many systems can be approximately decomposed onto two subsystems, such that one of

them (”light”) follows evolution of the other one (”heavy”). Then the problem of the ”light”

subsystem is considered at first, incorporating explicitly in the potential its dependence on

the state of the ”heavy” subsystem. For the state |x⟩ of the ”heavy” subsystem, the potential

V|x ⟩ of the ”light” one is obtained. Its minimal points are the stable states of the ”light”

subsystem when the ”heavy” is in |x⟩; thus, such stable state is function of the state of the

”heavy” subsystem. The adiabatic approximation consists in the change of the potential (i.e.

of the evolution), such that during the motion of the ”heavy” subsystem the stability of the

”light” one is not disturbed: all the terms causing transition of the ”light” subsystem (during

the motion of the ”heavy” subsystem in the vicinity of | x⟩) from the minimal point of V|x ⟩
to some non minimal point of the potential V|x′ ⟩ are neglected. In other words, the ”light”

system is instantaneously stabilized during the motion of the ”heavy” system. Quantum

mechanical formulation of this procedure is postponed for the next chapter, and only the

properties related to symmetry breaking of such modeled systems are discussed here.

The total state space is S = SL ⊗ SH . The evolution is determined by the total potential

(invariant functional on the total space):

V (|x⟩, |y⟩) = VL(|y⟩) + VH(|x⟩) + VLH(|x⟩, |y⟩),

where VLH(| x⟩, | y⟩) is the potential of the interaction, while VH(| x⟩) and VL(| y⟩) are the

potentials of the isolated subsystems.

Let the ”heavy” system be in the state | x1 ⟩. It is fixed point for its stabilizer group

G = G|x1 ⟩, being represented in SH and SL by DH(G) and DL(G), respectively. Due to the

assumed adiabatic property, the dynamics of the ”light” system is determined by the potential

V|x1 ⟩(| y⟩) = V (| x1⟩, | y⟩). This is a functional on SL, and must be invariant with respect to

G. Further, the state of the ”light” system is stable, i.e. it is one of the minima of V|x1 ⟩. If

|y, νtν⟩ ∈ S(νtν)
L is such a state3, then the whole orbit contains equivalent minimal points, and

3The considered functionals are related to some hamiltonians, and their minimal points are hamiltonian
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due to irreducibility of D(ν)(G), these vectors span S(νtν)
L (§ A.2.2). Clearly, in the adiabatic

approximation the dynamics that tosses the ”light” subsystem from S(νtν)
L during the change

of state of the ”heavy” subsystem is neglected, and only displacements from | y, νtν⟩ within
S(νtν)
L is considered. Therefore, the motion |x1⟩+ ε |x, µtµ⟩ of the ”heavy” subsystem yields

new stable state of the ”light” subsystem in the form |y, νtν⟩+ η
∑

n ηνtνn |νtνn⟩. To provide

stability of the ”light” subsystem during the motion (the adiabatic approximation) no term

linear over ηνtνn may appear in the expansion of the potential:

V (|x1⟩+ ε |x, µtµ⟩, |y, νtν⟩+ η
∑
n

ηνtνn |νtνn⟩) =

V (|x1⟩, |y, νtν⟩) + η2
∑
nn′

Cnn′(ε)ηνtνnηνtνn′ + . . .

The stability of the ”heavy” subsystem depends on the leading term η2ε
∑

nn′mCnn′mηνtνnηνtνn′ξµtµm
in the additional expansion over ε. This polynomial is transformed according to the repre-

sentation [D(ν)2(G)] ⊗ D(µ)(G). Consequently, the system is instable for the displacements

of the ”heavy” subsystem along the vectors of S(µ)
H , if there is invariant polynomial linear

over ξµtµm and quadratic over ηνtνn, i.e. if the above product of the representations contains

the identical component. Equivalently, if D(µ)(G) (the representations are real, otherwise

this refers to the complex conjugated representation) is contained in [D(ν)2(G)], the ”heavy”

system is instable, and goes to the state of the lower symmetry. If D(ν) is one dimensional

(the state of the ”light” system is not degenerated), the symmetrical square is the identical

representation, and the displacements are allowed only in the directions of other fixed points,

i.e. without symmetry breaking.

In the previous expression µ denotes any of the irreducible components of DH(G), and ν

one of the components of DL(G). The system is adiabatically instable if in the symmetrical

square of each of the irreducible representations of its group of symmetry there is at least one

irreducible component, differing from the identical one, of DH(G). If the ”heavy” subsystem

is adiabatically instable, independently of the concrete ”light” subsystem, the symmetry G

of the ”heavy” subsystem is breaking whenever the ”light” one is in the degenerate state.

Nevertheless, in the new state the whole procedure can be repeated, only instead of the group

G, the symmetry groupG|x,µtµ ⟩, i.e. the corresponding epikernel ofD
(µ) and its representations

would be considered. If the condition of the adiabatic instability is fulfilled also for the

epikernels, their epikernels, etc., the symmetry is breaking unless the ”light” system attains

the state of one-dimensional representation of the actual group of symmetry of the ”heavy”

system, i.e. unless the state of the state of the ”light” subsystem becomes non degenerate.

Note that taking of the potential of the ”light” system in the slices, V (| x1⟩, | y⟩), is not
approximation, but only preparation of formalism for the forthcoming approximation. On the

contrary, the prohibition of deverbs of the irreducible subspaces of SL is the approximation.

Its validity depends on the problem (it appears that the rate of the masses of the subsystems

eigenvectors. Therefore, the choice of the minimal point from an (multiple) irreducible subspace is naturally
determined as eigenvector.



4.6. ADIABATICITY AND JAHN-TELLER EFFECT 65

is important to justify the approximation, which has caused the use of the ”attributes”).

Note also, that although |x1⟩ is fixed point of G (by definition), it is not the extremal point,

because the ”heavy” system is not isolated: the first order term over ξµtµm is enabled by the

”light” degrees of freedom of the ”light” system (third order invariant polynomial over all the

coordinates).

Following the conjecture of the Lav Landau, [3], Jahn and Teller showed, [41], that the

nonlinear molecules are vibrationally instable if the electronic states are degenerate (Kramers

degeneracy, referring to the antilinear time reversal operator, § 2.6.1, does not count). In

fact, they showed that the symmetrical square of any physically irreducible many dimensional

representation of any point group of the finite order, has an irreducible component in common

with the vibrational representation of the molecule with such symmetry. Here, the ions are

in the role of the ”heavy” system, while the electrons are the ”light” one, and DH(G) is the

dynamical representation of the ionic system. The translational and the rotational modes

should not be considered, since the whole system is isolated, and the invariant functional

is constant along such displacements (the corresponding terms are absent in the first and

the higher orders of the expansion, and cannot be responsible for the instability). This

means that for the molecules there always exists vibrational (not translational or rotational)

non symmetrical (i.e. corresponding to non identical representation) normal mode, which

in the total potential appears in the first order terms (over ionic displacements), causing

the instability of the ions. This is manifested as the change of their relative positions, with

instantaneous symmetry breaking. Since the epikernel of the point group is again a point

group, the described symmetry breaking occurs unless the electronic level is split to the non

degenerate ones: only such states are stable for the whole molecule.

The same property is shared by the line groups, [26], i.e. by the polymers. As for the

crystals, there is no systematic study of this type; some partial, mostly experimental, results in

accordance with those for the molecules and polymers, [42], have established common belief in

the universal validity of the Jahn-Teller’s theorem. Nevertheless, although systematic research

of diperiodic systems is not complete, it has been shown that the diperiodic groups break down

the theorem: there are groups allowing degenerate electronic states with no electron-phonon

interaction of the first order. For example, the high temperature superconducting compounds

may not be periodical along the z-axis (perpendicular to the conducting plane), and their

symmetry is diperiodic, determined by the geometry of the CuO2 layers; it may be important

that exactly this layer (containing two orbits of the group DG37) breaks the Jahn-Teller’s

theorem, allowing the degenerated electronic states.

Although this is an approximate conclusion, due to the rate of the masses of the electrons

and ions, it is practically exact result, and frequently experimentally verified.



Chapter 5

ELECTRONIC LEVELS IN
MOLECULES AND CRYSTALS

The dynamical problem of many particle systems cannot be solved exactly. This causes

a series of approximations, and the first of them, the adiabatic or the Born-Oppenheimer’s

approximation, is separation of the electronic and the ionic subsystems. Also, some additional

approximations are necessary, and all of of them incorporate the exact symmetry analysis,

to provide at least qualitatively good results. This enable to use the results obtained in the

rough approximation as a starting point for further more accurate calculations (e.g., the states

obtained in the Hückel’s method are trial states in some variational methods).

5.1 Adiabatic model in quantum mechanics

General concept of the adiabatic behavior of the composite systems, [7, 3], considered briefly

in the previous chapter, gives numerous important results within quantum mechanical appli-

cations. Therefore, precise quantum mechanical formalism is developed to introduce relevant

notions, [43]. Since the system is composed of two subsystems, ”light” and ”heavy”, the total

state space is S = SL ⊗ SH . The evolution is determined by the hamiltonian:

H = TL ⊗ IH + IL ⊗ TH + V,

T denotes the kinetic, and V = VL⊗ IH + IL⊗ VH + VLH the potential energy (IL and IH are

the identical operators in SL and SH , respectively). Let Q̂ be the operator of coordinate of

the ”heavy” subsystem (in fact, the set of the commuting operators of all the coordinates is

understood); this is a complete observable in SH (its eigenvalues, Q, uniquely correspond to

the states of the ”heavy” subsystem). The operator Q̂ commutes with all the potentials and

with TL: VH =
∫
Q
VH(Q) |Q⟩⟨Q | dQ (spectral form), VLH =

∫
Q
VLH(Q) |Q⟩⟨Q | dQ (here

VLH(Q) is operator in SL).
The total space S can be understand as orthogonal sum of the subspaces SL(Q)

def
= SL⊗ |Q⟩

(precisely, SL(Q) is the direct product of SL with the one dimensional lineal over | Q ⟩):
S = ⊕QSL(Q). Thus, the total space is sum of the vertical subspaces or fibres SL(Q), each fibre

66
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being isomorphic to SL. Since SL(Q) is invariant subspace of the operator HL = TL⊗ IH+V ,

in each fiber HL is reduced to HL(Q) |Q⟩⟨Q |, where HL(Q)
def
= TL + VL + VLH(Q) + VH(Q)IL

is operator in SL.

Figure 5.1: The decomposition of the total space S onto the vertical subspaces SL(Q). The
vectors |nλn, Q⟩ |Q⟩ in the different points Q span the horizontal subspace Snλn .

Solving the eigenvalue problem of HL(Q), its spectral form HL(Q) =
∑

n ϵn(Q)Pn(Q),

orthonormal eigen basis {|nλn, Q⟩}, and eigensubspaces SLn(Q), are found. In what follows,

the spectrum of HL(Q) will be discrete. Obviously, the n-th eigenvalue is function of Q. To

sumarize, Q becomes the parameter distingushing different operators of the family HL(Q)

(fig. 5.1). This family generates the family of the eigen bases {| nλn, Q⟩}: for each Q one

eigenbasis in SL is determined.

In this way in the total space the common eigenbasis {|nλn, Q⟩ |Q⟩} of HL and Q̂ is singled

out (note that [Q̂,HL] = 0); the corresponding eigenvalues are ϵn(Q) and Q, respectively. It

is important that this basis, called the adiabatic basis, is not the product of the bases of

SL and SH , although its vectors are not correlated1. Due to always assumed continuity of

HL(Q) over Q, the eigen energies ϵn(Q) are continuous function of Q. Therefore, if the

point Q′ is in the vicinity of Q, the discretness of the eigenvalues of HL(Q) and HL(Q
′)

provide the corespondence of the eigenergies: for each ϵn(Q) the nearest eigen energy of

HL(Q
′) is singled out, and it will be labeled by the same index n: ϵn(Q

′). This also gives the

correspondence of the eigen subspaces SLn(Q), enabling to chose their bases {| nλn, Q⟩|∀λ}
1If {| i⟩} and {| q⟩} are bases in the spaces SL and SH respectively, their product {| i⟩⊗ | q⟩|∀i, q} is a

basis in SL⊗SH , which is called product or fixed basis. Its vectors, being the products of the vectors from the
factor spaces are not correlated. In the adiabatic basis, each vector |Q⟩ from the second basis, is multiplied
by diffrent basis of the first space.
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continuously depending on Q. The horizontal subspace Snλn in S, spanned by the vectors

{| nλn, Q ⟩ | Q ⟩ | ∀Q} is now well defined; it is isomorphic to SH (natural isomorphism

is | Q⟩ 7→| nλn, Q⟩ | Q⟩). Orthogonal summation of these horizontal subspaces yields the

horizontal slices, the subspaces Sn = ⊕λnSnλn .

| i, Q⟩ |Q⟩

?������������*
- | i, Q+ dQ⟩ |Q+ dQ⟩

| i, Q+ dQ⟩ |Q⟩

Θ(Q+ dQ,Q)

T (Q+ dQ,Q)
U(Q+ dQ,Q)

Figure 5.2: Hamiltonian conection: the motion Θ(Q+ dQ,Q) = e
−i
~ dQP 0

H from Q for dQ

of the total system is decomposed to the motion U(Q + dQ,Q) = e
i
~A(Q)dQ of the ”light”,

and T (Q + dQ,Q) = e
−i
~ dQPH of the ”heavy” subsystem. The derivative −i~ ∂

∂Q
in the fixed

basis represents the operator PH , while in the adiabatic basis it represents the operator P 0
H .

In comparison to the choice of the fixed basis in S (see the footnote ??), the adiabatic ba-

sis yields noticeable differences with respect to the representations of the relevant operators.

The eigen basis of SL, corresponding to the operator HL(Q), is connected to the eigenbasis

of HL(Q
′) by the unitary operator U : | i, Q′ ⟩ = U(Q′, Q) | i, Q⟩. Therefore, the infinites-

imal displacement for dQ, generated by the operator of the total space, is the transition

| i, Q⟩ | Q⟩ 7→| i, Q+ dQ⟩ | Q+ dQ⟩. It is not related exclusively to the ”heavy” system,

as it is the transition | i⟩ | Q⟩ 7→| i⟩ | Q+ dQ⟩ generated by the operator ∂
∂Q

in the fixed

basis2. Indeed, the infinitesimal displacement of the ”heavy” system solely, generated by its

momentum PH , is now, due to the interaction with the ”light” system, only a part of the

total change (fig. 5.2.). Thus, the relation

|i, Q+ dQ⟩ |Q+ dQ⟩ = Θ(Q+dQ,Q) |i, Q⟩) |Q⟩ = T (Q+dQ,Q)U(Q+dQ,Q) |i, Q⟩ |Q+ dQ⟩

is obtained. The first order terms of the expansion give P 0
H = PH −A. Thus in the adiabatic

basis the momentum of the ”heavy” system has the form

PH = P 0
H + A(Q) = −i~

∂

∂Q
+ A(Q) (5.1)

where A(Q), coming through the derivation of U , is hermitean operator in SL. Only for A = 0

(this is the case of the ”fixed” basis, when U(q + dQ, q) = IL), the operator P 0
H = −i~ ∂

∂Q
is

ordinary momentum of the ”heavy” system. Otherwise, its physical contents is the generalized

2Note that when the basis of representation is changed, two different operators may have same matrix form.
Here, this is the case with ∂

∂Q , being the derivative over Q of the total wave function at in the adiabatic and
in the fixed basis. It is defined in two different representations, and represents diferent operators, although
the same symbol is used.
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momentum for the displacements along Q; the term A(Q) compensates the motion of the

”light” system from | i, Q⟩ to the corresponding state | i, Q+ dQ⟩, restoring the momentum

of the ”heavy” system. The operator P 0
H is reduced in the horizontal slices, since in the

adiabatic basis it does not change the components from the ”light” subspace (the index i

remains fixed). The compensating operator A depend on the basis of representation, being

itself determined by the hamiltonian, more precisely by the interaction terms (the ”fixed”

basis, i. e. A = 0, is obtained if HL(Q) is constant, meaning that there is no interaction

depending on Q). Therefore, the operator field A is called hamiltonian connection, since it

generates operator U(Q + dQ,Q) connecting the eigen bases of the family of the operators

HL(Q) in the neighborhood of Q.

It appears that displacements of the ”heavy” system in the adiabatic representation ob-

tain ”vertical” components (whenever A does not vanish), and may cause transition from

one horizontal slice to another. This is immediately reflected in the dynamics of the total

system. The kinetic energy of the heavy system, TH , is the only term of the total hamiltonian

not included in HL, and thus not incorporated in the construction of the adiabatic basis.

Therefore, involving PH , and not P 0
H , it violates the invariance of the horizontal slices under

H, meaning that the evolution causes the transition from one to another slice.

More precisely, using (5.1), TH can be written in the form TH = T 0
H +Λ, where T 0

H =
P 02

H

2M

is reduced in the horizontal slices, since it, analogously to P 0
H , relates the dynamics of the

”heavy” and ”light” subsystems in the suitable way. The remainder, Λ, allows the vertical

motions (exact expression for Λ in terms of A and ∂
∂Q

can be easily found); in the adiabatic

representation, Λ is the only term in the hamiltonian connecting different horizontal slices. In

fact, this the only term in which the connection A appears, preventing complete separation

of the ”light” and ”heavy” variables.

The adiabatic approximation forbids the transitions among the horizontal slices3. Accord-

ingly, all the matrix elements of Λ connecting different slices are neglected: Λ is substituted

by the operator Λ0 =
∑

n

∫
Q
Pn(Q)Λ(Q)Pn(Q) | Q⟩⟨Q | dQ. This is usually performed in

two steps: at first Λ (and therefore A) is completely neglected, and afterwards, it is included

perturbatively. The first order corrections encounter only the restriction of the perturba-

tion in the eigenspaces of the unperturbed hamiltonian, i.e. in the horizontal slices of these

eigenvalues; therefore the adiabatic approximation is automatically provided (of course this

is even slightly severe approximation than the original adiabatic condition requires). The

unperturbed hamiltonian Ho = T 0
H + HL reduces in the subspaces Snλn , acting in them as

Ho
n = T 0

H + ϵn, with ϵn =
∫
Q
ϵn(Q)Pn(Q) |Q⟩⟨Q | dQ. Usually HL(Q) is considered as the

hamiltonian of the ”light” system in the field of the ”heavy” one (being in the position Q), and

in such context the eigenvectors |nλn, Q⟩ are stationary states of the ”light” system. Within

this interpretation, the unperturbed hamiltonian (which reduces in the horizontal slices due to

the approximation), describes the dynamics of the ”heavy” system in the adiabatic potential

ϵn(Q).

3αδιαβατoς means impassable, not crossable.
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Thus, the algorithm for the application of the adiabatic approximation is obtained. At

first, the eigen problem of the ”light” system in the field of the ”heavy” subsystem is solved;

this gives the eigen energies ϵn(Q) and eigenvectors |nλn, Q⟩, as the functions of the position
of the ”heavy” system. Then the ”heavy” system in the field ϵn(Q), for each n is studied,

and stationary basis and the energies of the unperturbed hamiltonian are looked for. Finally,

if more precise solution is required, perturbation Pn(Q)ΛPn(Q) is applied for each Q and n.

Note that the above results are also called Born-Oppenheimer’s approximation.

In different fields of physics factorizations of the same type are used. The obtained picture,

naturally introduces techniques of differential geometry, being mathematical background of

gauge theories and phenomena of the geometrical or Berry’s phase, [44].

Frequently, the more severe, Born’s approximation is introduced. If the ground state of the

”heavy” system is known, i.e. its equilibrium state, the whole procedure can be applied, but

with the potentials VH(Q) and VLH(Q) taken only in the vicinity of the equilibrium position.

If only the equilibrium point is relevant, only the consideration of the ”light” system remains.

5.2 Application of symmetry

The operator of the kinetic energy of any particle commutes with geometrical transformations,

i.e. it is transformed according to the identity representation of the Euclid’s group. Therefore,

geometrical symmetry is always determined by the potentials. Adiabatic hypothesis, assuming

that the ”light” system neatly follows evolution of the ”heavy” one, implies that the potential

of the ”heavy” system determines the total group of symmetry. This is manifested as the

always fulfilled condition that the potentials depend on the relative positions of the particles

composing the ”light” system (meaning that geometrical symmetry of VL is full Euclid’s

group) and configuration of the ”heavy” system (VLH i VH). Therefore, symmetry of the total

system, with the ”heavy” subsystem in the position Q, is determined by geometry of the

configuration Q. This group is denoted by GQ.

All the potentials in the considered model are contained in HL(Q), and this operator

must commute with the operators DL(GQ), representing the group action. Clearly, the eigen

subspaces SLn(Q) are invariant for DL(GQ), and the corresponding standard stationary basis

can be found: |µtµm,Q⟩ with the eigenvalue ϵµtµ(Q). The picture of the energy level as the

function of Q appears, and the crossing of such levels will be studied immediately, while some

other important applications of the described approach are postponed for the next section.

General considerations of the previous section show that the configurations of the ”heavy”

system in which the energy levels of the ”light” system are crossed, are in a sense the singu-

larities of the adiabatic potential. The degeneracy of the energy levels is increased in these

points, and the horizontal slices can be rigorously defined only over the rest of the configu-

rational manifold of the ”heavy” system. In fact, this increased degeneracy reveals the very

origin of the singularity: the symmetry in these points is greater than in their vicinity. Indeed,

the more symmetric is the configuration Q, the greater is the degeneracy induced by sym-

metry. This is realized as junction of the energy levels ϵνtν (Q
′), corresponding to the (lower



5.3. MOLECULAR ORBITALS 71

dimensional) irreducible representations of the lower symmetry groups of the surrounding

configurations Q′. The symmetry group GQ is stabilizer of the configuration Q, and charac-

terizes the stratus (§ A.1.4) of the point Q: this is the set SQ of all the configurations of the

”heavy” system with stabilizers conjugated to GQ. It is important result of the group theory

that there is open and dense stratus, called the generic stratus, characterized by the minimal

stabilizer4. The points of the higher symmetry occupy the lower dimensional submanifolds of

the configurational space of the ”heavy” system, the most symmetrical of them being isolated

points. Therefore, these critical points of the adiabatic potential, being the more symmetrical

than the surrounding ones enable the symmetry breaking.

Landau showed that the adiabatic potentials of the same symmetry, i.e. the slices corre-

sponding to the same irreducible representation of the surrounding points symmetry group,

cannot cross, [3]. Let GQ′ < GQ be the group of the low symmetry configuration Q′ in the

vicinity of Q. The level ϵµtµ(Q) may split in the course of the displacement from Q to Q′, if

the subduced representation D(µ)(GQ) ↓ GQ′ becomes reducible (§ A.2.6): D(µ)(GQ) ↓ GQ′ =

⊕aµνD(ν)(GQ′). Let D(ν)(GQ′) and D(ν′)(GQ′) be two irreducible subrepresentations of the sub-

duced representation, with the standard subbases {| νtνn⟩} and {| ν ′tν′n′⟩}, respectively. In

this basis the matrix of the perturbation Λ(Q) is

(
Λνν(Q) Λνν′(Q)
Λν′ν(Q) Λν′ν′(Q)

)
. Since Λ is determined

by the parameters of the system only, its symmetry is at least G, i.e. it transforms according

to the identity representation of G. The Wigner-Eckart’s theorem implies that Λνν(Q) and

Λν′ν′(Q) are identity matrices, multiplied by the same scalar (due to the levels junction at

Q). The off diagonal submatrices vanish, unless ν = ν ′, when they are scalar matrices also.

This means that if the levels of the unperturbed hamiltonian are crossed, the perturbation

will remove this degeneracy for the levels of the same symmetry, and no crossing occurs.

5.3 Molecular orbitals

The adiabatic and the Born’s approximations are successfully applied in molecular physics,

due to the large difference in the masses of the electrons and ions (which appears as a criterion

of the applicability of the adiabatic approximation). For example, the structure of molecules

can be explained (if the ground adiabatic potential ϵ(Q) attains minimum at some finite point

Q, this is the equilibrium configuration of the atoms in the molecule), the Jahn-Teller’s effect

has been observed, etc.

Theory of molecular bond and electronic spectra is among the greatest successes of quan-

tum mechanics in molecular physics, [45, 46]. Within this theory it is assumed that the ionic

configuration is known and fixed, and only the electronic subsystem is studied. Standard

quantum mechanical approach, excellently confirmed by atomic electronic spectra, offers a

scheme of one-electron states, which are one after another filled by the available electrons.

4The stabilizers on the same stratus are the same in the abstract sense, since they are conjugated (therefore
isomorphic) subgroups of the Euclid’s group. In the same abstract sense, this group for the generic stratus is
a subgroup of the groups of other stratuses.
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Only the electrons of the outer atomic shells are assumed to be relevant for molecular chemi-

cal bond: interacting weakly with their original ions, these are most intensively influenced by

other ions. These states span the relevant electronic space, and the ground adiabatic poten-

tial with this ”light” space Se, gets minimum in the stable molecular configuration, realizing

molecular bonds.

To find these one electron states, called molecular orbitals, it is necessary to solve the

eigen problem of He = He(Q), for the equilibrium ionic configuration Q. Naturally, even this

(already approximate) task is difficult enough, and further simplifications are introduced.

Frequently, the initial step is Rayleigh-Ritz’s variational method (§ 1.7): molecular orbitals

are looked for in the subspace SAO < Se(Q) over those atomic orbitals giving the electrons for

the bond (the coefficients in the linear combinations of theses orbitals are varied). Therefore

the method is known as the MOLCAO (molecular orbitals as linear combinations of atomic

orbitals). Obviously, very important at this instant is additional assumption of the partial

localization of the bonds. This is the approximation assuming that the origin of the electrons

in the considered bond is defined, and therefore, to each molecular orbital the relevant atoms

and their atomic orbitals are a priory, heuristically, associated. The localized bonds, formed

by the pairs of atoms, are most frequently studied. Nevertheless, in the complex molecules,

larger parts of the molecule, and after all, the whole molecule, can be involved in the model of

formation of some bonds. The larger part of the molecule is taken into account, the results are

more accurate, but the archetypal chemical picture of directly connected atoms progressively

fades. The criterion of localization of the orbital is phenomenological, and only comparison

to the experimental data or some more exact calculations, may justify the choice.

Application of symmetry within Rayleigh-Ritz’s method is discussed previously (§ 1.7).

The subspace SAO, with the projector P , in Se(Q) is fixed by the choice of the relevant

atoms and their atomic orbitals. Therefore, the operator HAO = PHeP is defined. The

set of the atoms involved in the bond becomes formally isolated by this construction, and

their interaction is additionally approximated, since He contains only the matrix elements

between the states in SAO. The chosen atomic orbitals, | i⟩, are not orthogonal, and the

overlap integrals, Sij = ⟨i | j ⟩, appear; finally, the variational equation (1.8) is obtained,

with hij = ⟨i | He | j ⟩. In this context, G is the group of symmetry of the relevant part

of the molecule. To provide the invariance of SAO, for each chosen orbital | i ⟩, all the

orbitals obtained by the group action on | i⟩ are also included in SAO. Thus, the relevant

representation, DAO(G) in SAO, can be formed analogously to the dynamical representation

(§ 3.2). The j-th relevant atomic orbital of the atom α is denoted by |α, njljmj⟩; the indices

are the quantum numbers of the Coulomb’s interaction (the angular dependance is described

by the spherical harmonic Y
lj
mj). With respect to the group O(3,R) this vector is transformed

according to the irreducible representation with weight lj and parity (−1)lj . The product

form, |α, njljmj⟩ =|α⟩ |njljmj⟩, enables to make the action of the group transparent:

DAO(g) |α, njljmj⟩ = DP (g) |α⟩D(lj ,(−1)lj )(g) |njljmj⟩;

all the orbitals obtained in this way (from the same or different atoms) are taken in SAO.
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Again, the permutational representation appears, accompanied by the action of the group

in the interior space of the spherical harmonics. Nevertheless, for the point group G <

O(3,R), the subduced representation D(l,(−1)l)(O(3,R)) ↓ G may not be irreducible, and it is

not necessary to include the whole space of the spherical harmonics with the same l (being

irreducible for O(3,R)); still, all these spherical harmonics are usually used, for the practical

reasons. Hence, the basis of the atomic orbitals is obtained, together with the representation

DAO(G), and the prerequisites for the standard procedure of the symmetry treatment are

settled.

In this context Hückel’s approximation is important, although very rough, as the simplest

one; therefore it is frequently used as the first test of the proposed model of bonding. The

chosen basis of the atomic orbitals is assumed to be orthonormal, Sij = δij, meaning that the

overlap integrals are completely neglected. Note that if the orbitals were really orthonormal,

the matrix h would be the representative matrix of HAO; thus the Hückel’s approximation

identifies h andHAO, reducing the variational problem to the eigenproblem of h. Additionally,

HAO is modeled as follows: the diagonal elements are the energies of the corresponding

atomic orbitals, Coulomb’s integrals, while the remaining ones, the resonance integrals, are the

interaction between the orbitals, and rapidly decrease with the distance between the atoms.

Therefore, all of them are assumed to vanish, except those forming the bond. Crudeness of the

series of approximations is partly compensated by explicit and exact application of symmetry,

when the same value is given to the matrix elements corresponding to the equivalent pairs of

orbitals. This can explain why the results are qualitatively good enough.

The most important are the localized bonds, involving the pairs of the atoms: they are

the strongest, and firstly occupied (two electrons each); only the remaining electrons are

accommodated in the less localized bonds (involving more atoms). The relevant group of

symmetry is C∞v (when the atoms in the pair are different) or D∞h (the pair of identical

atoms). The molecular orbitals are therefore transformed according to one-dimensional (σ-

electrons) or two-dimensional (π-electrons) representations of these groups. Additionally, the

parity of the mirror plane containing the ions appears as the characteristics of the σ-orbitals

(A0 for even and B0 for odd σ states), as well as the parity of the mirror plane between the

equal atoms (the superscripts + and − in the representations A±
0 , B

±
0 , E

±
m,−m stand for even

and odd states). Obviously, the component of the angular momentum along the molecular

axis, |m|, is good quantum number in all the cases. Each electronic level with |m| > 0 is

twofold degenerate, m = ±|m| For the complete classification of the molecular orbitals the

spin should be considered (both of the electrons and of the nuclei), and this will not be studied

here; let it be mentioned only that the symmetry of the double group must be employed, and

the result essentially consists in the addition of the projections of all the relevant angular

moments onto the molecular axis. Clearly, the general rule, that the composition of the

angular moments with the projections |m1| and |m2| gives the angular moments with the

projection |m1| + |m2| and ||m1| − |m2||, easily follows from the Clebsch-Gordan’s series of

the relevant groups.



74 CHAPTER 5. ELECTRONIC LEVELS IN MOLECULES AND CRYSTALS

5.4 Electronic bands in crystals

As well as for the molecules, in the most simple treatments of the electronic system of the

crystal, it is assumed that the ionic equilibrium configuration, Q, is known and fixed, and the

one electron states are looked for. Only the translational group T is made use of, to enable

general applicability of the results.

Regardless of the method of the construction, the one electron crystal orbitals are trans-

formed according to the irreducible (one-dimensional) representations D(k)( I |z ) = e−ikz.

Due to Bloch’s theorem (§ 2.3.1), crystal orbital is determined by the corresponding functions

u
(0)
kt . In fact, the multiple irreducible subspace, S(k)

e (Q), of the representation D(k)(T ), is the

space eikrS(0)
e (Q). Therefore, for each k, the functions u

(0)
kt in S(0)

e (Q), are to be found, such

that eikru
(0)
kt (r) are the eigenvectors of He. It can be directly verified that the equation for

the periodical functions u
(0)
kt (r) is

(He +
~
m
kp̂+

~2

2m
k2)u

(0)
kt (r) = ϵu

(0)
kt (r).

the eigenproblem of the one electron hamiltonian in the total Se(Q) is transformed into the

family of the eigen problems in S(0)
e (Q).

Naturally, it is impossible to solve such task exactly, and different approximations are

called for. The weak binding approximation is justified for the physical processes based on

the almost free electrons; they are not bound to some specific ion in the crystal and therefore

they are almost completely delocalized. At first, the potential V is neglected, and afterwards

it is included perturbatively. The unperturbed electronic hamiltonian becomes Te, and the

eigenproblem reads ( ~2
2m

(∇ + ik)2 + ϵ)u
(0)
k (r) = 0. The periodical solutions of this equation

are u
(0)
k,K(r) = CeiKr (C is normalization factor), for the eigen value ϵK(k) = ~2

2m
(k + K)2;

here, K is the vector of the inverse lattice (note that K takes the role of tµ in the general

form of standard basis, | µtµm⟩). The total eigen function is ⟨ r | kK ⟩ = Cei(k+K)r. This

could be expected, since the approximation effectively assumes that the electrons are free (the

crystal field is neglected), with the plain waves as the eigen vectors. The only remainder to

the crystal field is the used crystal symmetry, manifested by the classification of the plain

waves according to the vectors of the Brillouin’s zone. The characteristic picture of the energy

bands (one for each K) is obtained by pulling back of the parabolic function E(k) = ~2
2m

k2

(the eigenvalues of the free electron) periodically (the periods are those of the inverse lattice)

into the Brillouin’s zone.

The levels ϵK(k) are degenerated (the same energy for same |k + K|), and the pertur-

bative corrections are obtained as the eigenvalues of the matrix ⟨k′K ′ | V | kK ⟩ (indices

enumerate the different vectors k + K of the same length). Periodicity of the electron-

ion interaction, included in the perturbative method, has far reaching consequences. This

will be shown for one dimensional lattice, and generalization is straightforward. The de-

generate levels are ϵK(k) and ϵ−K(−k), and the corresponding matrix of perturbation is(
⟨kK | V |kK⟩ ⟨kK | V |−k −K⟩

⟨−k −K | V |kK⟩ ⟨−k −K | V |−k −K⟩

)
. The diagonal elements are equal, being
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the mean values of the potential. Unless k is equivalent to −k, the off diagonal elements

vanish, since the Clebsch-Gordan’s coefficients in the Wigner-Eckart’s theorem are zero. This

means that the whole band is shifted for the mean value of the potential. Nevertheless, in the

special positions, when k = 0 or k = π
a
, being equivalent to −k, the off diagonal elements do

not vanish, and the splitting of the energy level (§ 5.2) occurs in these points of junctions of

two bands (k = 0 and at the edges of the Brillouin’s zone). Still, if T is only a part of the

complete symmetry group of the crystal, k and −k may be in the same many dimensional

irreducible representation (the signs + and − take the role of the index m in the general

form of the standard basis | µtµm ⟩), and off diagonal matrix elements vanish again, while no

splitting appears.

Therefore, in general case, there are some gaps between different bands at the central and

edge points of the Brillouin’s zone (where are the junctions in the free electron model), and

consequently there appear some intervals, called the forbidden bands of energy without any

allowed states. The available electrons are distributed over the lowest bands (two electrons for

each k in one band). In some cases the levels bellow the forbidden band are exactly fulfilled,

i.e. the Fermi’s level is immediately below forbidden band. To excite any electron, the jump

over the gap is necessary (due to Pauli’s principle), and the crystal is dielectric. If the Fermi’s

level is inside some energy band, the electrons are easily excited, and the crystal possesses

the metallic properties.

Approximate approach to the tightly bound electrons, those from the interior shells of the

atoms, is in fact the same as MOLCAO method, described for molecules. Naturally, instead

of the point groups, the translational group, T , is applied, and the classification of the states

is performed according to its representations. This leads to the Bloch’s functions, u
(0)
k,t(r).

Contrary to the weak binding approximation, when the Fourier’s expansion of u
(0)
k,K(r) over

the vectors of the inverse lattice (§ 2.3.1) obviously contains only one term, in this, tight

binding approximation a number of terms can appear. The functions obtained in the tight

binding approximation span the subspace in S(0). It is obvious that the states of the weakly

bound electrons must be orthogonal to this subspace; thus, the orthogonalized plane waves,

obtained by subtracting from the plane wave its projection to this subspace, are a priory better

starting approximation for the tightly bound electrons then the plain waves themselves.



Appendix A

REVIEW OF GROUP THEORY

In this appendix the necessary group theoretical notions utilized in the text are reviewed

briefly. The seriously interested readers are referred to the specialized literature, [5, 13, 12, 11].

A.1 General theory

A.1.1 Definition

Group is the algebraic structure defined by the non empty set G and the operation of the

multiplication of its elements. This product is closed and associative, with unique identity

element, e, and for each element, g in G, there is uniquely defined inverse, g−1. The group is

Abelian, if for each pair of its elements the equality gh = hg holds.

For each element g ∈ G the rearrangement lemma shows that gG
def
= {gh|h ∈ G} = G and

Gg = G . The order of the group, |G|, is the number of the elements in the set G. For the

finite group (the group of the finite order) there exist at least one minimal subset, the set

of the generators of the group, such that any element of the group is a monomial over this

set. On this subset, the multiplication of the group is completely defined by the generators

relations. In the cyclic group all the elements are the powers of the single generator. The

minimal natural number n such that gn = e, is called the order of the element g.

A.1.2 Lie groups

Lie group is group which is also differentiable manifold, such that the multiplication and the

inversion are smooth mapping from G × G and G, respectively, onto G. The Lie algebra

of the group is the tangent space in the identity, with the defined multiplication, which is

skew symmetric, bilinear and satisfies Jacobi’s identity (the sum of the cyclically permuted

products of any three elements vanishes). The vectors of this algebra, the generators of the Lie

group, generate the structure of the group on the given manifold by the exponential mapping,

[5, 13].

The one parameter subgroup, g(t). of the Lie group is the subset of the elements of G,

satisfying g(0) = e and g(t)g(s) = g(t+s), for any real t and s. The one parameter subgroups

76
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bijectively correspond to the elements of the Lie algebra.

A.1.3 Subgroups and morphisms

The subgroup H is the subset of G, being itself group with the same multiplication: G < H.

The intersection of two subgroups is subgroup again. The subgroup H is invariant, H ▹G, if

gH = Hg for any element g ∈ G. The group G is simple if {e} and G are its only invariant

subgroups, and semisimple if its invariant subgroups are not Abelian (except {e}).
The left (right) coset of the subgroup H with the representative g is the set gH (Hg).

The set of all the cosets, G/H, is called the coset space. The cosets gH and g′H are equal

if and only if g′ is in gH, and otherwise they are disjoint (analogously for the right cosets);

multiplication by g′g−1 bijectively maps the coset gH onto g′H, and therefore |gH| = |g′H|.
The transversal of the group with respect to the subgroup is any set of the representatives

of all the different cosets, {t1, t2, . . . }, and, although it is not uniquely defined, it gives the

partition of the group onto the cosets: G = t1H + t2H + . . . (here, + stands for the disjoint

union). The order of the transversal, |G|
|H| , is called the index of the subgroup. Obviously, the

order of the subgroup divide the order of the group (Lagrange theorem).

The centralizer of the set S ⊂ G is the subgroup Z(S), whose elements commute with

elements of S. The center of the group, Z(G), is an invariant subgroup; it is equal to the

group if and only if the group is Abelian. The normalizer of the set S ⊂ G is the subgroup

N(S), with elements commuting with set S: N(S) = {g ∈ G|∀s ∈ S ∃s′ ∈ S : gs = s′g}.
The homomorphism of the group G into the group G′ is any mapping G

f→ G′ satis-

fying f(gh) = f(g)f(h). While f(G) is subgroup in G′, the kernel of the homomorphism,

ker f
def
= {g ∈ G|f(g) = e′}, is invariant subgroup in G. Homomorphism is called epimorphism,

monomorphism and isomorphism, if it is surjection, injection and bijection, respectively. Ho-

momorphism and isomorphism are called endomorphism and automorphism if G′ = G. Iso-

morphism is the equivalence relation in the set of all groups.

Each element g of the group defines the interior automorphism or conjugation of the group

G: Cga
def
= gag−1. The elements a and b of the group are conjugated if b = gag−1 for some

g ∈ G. The conjugation is the equivalence relation, and the sets of the mutually conjugated

elements are conjugation classes. The order of the class divides the order of the group; if

it equals one, the corresponding element is in the center of the group. The product of two

classes contains the complete classes.

If H ⊂ G, the conjugated set gHg−1 = {ghg−1|h ∈ H} is a subgroup if and only if

H < G. The invariant subgroup is equal to the conjugated subgroups and contains the

complete conjugation classes. The product of two cosets of the invariant subgroup H ▹ G

is the coset itself, and the coset space, G/H, is a group, known as the factor group (for

the finite groups, its order is equal to the index of the subgroup H). The image, f(G), of

the homomorphism is isomorphic to the factor group G/ ker f , with isomorphism mapping

bijectively the cosets of the subgroup ker f to the elements of f(G).
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A.1.4 Groups of transformations

Group G is group of transformations on the set X, if there is homomorphism of G into

the group of the automorphisms of X (the permutations of the seta X, which preserve the

eventual algebraic structure on X), g 7→ π(g); alternatively, it is told that G acts on X, or

that the set X is G-space. The element x of X is a fixed point of the transformation g, if

π(g)x = x. The little group(stabilizer, isotropy group) of the point x ∈ X is the subgroup of

all the elements of G, for which x is a fixed point: Gx
def
= {g ∈ G|π(g)x = x}. The orbit of

the point x is the set Ωx
def
= Gx = {y ∈ X|∃g ∈ G π(g)x = y}. The orbits are disjoint or

equal, giving the partition of the set X. All the elements of a coset of the stabilizer of x map

x to the same point of the orbit. The stabilizers of the points of the same orbit are mutually

conjugated, and the set of the orbits with the conjugated stabilizers is called stratus. The

relation of the partial order among the subgroups gives the partial order of the orbits and

strati. If the complete set X is one orbit (i.e. for any two points x, x′ ∈ X there is g ∈ G

such that π(g)x = x′), the group action is called transitive on X. The action is effective and

free, if π is isomorphism, and if the complete X is (generic) stratus with the stabilizer {e},
respectively.

A.1.5 Products of groups

The direct (external) product of the groups G and G′ is the Descartes’s product G×G′, with

the multiplication (g1, g
′
1)(g2, g

′
2)

def
= (g1g2, g

′
1g

′
2), ∀(g1, g′1), (g2, g′2) ∈ G×G′; this is the group

of the order |G×G′| = |G||G′|. The conjugation classes of G×G′ are the direct products of

one class G and one of G′, and their number is the product of the numbers of the classes in

G and G′.

The product of two subgroups H,K < G is a subgroup itself, if and only if the subgroups

commute: HK = KH. The group G is the product of its subgroups H and K, if G = HK.

The product is weak direct, if H ∩ K = e; the weak direct product is called semidirect,

G = H ∧ K, and (internal) direct, G = H ⊗ K, if additionally H ▹ G, and H,K ▹ G. The

requirement G = HK implies that for each element g ∈ G there are factors h ∈ H i k ∈ K,

such that g = hk, and the condition H ∩K = e provides the uniqueness of the factors.

A.2 Representations

A.2.1 Definition

The representation of the group G in the n-dimensional vector space S(F) is the homomor-

phism D of the group G into the group GL(n,F). The representation is real (complex) if

F = R (F = C). The space and the dimension of the representation are S(F) and n. The

representation D(G) in the space S(F) is equivalent to the representation D′(G) in the space

S ′(F), if there is nonsingular operator A : S(F) → S ′(F), such that for each element g of the

group, D′(g) = AD(g)A−1. If D is monomorphism, the representation is called faithful.
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If the one-parameter subgroup g(t) of the Lie’s group G is determined by the generator l,

and D(G) is a representation of G, then D(l)
def
= ∂D(g(t))

∂t
|t=0 is the operator corresponding to

the element l of the Lie’s algebra, and the set of all these operators is the representation of the

algebra. The initial representation of the group can be reconstructed from this representation

of the algebra by the exponential mapping, D(g(t)) = etD(l).

The identity representation of any group G is the homomorphism I(G) = 1. Any group of

matrices represents itself faithfully by the identical automorphism, called the identical repre-

sentation. The regular representation (left) of the group G = {g1, . . . , g|G|} is defined by the

permutational matrices DR
ij(gk) = δ(gig

−1
j , gk). The representation D is unitary (orthogonal)

if D(G) is a subgroup in U(n) (O(n,R)). The Schur-Auerbach’s theorem states that each rep-

resentation of the compact group in euclidean (unitary) space is equivalent to an orthogonal

(unitary) representation.

A.2.2 Reducibility

The representation D(G) is reducible if in S(F ) exists nontrivial subspace S ′(F ) invariant for

all the operators of the representation. If such subspace does not exist, the representation

is called irreducible. One-dimensional representations are obviously irreducible. The repre-

sentation is decomposable if there is a decomposition of the space S(F ) onto the invariant

subspaces: S(F ) = ⊕iSi(F ); then, in the adapted basis D(g) is given by the block-diagonal

matrix, with the blocks Di(g) being the representations of the group themselves, meaning

that D(G) is the direct sum ⊕iDi(G). Each reducible representation of a compact (or finite)

group is decomposable (Masche’s theorem), and for these groups each reducible representa-

tion can be expressed by the irreducible ones: D(G) = ⊕µaµD
(µ)(G). The number of the

nonequivalent irreducible representations of the finite group is equal to the number of the

conjugation classes.

Any matrix commuting with all the matrices of an irreducible representation D(µ)(G)

is scalar (the first Schur’s lemma). All the irreducible representations of the Abel’s group

are one-dimensional. In the irreducible representation, the scalar matrices correspond to the

elements of the center of the group. If D(µ)(G) and D(ν)(G) are two nonequivalent irreducible

representations, the rectangular matrix M , satisfying MD(µ)(g) = D(ν)(g)M for each g, is

zero matrix (the second Schur’s lemma). The set of the vectors obtained by the action of the

representation to the non vanishing vector of an irreducible subspace, spans that subspace.

For the complete set of the nonequivalent matrix unitary irreducible representations of

the compact group G, the orthogonality relations hold:

1

|G|
∑
g∈G

d
(µ)∗
ji (g)d

(ν)
km(g) =

1

nν
δjkδimδµν .
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A.2.3 Characters

The character of the representationD(G) is the function on the group mapping each element g

into the number χ(g)
def
= Tr(D(g)). The dimension of the representation is the character of the

identity element. Two representations are equivalent if and only if their characters are equal.

The characters of the elements of the same conjugation class are equal. The orthogonality

relations for the characters are:

1

|G|
∑
g∈G

χ(µ)∗(g)χ(ν)(g) = δµν .

The character of the reducible representation D(G) equals to the sum of the characters of

the representations onto which D(G) is decomposed: if D(G) = ⊕µaµD
(µ)(G), then χ(G) =∑

µ aµχ
(µ)(G), and

aµ =
1

|G|
∑
g

χ(µ)∗(g)χ(g). (A.1)

The representation is irreducible if and only if 1
|G|
∑

g χ
∗(g)χ(g) = 1.

A.2.4 Standard basis and group projectors

The space S of the representation D(G) can be decomposed in the form S = ⊕s
µS(µ), where

S(µ) def
= ⊕aµ

tµ S(µtµ) are multiple irreducible subspaces. The standard basis, {| µtµm ⟩|µ =

1, . . . , s; tµ = 1, . . . , aµ;m = 1, . . . , nµ} in S is the basis in which D(G) is block-diagonal, with

the blocks being previously given matrices of the irreducible representations of the group:

D(g)| µtµm ⟩ =
∑
m′

D
(µ)
m′m(g) |µtµm

′⟩.

The group operators,

P
(µ)
mm′

def
=

nµ
|G|

∑
g∈G

d
(µ)∗
mm′(g)D(g) =

∑
tµ

| µtµm ⟩⟨µtµm′ |,

are for m = m′ the projectors onto the subspaces S(µ)
m

def
= span{| µtµm ⟩|tµ = 1, . . . , aµ}. The

projector onto the subspace S(µ) is P (µ) def
= nµ

|G|
∑

g∈G χ
(µ)∗(g)D(g).

A.2.5 Products

The direct product of the representations D′(G) and D′′(G) is the representation {D(g)
def
=

D′(g)⊗D′′(g)|g ∈ G} in the space S ′ ⊗ S ′′; its character is χ(g) = χ′(g)χ′′(g). The Clebsch-

Gordan’s series is the decomposition D(µ)(G)⊗D(ν)(G) = ⊕νa
µν
λ D

(λ)(G) of the direct product

of two irreducible representations onto the irreducible components, and the coefficients aµνλ
are characteristic of the group. The Clebsch-Gordan’s coefficients are the elements of the

transition matrix from the product of the bases {| µm ⟩} and {| νn ⟩} in S(µ) and S(ν),
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respectively, to the standard basis {|µνλtλl⟩} of the space S(µ) ⊗ S(ν). For the orthonormal

initial bases, these are the scalar products ⟨ µνλtλl |µm, νn⟩
def
= ⟨ λtλl |µm⟩⊗ |νn⟩; they are

uniquely (up to the phase) defined only if the coefficients of the Clebsch-Gordan’s series aµνλ
are less than 2 (i.e. if they are equal to 0 or 1).

If {| i⟩} is the basis of the space S of the representation D(G), the nth direct power of

the representation is the representation Dn(G) in the space S ⊗ · · · ⊗ S︸ ︷︷ ︸
n

defined by the action

onto the basis vectors: Dn(g)(|i1⟩ . . . |in⟩) = (D(g) |i1⟩) . . . (D(g) |in⟩). In the same space, the

representation ∆(Sn) of the symmetrical group Sn is given by ∆(π)(|i1⟩ . . . |in⟩) =|iπ1⟩ . . . |iπn⟩.
The representation ∆ is not irreducible (for n > 1), and its irreducible subspaces are invariant

for the operators of D(G). Therefore, D(G) reduces in these subspaces; the reduced repre-

sentations in the symmetrical and skew symmetrical subspaces of the group Sn (i.e. in the

multiple irreducible subspaces of the identity and the alternative representation of Sn) are

called symmetrical and skew symmetrical power of D(G) (denoted by [Dn(G)] and {Dn(G)},
or [Dn(G)]±). The characters of these representations, for the powers 2, 3 and 4 are [8]:

[χ2(g)]± =
1

2
χ2(g)± 1

2
χ(g2), [χ3(g)]± =

1

6
χ3(g)± 1

2
χ(g)χ(g2) +

1

3
χ(g3),

[χ4(g)]± =
1

24
χ4(g)± 1

4
χ2(g)χ(g2) +

1

8
χ2(g2) +

1

3
χ(g3)χ(g)± 1

4
χ(g4).

A.2.6 Subduction

The restriction o the representation D of the group G onto its subgroup H is the subduced

representation of the subgroupH: D(G) ↓ H. This representation may not be irreducible even

if D(G) is; the reductions onto the irreducible representations, D(µ)(G) ↓ H = ⊕aµνD(ν)(H),

are called the compatibility relations (of the irreducible representations of the group and its

subgroup).

A.2.7 Projective representations

The projective representation D(G) with the factor-system (or the multipliers) {f(g, g′) ∈
C | g, g′ ∈ G}, is the mapping D of the group G into the set of the operators (matrices)

D(G) = {D(g)|g ∈ G}, such that D(g)D(g′) = f(g, g′)D(gg′).

The ordinary representations of the group are the special cases of the projective represen-

tations, with the trivial factor-system), f(g, g′) = 1 for each pair g i g′ from G. Irreducibility,

unitarity and equivalence of the projective representation are defined as for the ordinary ones.

The complex numbers {f(g, g′)} are the factor-system of the group G if and only if the as-

sociativity condition, f(g, h)f(gh, k) = f(g, hk)f(h, k)∀g, h, k ∈ G, is fulfilled. If D(G) is a

projective representation of G, and each matrix D(g) is multiplied by arbitrary, non vanishing

complex number c(g), another projective representation, D′(G) = {c(g)D(g)|g ∈ G}, with
the factor-system f ′(g, g′) = c(g)c(g′)

c(gg′)
f(g, g′) is defined. This is an equivalence relation on the

set, F (G), of the all factor-systems of the group G: f ∼ f ′ if there are the complex numbers
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c(g), such that the last relation holds. For each factor-system there is the equivalent standard

one: |f(g, g′)| = 1 and f(e, g) = f(g, e) = 1; the corresponding projective representation is

equivalent to the unitary one, with D(e) = I.

Since the product of two factor-systems, f and f ′, is another factor-system f ′′(g, g′)
def
=

f(g, g′)f ′(g, g′), the set F (G) is Abel’s group. The equivalence class, T (G), of the trivial

factor-system is an invariant subgroup of F (G), and the factor-group M(G) = F (G)/T (G) is

called the multipliers group.

For each equivalence class of the factor-systems the set of the nonequivalent unitary ir-

reducible projective representations of G is constructed (their number may not be equal to

the number of the conjugation classes of the group). For the standard factor-systems, the

non equivalent unitary irreducible representations satisfy the orthogonality theorems for the

matrix elements and characters (the characters of the conjugated elements may differ!).

If there is the homomorphism of the group G′ onto G, with the kernel H, there is bijection

the cosets of H in G′ and the elements of G. Thus, to each element g of G the representative

tg of the coset tgH, mapped to g, is associated. Then, by the condition tg1tg2 = tg1g2h(g1, g2),

to each pair g1, g2 ∈ G, corresponds the element h(g1, g2) ∈ H. The representation D′(G′)

of the group G′, such that the subgroup H is represented by the scalar matrices, D′(h) =

f(h)I, defines the projective representation D(G) = {D(g)
def
= D′(tg)|g ∈ G} of G, with the

factor-system f(g1, g2) = f(h(g1, g2)). Another choice of the coset representatives, tg, gives

another, but equivalent, factor-system. If H is central, each irreducible representation of G′

gives an irreducible projective representation of G. The group G̃ is the covering group for

G if each projective irreducible representation of G can be derived in this way from some

ordinary irreducible representation of G̃. There exists universally covering group, such that

its multipliers group, M(G), is isomorphic to a subgroup H of the center of G̃.

A.2.8 Induction

The induced representation [11] ∆ (of the dimension n∆) of the subgroupH (with the transver-

sal {t1 = e, t2, . . . }) to the group G, is the representation D(G) = ∆(H) ↑ G defined by

D(g) =
∑

pq Epq ⊗ ∆(h)δ(t−1
p gtq, h), (Epq is the |G|

|H| -dimensional matrix (Epq)ij = δpiδjq); its

n∆-dimensional pq-th block is non vanishing (and equal to ∆(h)) if and only if t−1
p gtq = h ∈ H.

The dimension of the induced representation is the product of the index of the subgroup H

and n∆. The representation DR(G)
def
= I({e}) ↑ G is called regular representation of G.

If H is an invariant subgroup of G and X = {∆(µ)(H)|µ = 1, 2, . . . } is the set of all its

nonequivalent irreducible representations, G defines the group of transformations on X by

the action ∆(µ)(h)
g7→ ∆(µ)(g−1hg)

def
= ∆

(µ)
g (h), yielding the partition of X onto the orbits of

the representations. The irreducible representations of the same orbit induce the equivalent

representations of G. The little group, Gµ, of the representation ∆(µ)(H) is supergroup of H,

and among its irreducible representations, those subducing multiple representation ∆(µ)(H)

onto H are called allowable representation, d(µ,α)(Gµ). Each allowable representation induces

the irreducible representation D(µ,α)(G)
def
= d(µ,α)(Gµ) ↑ G. For fixed µ, all the representations
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D(µ,α)(G) are non equivalent, forming the associate set. By choosing one representation from

each orbit in X, finding all the allowable representations of their little groups, and inducing

these onto G, the complete set of the nonequivalent irreducible representations of the group

G is obtained.

To each element k of the factor-group K = Gµ/H, the element tk is associated when choice

of the coset representatives is fixed (H is invariant subgroup of Gµ =
∑

k tiH). Since the coset

representatives are the elements of the little group, the representations ∆
(µ)
tk

(H) and ∆(µ)(H)

are equivalent, and there is unitary operator, C(k), establishing the equivalence: ∆
(µ)
tk

(H) =

C−1(k)∆(µ)(H)C(k). In this way to each element k ∈ K the operator C(k) is associated. The

operators f(k, k′) = C(kk′)∆(tkk′)C(k
′)−1C(k)−1 commute with ∆(µ)(H), and being scalars

therefore, define a factor-system of the group K (§ A.2.7). For each projective irreducible

representation d(α)(K) of this factor-system, one allowable representation of the little group:

d(µ,α)(tkh) = (C(k)∆(µ)(h))⊗ d(α)(k); these are all the allowable representations of the orbit.

Alternatively, the covering group may be used, and its irreducible representations for the same

factor-system. Two important special cases will be considered in detail.

If G = H + sH, the halving subgroup H is invariant, while s2 ∈ H. The orbits of

its irreducible representations contain one or two representations. In the first case, such a

representation, ∆(µ)(H), gives two nonequivalent associated irreducible representations:

D(µ±)(G) = {D(µ±)(g)
def
=

{
∆(µ)(h), for h ∈ H,

±Z∆(µ)(h), for h ∈ sH,
}

where Z is the operator satisfying Z−1∆(µ)(h)Z = ∆(µ)(s−1hs) and Z2 = ∆(µ)(s2). In the

second case, both of the representations of the orbit, ∆(µ)(H) and ∆
(µ)
s (h), induce the same

irreducible representation of the group G:

D(µ)(h) =

(
∆(µ)(h) 0

0 ∆
(µ)
s (h)

)
, D(µ)(sh) =

(
0 ∆(µ)(s2)∆

(µ)
s (h)

∆(µ)(h) 0

)
, h ∈ H.

If the group G is semidirect product, G = N ∧H, with Abel’s invariant subgroup N , the

irreducible representations, ∆(µ)(N), are one-dimensional, and their little groups areGµ = N∧
Hµ, where Hµ is subgroup in H. All the allowable representations d(µ,α)(Gµ) are d

(µ,α)(nh) =

∆(µ)(n)d(α)(h) (n ∈ N , h ∈ Hµ), where d
(α)(Hµ) are all the irreducible representations of Hµ.

Finally, for G = H ⊗K, all the irreducible representations of G are the direct products of

the representations {∆(µ)(H)} and {δ(ν)(K)}: ∆(µ,ν)(h, k) = ∆(µ)(h)⊗ δ(ν)(k).

A.3 Complex conjugation

A.3.1 Conjugation

The representation D(G) in S, defines in the dual space S∗ the contragredient representation

ϕ(x) = (D′(g)ϕ)(D(g)x), which is in the biorthogonal basis represented by the contragredient

matrices. In the same space the conjugated (dual) representation, D∗(g)ϕx = ϕD(g)x, is in the
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dual orthonormal basis represented by the conjugated matrices (ϕx is the functional dual to

the vector x). These two representations are equivalent.

A.3.2 Corepresentations

If any element of G is in the representation D(G) represented by anti unitary operator, then

there is the halving subgroup, H, represented by the unitary operators, while its coset, sH,

corresponds to anti unitary operators D(sh) = θD(h), with θ = D(s). The choice of the basis

determines the matrix form θ = K0Dc(s) and D(sh) = K0Dc(sh) = K0Dc(s)D(h), where

K0 is the operator of the complex conjugation of the columns in this basis (anti unitary,

K2
0 = I). The homomorphism condition satisfied for the operators D(g), yields for the

matrices Dc(G)
def
= {D(h), Dc(sh)|h ∈ H}, called the corepresentation of the group, [12],

the relations D(hh′) = D(h)D(h′), Dc(shh
′) = Dc(sh)D(h′), Dc(hsh

′) = D∗(h)Dc(sh
′) and

D(shsh′) = D∗
c (sh)Dc(sh). Also, the equivalence of the representations, D(g) = AD′(g)A−1

for each g fromG, for the corepresentation readsD(h) = AD′(h)A−1 andD(s) = A∗D′
c(s)A

−1,

and reduces to the equivalence of the subduced representations D(H) and D′(H).

The irreducible corepresentations of the group G are constructed from the irreducible

representations of the subgroup H, by the ∗-induction method. The ∗-s-conjugated repre-

sentation to the representation ∆(H) is defined as ∆∗
s(h)

def
= ∆∗(s−1hs). If ∆∗

s(H) ∼ ∆(H)

(the one member orbit) and ∆∗
s(H) = Z∆(H)Z−1, then ZZ∗ = cZ∆(s2), where cZ > 0 for

the representations of the first kind and cZ < 0 for the representations of the second kind. If

∆∗
s(H) ̸∼ ∆(H), then the orbit is with two representations of the third kind. The irreducible

representation ∆(H) is of the I, II and III kind for the ∗-s-conjugation if

1

|H|
∑
h∈H

χ((sh)2) = 1,−1, 0,

respectively. For ∆(H) of the I kind, there is the unitary matrix Z, such that {∆(h), Dc(sh) =

Z∆(h)} is irreducible corepresentation of G. In other cases the matrices of the corresponding

irreducible corepresentation are given by:

D(h) =

(
∆(h) 0
0 ∆∗(s−1hs)

)
, Dc(sh) =

(
0 ∆(s2)
I 0

)
D(h)

(I is the identity matrix of the dimension n∆). Applying these procedures to all the orbits

of the ∗-s-conjugation, the complete set of the nonequivalent irreducible corepresentations of

the group G is found (one corepresentation from each orbit).

In the special case, when G = H ⊗ {e, s} (s commutes with all the elements of H, and

s2 = e), the ∗-s-conjugation is reduced to the ordinary conjugation. The representation

∆(µ)(H) is of the I kind if it is equivalent to the real representation (and to ∆(µ)∗(H)), of

the II kind if it is equivalent to ∆(µ)∗(H), but not to any real representation, and of the III

kind if it is not equivalent to ∆(µ)∗(H). The irreducible representation ∆(µ)(H) is of the I

(II,III) kind if and only if 1
|H|
∑

h χ
(µ)(h2) equals to 1 (-1, 0). The sum of the numbers of
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the representations of the I and II kind is equal to the number of the ambivalent classes. If

in the basis {x1, . . . , xn} of the space S(C) the group is represented by the matrices ∆(h) =

∆r(h)+i∆i(h) (real and imaginary parts of the matrix), in the basis {x1, . . . , xn, ix1, . . . , ixn}

of the decomplexified 2n-dimensional real space SR the matrices ∆R(h)
def
=

(
∆r(h) −∆i(h)
∆i(h) ∆r(h)

)
of the decomplexified representation are found. If ∆(H) is the representation of the first kind,

∆R(H) is reducible over the real (and complex) field in the form ∆R(H) = 2∆(H). In the case

of the representations of the II or III kind, ∆R(H) is reduced over the complex field in the form

∆R(H) = ∆(H)+∆∗(H), while the irreducibility of ∆(H) implies the irreducibility of ∆R(H)

over reals. Therefore, the set of the real or physical irreducible representations is consisted of

the representations of the I kind, and the decomplexified representations of the II and III kind

(for each representation of the II kind, and each pair of the conjugated representations of the

III kind, one real irreducible representation, equivalent to D(µ)(G)⊕D(µ)∗(G) is obtained).

The real matrix representation D(G), in the complex space S, is equivalent to the orthog-

onal sum of the real irreducible representations; therefore the complex irreducible representa-

tions of the II and III kinds appear as the components of D(G) in the conjugated pairs: each

real irreducible component of D(G) is either irreducible or equivalent to D(µ)(G)⊕D(µ)∗(G).



Appendix B

WIGNER’S THEOREMS

This appendix is devoted to some mathematical details, which in the main part have been

important for the applications of the symmetry in quantum mechanics. The physical back-

ground is examined at first, to emphasize the basic assumptions involved in the formulations

and proofs of the Wigner’s and Wigner-Eckart’s theorem.

B.1 Quantum states and vectors

One of the usual statements in the quantum mechanics is that the states (here only the

pure states are thought of, to differ from the mixed ones) are the elements of some vector

space. This is followed by the remark that all the collinear vectors defines the same state,

and furthermore, a postulate, necessary for the statistical analysis the states are restricted

to the normalized vectors. Therefore, the set of the states is not really vector space, S, but
the structure called projective space, P (S). Still, partly due to the tradition, and mostly

by the pure technical reasons (projective spaces are more complicated to deal with), the

quantum mechanics explicitly uses the complete space S; the physical requirements, related

to the probabilistic interpretation, and realized by the various normalizing conditions, tacitly

correct such approach.

Nevertheless, it is clear that the symmetries must be defined as the groups of the trans-

formations on the projective space. The concept of symmetry itself imposes the condition

that the observable parameters of the system cannot be changed in the course of such trans-

formations. The measurable quantities, being related to the probabilities, remain invariant if

the moduli of the scalar products are invariant. Thus, the transformation T cannot be the

symmetry, unless |(TX, TY )| = |(X,Y )|, for X,Y ∈ P (S) (since P (S) is derived from the

unitary space S, the scalar product is understood as the scalar product of the normalized

ray representatives; since the moduli do not depend on the choice of the representatives, the

whole expression is a function on the rays only).

On the other hand, most of the general principles of the application of the symmetry

(§ 1) are elaborated treating the symmetry as the operator in the vector space. Therefore,

the relation between the symmetry transformations in P (S) and S must be established, to

86
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enable the transition from P (S) to S (manifested in the utilization of the linear combinations

of the elements of P (S)). This procedure can be understood as the widening of the domain

of transformation T , and the condition that the moduli of the scalar products are conserved

partly remove the ambiguities.

B.2 Wigner’s theorem

The operators in S and the transformations in P (S) are connected by the following theorem,

[5, 15].

Teorem 3 Let T be the symmetry transformation in P (S), i.e. the transformation satisfying

|(TX, TY )| = |(X, Y )|, for any pair of the rays X, Y ∈ P (S). Then, there is the operator U

extending the action of T onto S. This operator is unitary or anti unitary.

Proof. Let {x} = {x1, x2, . . . } be orthonormal basis in S. The vectors xi are considered

as the representatives of the corresponding rays, Xi. When the symmetry T act on these

rays, the new rays TXi = Yi, are obtained, with the normalized representatives yi. Let

U0 be any operator in S such that U0xi = yi (no assumption on the linearity of U0 is not

introduced, and therefore U0 is neither uniquely nor completely defined; in addition, the

representatives yi are arbitrarily chosen). The condition of the scalar products conservation

gives |(yi, yj)| = |(U0xi, U
0xj)| = |(xi, xj)| = δij, showing that {yi} is the orthonormal basis

in S, irrespectively on the choice of the representatives and complete definition of U0 on S.
For x =

∑
i αxi, the vector y

def
= U0x =

∑
i βiyi satisfies |βi| = |αi| (since for the symmetries

|(yi, y)| = |(xi, x)| hold). Consequently, if x is from the subspace spanned by a part of the

basis {x}, then y is from the subspace spanned by the corresponding elements of the basis

{y} (e.g. x ∈ span{x1, . . . , xp} implies y ∈ span{y1, . . . , yp}).
After these general study of the operators acting compatibly with T on some basis only,

the possibility of implementation of some linear properties will be considered. At first the

action on the sum of the vectors have to be in accordance with action of T . It follows

from the previous conclusions that U0(x1 + xi) = βi1y1 + βiyi = βi1(y1 + γiyi), where β
i
1, βi

and γi are phase factors. If another choice of the ray representatives, z1 = y1, zi = γiyy
(i = 2, 3, . . . ), is taken, then among the possible operators U0 that one, U , satisfying Uxi = zi
i U(x1+xi) = βi1U

0(x1+xi) = z1+zi, obviously is homomorphism with respect to the addition

of the basis vectors.

The definition of the operator U has to completed by determination of its action on the

arbitrary vector x =
∑

i αxi, i.e. by fixing the coefficients in Ux =
∑

i βizi. The derived

condition, |αi| = |βi|, has to be regarded. It turns out that fixing β1 either by β1 = α1 or

by β1 = α∗
1 consistently determines the other coefficients. In the first case, |(x1 + xi, x)| =

|(z1 + zi, Ux)| yields |α1 + αi| = |α1 + βi|. Expanding the square of the last expression, one

obtains the equation α∗
1β

2
i − (α∗

1αi + α1α
∗
i )βi + α1|αi|2 = 0 over βi, with the solutions βi = αi

and βi = α∗
i
α1

α∗
1
. The first one gives the linear operator: U(

∑
i αixi) =

∑
i αiUxi. Analogously,
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in the second case there are also two solutions, βi = α∗
i i βi = αi

α∗
1

α1
, and the first of them

defines the anti linear operator U(
∑

i αixi) =
∑

i α
∗
iUxi.

Finally, the initial condition on the scalar products directly implies that the (anti)linear

solution is also (anti)unitary. QED

Depending on the physical contents of the concrete transformation, the unitary or the anti

unitary action of the symmetry operator in S is taken. Thus, it turned out that the time

reversal is necessary represented by anti unitary operator (§ 2.6.1). As for the Lie’s groups,

due to the continuity, all the elements of the same connected component of the group must be

represented in the same way; especially, this means that the component of the identity, being

itself Lie’s group, is unitary represented. Consequently, referring to the complete Euclid’s

group (including time reversal), the rotations and translations are unitary operators in S.

B.3 Wigner-Eckart’s theorem

If the coefficients in the Clebsch-Gordan’s series of the group G satisfy the requirement aµνλ =

0, 1, then for this group holds

Teorem 4 The matrix element ⟨ αtαa | A(µtµ)
m | βtβb ⟩ is product of the Clebsch-Gordan’s

coefficient ⟨ µβαa | µm, βb ⟩ with reduced matrix element, (αtα || A(µtµ) || βtβ), being the

same for all a, b and m:

⟨ αtαa | A(µtµ)
m | βtβb ⟩ = ⟨ µβαa | µm, βb ⟩(αtα || A(µtµ) || βtβ).

Proof. Let S(µ) and S(β) be the irreducible subspaces of the corresponding representations

D(µ)(G) and D(β)(G). When the standard basis in S(µ)⊗S(β) is looked for, some vector, v, is

projected by the one-dimensional projector P
(α)
aa (for aµβα=1), and the normalized projection (if

it does not vanish) is chosen as |µβαa⟩. The other standard vectors are |µβαa′⟩ = P
(α)
a′a |µβαa⟩.

If {| µtµm ⟩} and {| βtβb ⟩} are the standard bases in S(µ) and S(β), respectively, then

{| µtµm ⟩ ⊗ | βtβb ⟩ def
=| µm, βb⟩} is (uncorrelated) basis in S(µ) ⊗ S(β). Some of its vectors

certainly have non vanishing projections by P
(α)
aa ; therefore, |µβαa⟩ = CP

(α)
aa |µm, βb⟩, with

C being normalizing constant, and expansion of the uncorrelated basis over the standard one,

reads

|µβαa⟩ = CP (α)
aa

∑
α′a′

⟨ µβα′a′|µm, βb ⟩ |µβα′a′⟩ = C⟨ µβαa | µm, βb ⟩ |µβαa⟩,

i.e. 1
C
= ⟨ µβαa | µm, βb ⟩. The remaining vectors of the standard basis are:

|µβαa′⟩ = C
nα
|G|

∑
g∈G

d
(α)∗

a′a (g)D(µ)(g)⊗D(β)(g) |µm, βb⟩ =

∑
m′,b′

C
nα
|G|

∑
g∈G

d
(α)∗

a′a (g)d
(µ)
m′m(g)d

(β)
b′b (g) |µm

′, βb′⟩.
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The orthonormality of the standard basis yields

⟨ µm′, βb′|µβαa′ ⟩⟨ µβαa | µm, βb ⟩ = 1

C
⟨ µm′, βb′|µβαa′ ⟩ = nα

|G|
∑
g∈G

d
(α)∗

a′a (g)d
(µ)
m′m(g)d

(β)
b′b (g).

The last relation, when I = D−1(g)D(g) is written in front and behind the operator in the

matrix element, and the unitarity of the representation is employed, is summed over the group

elements into

⟨ αtαa | A(µtµ)
m | βtβb ⟩ =

∑
a′m′b′

d
(α)∗

a′a (g)d
(µ)
m′m(g)d

(β)
b′b (g)⟨ αtαa

′ | A(µtµ)
m′ | βtβb′ ⟩.

Introducing

(αtα || A(µtµ) || βtβ)
def
=

1

nα

∑
a′m′b′

⟨ µβαa′ | µm′, βb′ ⟩⟨ αtαa′ | A(µtµ)
m′ | βtβb′ ⟩,

the relation of the theorem is achieved. QED



Appendix C

Modified Group Projector Technique

Finding energy spectrum is the corner stone for analysis of physical systems. It is well

known that symmetry facilitates this and, providing eigenbases labeled by conserved quantum

numbers, afterward considerations of the properties and processes. Particularly fruitful and

widespread is implementation of symmetry in the quantum mechanical state spaces which are

of inductive structure, when each atom (site) contributes by its own (usually low-dimensional)

subspace to the total state space being the sum of all these. Such space is shared characteristic

of tight-binding electronic (TBA), harmonic lattice dynamics (LDH) and classical magnetism

approximations (CAM), the three basic techniques for the main ingredients of the physical

systems. Utilizing translational symmetry, Bloch theorem exactly reduces considerations to

the elementary cell of the crystals only, and the goal of the modified group projector technique

(MGPT) is to generalize this to arbitrary symmetry. Generally, full symmetry group generates

the system from a minimal part, symcell, with usually only a few atoms, and it is intuitively

clear that all the properties of the system are determined by the properties of this part and

full symmetry. Thus, MGPT realization of this task consists of using full symmetry and

minimal set of input ingredients, i.e. symcell only to find SAEB in the inductive spaces. In

two- and three-dimensional crystals the translational group is a subgroup of the space group

of the order up to 32, and from the technical point of view this is an estimate of the efficiency

rate with respect to pure Bloch theorem. However, in quasi one-dimensional systems, like

nanotubes and polymers, this may be much greater. In molecular physics there is no other

general prescription for application of symmetry.

C.1 Geometry and State Space

To introduce convenient notation, some of the well known notions will be revisited. Let the

considered system X (with |X| atoms, e.g. molecule, crystal, etc.), with dynamics governed

by the hamiltonian operator H in the state space S, has group of symmetry G (point, line,

diperiodic, space group) acting in S by the representation D(G), i.e. the triple (S, H,D(G))

is fixed. This has geometrical, kinematical and dynamical contents.

Geometrically, permuting the atoms, group decomposes system into orbits XP (P =

90
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1, . . . ,), with the same type atoms, and generates X acting on the symcell: the set X0 of the

orbit representatives xP0 . The elements leaving xP0 fixed form stabilizer or fixing subgroup,

F P ; transverzal ZP = {z0 = e, z1, · · · , |ZP |} of the coset partition G = F P + zP1 F
P + · · · is

not unique, but its order, |ZP | = |G|/|F P |, is the number of atoms in the orbit. The atoms

are counted by orbit (type) and transverzal indices, xPp = zPp x
P
0 . As g maps each atom xPp of

the orbit XP into another one gxPp = xPt , it establishes bijection g
P (p) = t (shortly, gp = t,

assuming context defined P ) of the transverzal ZP :

gzPp = zPgpf
P (g, p), i.e.∀g, p,∃!(f, gp) such that g = zP

−1

gp fP (g, p)zPp (C.1)

where fP (g, p) is unique element of F P .

As for quantum kinematics, to each atom the space SPp is associated; it is characterized by

the atom type, SPp ∼= SP (dimension |SP |) and depends on the studied physical property: in

CAM and LDH it is R3, with vectors (site spins and displacements) given in the fixed exterior

Cartesian basis; in TBA it is spanned by the relevant orbitals transformed along the orbit

by the group action, to make convenient interior basis. Thus, SPp = SPip ⊗ SPep, and the state

space is the direct sum of the atomic ones: S = ⊕PpSPp , with the basis |Pp;ψ⟩ =|Pp;ψiψe⟩,
where ψ counts bases in the atomic (interior and exterior) spaces. The group acts in S by

unitary representation D(G) (all the involved representations are unitary):

D(g) =
∑
Pp

EP,gp
Pp ⊗ δP (fP (g, p))⊗ dP (g). (C.2)

Here, basis matrices EPp
Qq have all zeros except 1 at the intersection of the row Pp and col-

umn Qq. Thus, EP,gp
Pp emulates group action on the sites, and (as it is easily checked) that∑

PpE
P,gp
Pp is permutational representation of G (mentioned in Chapter 3); also, it 1(F ↑ G)

induced identity representation of stabilizer to group, being in a sense is a prototypical (thus

known as ground representation) for induction as seen from (C.2): the first factor is interior

part, representation δP (F P ↑ G) of G induced from the representation δP (F P ) of the stabi-

lizer. Exterior part is dP (G). The representation D(G) is reduced to the (|µ|-dimensional)

irreducible components D(µ)(G) as D(G) =
∑

µ a
µD(µ)(G); frequency numbers aµ following

orbit decomposition of D(G), satisfy aµ =
∑

P a
µ
P .

Dynamically, hamiltonian matrix elements ⟨Pp;ψiψe | H | Qq;ψiψe ⟩ are groupped into

|δP ||dP | × |δP ||dQ| blocks HQq
Pp = χQqPp ⊗ hQqPp, modeling interaction of the atoms xQq and xPp in

the interior and exterior spaces: H =
∑

PpQq E
Pp
Qq ⊗HPp

Qq . As H is hermitean, blocks satisfy

HQq
Pp = HPp†

Qq (as well as h and χ). Finally, manifesting symmetry, hamiltonian commutes

with group: [D(g), H] = 0 for each g, or equivalently δP (fP (g, p))χPpQqδ
Q†
(fP (g, q)) = χP,gpQ,gq

and dP (g)hPpQqd
Q†
(g) = hP,gpQ,gq. In particular, taking g = zQ

−1

q interaction is expressed through

the atoms interacting with orbit representatives, i.e. their relevant neighbors only:

χPpQq = χQq
†

Pp = δP
†
(fP (zQ

−1

q , p))χ
P,zQ

−1

q p
Q0 , hPpQq = hQq

†

Pp = dP (zQq )h
P,zQ

−1

q p
Q0 dQ

†
(zQq ). (C.3)
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C.2 Concept of MGPT

Within MGPT [47] for each irreducible component D(µ)(G) of D(G), the state space is ex-

panded by the irreducible space S(µ∗) (with basis | µ∗m⟩ (m = 1, . . . , |µ|), of the conjugated

representation D(µ∗)(G), to get space Sµ = S ⊗ S(µ∗). The fixed points of the representation

Γµ(G) = D(G) ⊗ D(µ)∗(G) = ⊕PΓ
Pµ(G) span aµ dimensional subspace, with the projector

G(Γµ), and its arbitrary basis |µtµ⟩ (tµ = 1, . . . , aµ) gives a SAB by the partial scalar product:

|µtµm⟩ = ⟨µ∗m | µtµ ⟩ tµ = 1, . . . , aµ; m = 1, . . . , |µ|. (C.4)

To get SAEB, the chosen vectors have to be eigenvectors of the auxiliary hamiltonian Hµ =

H ⊗ 1µ in the auxiliary space Sµ. All this is easily seen directly from the standard group

projector technique. One of the advantages is that to get the subspace of the fixed points

of a representation, it is enough to find the intersection of the fixed points subspaces of the

generators only, thus avoiding summation over the group. Therefore, the method is applicable

to infinite, even noncompact Lie groups.

C.3 MGPT in Inductive Spaces

For the inductive representation (C.2), the task is reduced to the symcell space S0 = ⊕PSP0.

To see this the modified projector (in the auxiliary space) Sµ = S ⊗ S(µ∗)

G(Γµ) =
∑
P

1

|G|
∑
g,p

EPgp
Pp ⊗ δP (fP (g, p))⊗ dP (g)⊗D(µ)∗(g)

is to be calculated. Using (C.1), and the transverzal pool-up operators

ẐPµ =
1√
|ZP |

∑
p

EPp
P0 ⊗ ζPµp , ζPµp = 1δ ⊗ dP (zPp )⊗D(µ)∗(zPp ), (C.5)

it becomes: G(Γµ) =
∑

P Ẑ
Pµ
[
EP0
P0 ⊗ F P (δP ⊗ dP ⊗D(µ)∗)

]
ẐPµ† . Finally, as all the opera-

tors above are block-diagonal (within orbit spaces, following independent group action over

orbits), introducing subduced to stabilizer representations

γP
µ

(F P ) = δP (F P )⊗ dP (F P )⊗D(µ)∗(F P ), (C.6)

the result is:

G(Γµ) = ẐµG↓(Γµ)Ẑµ† , G↓(Γµ) =
∑
P

EP0
P0 ⊗ F P (γP

µ

), Ẑµ =
∑
P

ẐPµ. (C.7)

The operator Ẑµ is a partial isometry on the range of the modified projector G↓(Γµ): it maps

this subspace in S0 onto the range of G(Γµ), i.e. fixed points of Γµ(G). Its adjoint Ẑµ† is

its inverse on the fixed points of Γµ(G) (Fig. C.1). In this sense G(Γµ) is pulled-up operator
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Figure C.1: Scheme of the modified group projector technique in the induced spaces. The
symmetry adapted basis | µtµm⟩ looked for in the state space S is effectively found in the
symcell space S0: the fixed points |0;µtµ⟩ of the stabilizer group F in this space are induced
to auxiliary space S ⊗ S(µ)∗ (where they are fixed points | µtµ⟩ of the whole group G), and
then by the partial trace mapped to |µm, t⟩

of G↓(Γµ), and oppositely, G↓(Γµ) = Ẑµ†G(Γµ)Ẑµ is pulled-down to Sµ0 modified projector

G(Γµ). As within MGPT just the fixed points of Γµ(G) are looked for, it turns out that it

is sufficient to work with the symcell space (thus low-dimensional) representations γPµ using

only stabilizers. Any basis |µtµ⟩0 of the range of G↓(Γµ) is mapped by Ẑµ to the basis in the

range of G(Γµ), giving multiplet |µtµm⟩ of SAB by (C.4):

|µtµ⟩Pp = 1δP ⊗ dP (zPp )⊗D(µ)∗(zPp ) |µtµ⟩P0 , |µtµm⟩ = ⟨µ∗m | (Zµ |µtµ⟩0). (C.8)

To find SAEB, it remains to pull-down the auxiliary hamiltonian Hµ = H ⊗ 1µ to Sµ0 :

H↓
µ = Zµ†HµZ

µ =
∑
PQ

EP0
Q0 ⊗

1√
|ZP ||ZQ|

∑
p

(∑
q

γPµ(fP (zQq , p))

)
ζPµ

†

p (HPp
Q0 ⊗ 1µ). (C.9)

It commutes with G↓(Γµ), and the vectors |µtµ⟩0 are the eigenvectors of H↓
µ from the range of

G↓(Γµ), i.e. those satisfying both G↓(Γµ) |µtµ⟩0 =|µtµ⟩0 and H↓
µ |µtµ⟩0 = H↓

µG
↓(Γµ) |µtµ⟩0 =

ϵµtµ |µtµ⟩0. Rearrangement lema for the stabilizers gives for the operator reduced to the range

of G↓(Γµ):

H↓
0µ = G↓(Γµ)H↓

µ =
∑
PQ

EP0
Q0 ⊗

√
|F P |
|FQ|

F P (γPµ)Hµ
PQ, Hµ

PQ =
∑
p

ζPµ
†

p HPp
Q0 . (C.10)

Its eigenvectors from the range of G↓(Γµ), are |µtµ⟩0, giving SAEB site components:

|µtµm⟩Pp = dP (zPp )
∑
m′

D
(µ)∗

mm′(z
P
p ) |µtµm′⟩P0. (C.11)
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